1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 #include <linux/interrupt.h> 13 #include <linux/kallsyms.h> 14 #include <linux/spinlock.h> 15 #include <linux/kprobes.h> 16 #include <linux/uaccess.h> 17 #include <linux/kdebug.h> 18 #include <linux/kgdb.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/ptrace.h> 22 #include <linux/string.h> 23 #include <linux/delay.h> 24 #include <linux/errno.h> 25 #include <linux/kexec.h> 26 #include <linux/sched.h> 27 #include <linux/timer.h> 28 #include <linux/init.h> 29 #include <linux/bug.h> 30 #include <linux/nmi.h> 31 #include <linux/mm.h> 32 #include <linux/smp.h> 33 #include <linux/io.h> 34 35 #ifdef CONFIG_EISA 36 #include <linux/ioport.h> 37 #include <linux/eisa.h> 38 #endif 39 40 #ifdef CONFIG_MCA 41 #include <linux/mca.h> 42 #endif 43 44 #if defined(CONFIG_EDAC) 45 #include <linux/edac.h> 46 #endif 47 48 #include <asm/kmemcheck.h> 49 #include <asm/stacktrace.h> 50 #include <asm/processor.h> 51 #include <asm/debugreg.h> 52 #include <asm/atomic.h> 53 #include <asm/system.h> 54 #include <asm/traps.h> 55 #include <asm/desc.h> 56 #include <asm/i387.h> 57 #include <asm/mce.h> 58 59 #include <asm/mach_traps.h> 60 61 #ifdef CONFIG_X86_64 62 #include <asm/x86_init.h> 63 #include <asm/pgalloc.h> 64 #include <asm/proto.h> 65 #else 66 #include <asm/processor-flags.h> 67 #include <asm/setup.h> 68 69 asmlinkage int system_call(void); 70 71 /* Do we ignore FPU interrupts ? */ 72 char ignore_fpu_irq; 73 74 /* 75 * The IDT has to be page-aligned to simplify the Pentium 76 * F0 0F bug workaround. 77 */ 78 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, }; 79 #endif 80 81 DECLARE_BITMAP(used_vectors, NR_VECTORS); 82 EXPORT_SYMBOL_GPL(used_vectors); 83 84 static int ignore_nmis; 85 86 int unknown_nmi_panic; 87 88 static inline void conditional_sti(struct pt_regs *regs) 89 { 90 if (regs->flags & X86_EFLAGS_IF) 91 local_irq_enable(); 92 } 93 94 static inline void preempt_conditional_sti(struct pt_regs *regs) 95 { 96 inc_preempt_count(); 97 if (regs->flags & X86_EFLAGS_IF) 98 local_irq_enable(); 99 } 100 101 static inline void conditional_cli(struct pt_regs *regs) 102 { 103 if (regs->flags & X86_EFLAGS_IF) 104 local_irq_disable(); 105 } 106 107 static inline void preempt_conditional_cli(struct pt_regs *regs) 108 { 109 if (regs->flags & X86_EFLAGS_IF) 110 local_irq_disable(); 111 dec_preempt_count(); 112 } 113 114 static void __kprobes 115 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 116 long error_code, siginfo_t *info) 117 { 118 struct task_struct *tsk = current; 119 120 #ifdef CONFIG_X86_32 121 if (regs->flags & X86_VM_MASK) { 122 /* 123 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 124 * On nmi (interrupt 2), do_trap should not be called. 125 */ 126 if (trapnr < 6) 127 goto vm86_trap; 128 goto trap_signal; 129 } 130 #endif 131 132 if (!user_mode(regs)) 133 goto kernel_trap; 134 135 #ifdef CONFIG_X86_32 136 trap_signal: 137 #endif 138 /* 139 * We want error_code and trap_no set for userspace faults and 140 * kernelspace faults which result in die(), but not 141 * kernelspace faults which are fixed up. die() gives the 142 * process no chance to handle the signal and notice the 143 * kernel fault information, so that won't result in polluting 144 * the information about previously queued, but not yet 145 * delivered, faults. See also do_general_protection below. 146 */ 147 tsk->thread.error_code = error_code; 148 tsk->thread.trap_no = trapnr; 149 150 #ifdef CONFIG_X86_64 151 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 152 printk_ratelimit()) { 153 printk(KERN_INFO 154 "%s[%d] trap %s ip:%lx sp:%lx error:%lx", 155 tsk->comm, tsk->pid, str, 156 regs->ip, regs->sp, error_code); 157 print_vma_addr(" in ", regs->ip); 158 printk("\n"); 159 } 160 #endif 161 162 if (info) 163 force_sig_info(signr, info, tsk); 164 else 165 force_sig(signr, tsk); 166 return; 167 168 kernel_trap: 169 if (!fixup_exception(regs)) { 170 tsk->thread.error_code = error_code; 171 tsk->thread.trap_no = trapnr; 172 die(str, regs, error_code); 173 } 174 return; 175 176 #ifdef CONFIG_X86_32 177 vm86_trap: 178 if (handle_vm86_trap((struct kernel_vm86_regs *) regs, 179 error_code, trapnr)) 180 goto trap_signal; 181 return; 182 #endif 183 } 184 185 #define DO_ERROR(trapnr, signr, str, name) \ 186 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 187 { \ 188 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 189 == NOTIFY_STOP) \ 190 return; \ 191 conditional_sti(regs); \ 192 do_trap(trapnr, signr, str, regs, error_code, NULL); \ 193 } 194 195 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ 196 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 197 { \ 198 siginfo_t info; \ 199 info.si_signo = signr; \ 200 info.si_errno = 0; \ 201 info.si_code = sicode; \ 202 info.si_addr = (void __user *)siaddr; \ 203 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ 204 == NOTIFY_STOP) \ 205 return; \ 206 conditional_sti(regs); \ 207 do_trap(trapnr, signr, str, regs, error_code, &info); \ 208 } 209 210 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip) 211 DO_ERROR(4, SIGSEGV, "overflow", overflow) 212 DO_ERROR(5, SIGSEGV, "bounds", bounds) 213 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip) 214 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) 215 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) 216 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) 217 #ifdef CONFIG_X86_32 218 DO_ERROR(12, SIGBUS, "stack segment", stack_segment) 219 #endif 220 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) 221 222 #ifdef CONFIG_X86_64 223 /* Runs on IST stack */ 224 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code) 225 { 226 if (notify_die(DIE_TRAP, "stack segment", regs, error_code, 227 12, SIGBUS) == NOTIFY_STOP) 228 return; 229 preempt_conditional_sti(regs); 230 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL); 231 preempt_conditional_cli(regs); 232 } 233 234 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 235 { 236 static const char str[] = "double fault"; 237 struct task_struct *tsk = current; 238 239 /* Return not checked because double check cannot be ignored */ 240 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV); 241 242 tsk->thread.error_code = error_code; 243 tsk->thread.trap_no = 8; 244 245 /* 246 * This is always a kernel trap and never fixable (and thus must 247 * never return). 248 */ 249 for (;;) 250 die(str, regs, error_code); 251 } 252 #endif 253 254 dotraplinkage void __kprobes 255 do_general_protection(struct pt_regs *regs, long error_code) 256 { 257 struct task_struct *tsk; 258 259 conditional_sti(regs); 260 261 #ifdef CONFIG_X86_32 262 if (regs->flags & X86_VM_MASK) 263 goto gp_in_vm86; 264 #endif 265 266 tsk = current; 267 if (!user_mode(regs)) 268 goto gp_in_kernel; 269 270 tsk->thread.error_code = error_code; 271 tsk->thread.trap_no = 13; 272 273 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 274 printk_ratelimit()) { 275 printk(KERN_INFO 276 "%s[%d] general protection ip:%lx sp:%lx error:%lx", 277 tsk->comm, task_pid_nr(tsk), 278 regs->ip, regs->sp, error_code); 279 print_vma_addr(" in ", regs->ip); 280 printk("\n"); 281 } 282 283 force_sig(SIGSEGV, tsk); 284 return; 285 286 #ifdef CONFIG_X86_32 287 gp_in_vm86: 288 local_irq_enable(); 289 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 290 return; 291 #endif 292 293 gp_in_kernel: 294 if (fixup_exception(regs)) 295 return; 296 297 tsk->thread.error_code = error_code; 298 tsk->thread.trap_no = 13; 299 if (notify_die(DIE_GPF, "general protection fault", regs, 300 error_code, 13, SIGSEGV) == NOTIFY_STOP) 301 return; 302 die("general protection fault", regs, error_code); 303 } 304 305 static int __init setup_unknown_nmi_panic(char *str) 306 { 307 unknown_nmi_panic = 1; 308 return 1; 309 } 310 __setup("unknown_nmi_panic", setup_unknown_nmi_panic); 311 312 static notrace __kprobes void 313 mem_parity_error(unsigned char reason, struct pt_regs *regs) 314 { 315 printk(KERN_EMERG 316 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 317 reason, smp_processor_id()); 318 319 printk(KERN_EMERG 320 "You have some hardware problem, likely on the PCI bus.\n"); 321 322 #if defined(CONFIG_EDAC) 323 if (edac_handler_set()) { 324 edac_atomic_assert_error(); 325 return; 326 } 327 #endif 328 329 if (panic_on_unrecovered_nmi) 330 panic("NMI: Not continuing"); 331 332 printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); 333 334 /* Clear and disable the memory parity error line. */ 335 reason = (reason & 0xf) | 4; 336 outb(reason, 0x61); 337 } 338 339 static notrace __kprobes void 340 io_check_error(unsigned char reason, struct pt_regs *regs) 341 { 342 unsigned long i; 343 344 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n"); 345 show_registers(regs); 346 347 if (panic_on_io_nmi) 348 panic("NMI IOCK error: Not continuing"); 349 350 /* Re-enable the IOCK line, wait for a few seconds */ 351 reason = (reason & 0xf) | 8; 352 outb(reason, 0x61); 353 354 i = 20000; 355 while (--i) { 356 touch_nmi_watchdog(); 357 udelay(100); 358 } 359 360 reason &= ~8; 361 outb(reason, 0x61); 362 } 363 364 static notrace __kprobes void 365 unknown_nmi_error(unsigned char reason, struct pt_regs *regs) 366 { 367 if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == 368 NOTIFY_STOP) 369 return; 370 #ifdef CONFIG_MCA 371 /* 372 * Might actually be able to figure out what the guilty party 373 * is: 374 */ 375 if (MCA_bus) { 376 mca_handle_nmi(); 377 return; 378 } 379 #endif 380 printk(KERN_EMERG 381 "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", 382 reason, smp_processor_id()); 383 384 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); 385 if (unknown_nmi_panic || panic_on_unrecovered_nmi) 386 panic("NMI: Not continuing"); 387 388 printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); 389 } 390 391 static notrace __kprobes void default_do_nmi(struct pt_regs *regs) 392 { 393 unsigned char reason = 0; 394 int cpu; 395 396 cpu = smp_processor_id(); 397 398 /* Only the BSP gets external NMIs from the system. */ 399 if (!cpu) 400 reason = get_nmi_reason(); 401 402 if (!(reason & 0xc0)) { 403 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) 404 == NOTIFY_STOP) 405 return; 406 407 #ifdef CONFIG_X86_LOCAL_APIC 408 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) 409 == NOTIFY_STOP) 410 return; 411 #endif 412 unknown_nmi_error(reason, regs); 413 414 return; 415 } 416 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) 417 return; 418 419 /* AK: following checks seem to be broken on modern chipsets. FIXME */ 420 if (reason & 0x80) 421 mem_parity_error(reason, regs); 422 if (reason & 0x40) 423 io_check_error(reason, regs); 424 #ifdef CONFIG_X86_32 425 /* 426 * Reassert NMI in case it became active meanwhile 427 * as it's edge-triggered: 428 */ 429 reassert_nmi(); 430 #endif 431 } 432 433 dotraplinkage notrace __kprobes void 434 do_nmi(struct pt_regs *regs, long error_code) 435 { 436 nmi_enter(); 437 438 inc_irq_stat(__nmi_count); 439 440 if (!ignore_nmis) 441 default_do_nmi(regs); 442 443 nmi_exit(); 444 } 445 446 void stop_nmi(void) 447 { 448 ignore_nmis++; 449 } 450 451 void restart_nmi(void) 452 { 453 ignore_nmis--; 454 } 455 456 /* May run on IST stack. */ 457 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code) 458 { 459 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 460 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) 461 == NOTIFY_STOP) 462 return; 463 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 464 #ifdef CONFIG_KPROBES 465 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) 466 == NOTIFY_STOP) 467 return; 468 #else 469 if (notify_die(DIE_TRAP, "int3", regs, error_code, 3, SIGTRAP) 470 == NOTIFY_STOP) 471 return; 472 #endif 473 474 preempt_conditional_sti(regs); 475 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL); 476 preempt_conditional_cli(regs); 477 } 478 479 #ifdef CONFIG_X86_64 480 /* 481 * Help handler running on IST stack to switch back to user stack 482 * for scheduling or signal handling. The actual stack switch is done in 483 * entry.S 484 */ 485 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs) 486 { 487 struct pt_regs *regs = eregs; 488 /* Did already sync */ 489 if (eregs == (struct pt_regs *)eregs->sp) 490 ; 491 /* Exception from user space */ 492 else if (user_mode(eregs)) 493 regs = task_pt_regs(current); 494 /* 495 * Exception from kernel and interrupts are enabled. Move to 496 * kernel process stack. 497 */ 498 else if (eregs->flags & X86_EFLAGS_IF) 499 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs)); 500 if (eregs != regs) 501 *regs = *eregs; 502 return regs; 503 } 504 #endif 505 506 /* 507 * Our handling of the processor debug registers is non-trivial. 508 * We do not clear them on entry and exit from the kernel. Therefore 509 * it is possible to get a watchpoint trap here from inside the kernel. 510 * However, the code in ./ptrace.c has ensured that the user can 511 * only set watchpoints on userspace addresses. Therefore the in-kernel 512 * watchpoint trap can only occur in code which is reading/writing 513 * from user space. Such code must not hold kernel locks (since it 514 * can equally take a page fault), therefore it is safe to call 515 * force_sig_info even though that claims and releases locks. 516 * 517 * Code in ./signal.c ensures that the debug control register 518 * is restored before we deliver any signal, and therefore that 519 * user code runs with the correct debug control register even though 520 * we clear it here. 521 * 522 * Being careful here means that we don't have to be as careful in a 523 * lot of more complicated places (task switching can be a bit lazy 524 * about restoring all the debug state, and ptrace doesn't have to 525 * find every occurrence of the TF bit that could be saved away even 526 * by user code) 527 * 528 * May run on IST stack. 529 */ 530 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code) 531 { 532 struct task_struct *tsk = current; 533 int user_icebp = 0; 534 unsigned long dr6; 535 int si_code; 536 537 get_debugreg(dr6, 6); 538 539 /* Filter out all the reserved bits which are preset to 1 */ 540 dr6 &= ~DR6_RESERVED; 541 542 /* 543 * If dr6 has no reason to give us about the origin of this trap, 544 * then it's very likely the result of an icebp/int01 trap. 545 * User wants a sigtrap for that. 546 */ 547 if (!dr6 && user_mode(regs)) 548 user_icebp = 1; 549 550 /* Catch kmemcheck conditions first of all! */ 551 if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) 552 return; 553 554 /* DR6 may or may not be cleared by the CPU */ 555 set_debugreg(0, 6); 556 557 /* 558 * The processor cleared BTF, so don't mark that we need it set. 559 */ 560 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 561 562 /* Store the virtualized DR6 value */ 563 tsk->thread.debugreg6 = dr6; 564 565 if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code, 566 SIGTRAP) == NOTIFY_STOP) 567 return; 568 569 /* It's safe to allow irq's after DR6 has been saved */ 570 preempt_conditional_sti(regs); 571 572 if (regs->flags & X86_VM_MASK) { 573 handle_vm86_trap((struct kernel_vm86_regs *) regs, 574 error_code, 1); 575 preempt_conditional_cli(regs); 576 return; 577 } 578 579 /* 580 * Single-stepping through system calls: ignore any exceptions in 581 * kernel space, but re-enable TF when returning to user mode. 582 * 583 * We already checked v86 mode above, so we can check for kernel mode 584 * by just checking the CPL of CS. 585 */ 586 if ((dr6 & DR_STEP) && !user_mode(regs)) { 587 tsk->thread.debugreg6 &= ~DR_STEP; 588 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 589 regs->flags &= ~X86_EFLAGS_TF; 590 } 591 si_code = get_si_code(tsk->thread.debugreg6); 592 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 593 send_sigtrap(tsk, regs, error_code, si_code); 594 preempt_conditional_cli(regs); 595 596 return; 597 } 598 599 /* 600 * Note that we play around with the 'TS' bit in an attempt to get 601 * the correct behaviour even in the presence of the asynchronous 602 * IRQ13 behaviour 603 */ 604 void math_error(struct pt_regs *regs, int error_code, int trapnr) 605 { 606 struct task_struct *task = current; 607 siginfo_t info; 608 unsigned short err; 609 char *str = (trapnr == 16) ? "fpu exception" : "simd exception"; 610 611 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) 612 return; 613 conditional_sti(regs); 614 615 if (!user_mode_vm(regs)) 616 { 617 if (!fixup_exception(regs)) { 618 task->thread.error_code = error_code; 619 task->thread.trap_no = trapnr; 620 die(str, regs, error_code); 621 } 622 return; 623 } 624 625 /* 626 * Save the info for the exception handler and clear the error. 627 */ 628 save_init_fpu(task); 629 task->thread.trap_no = trapnr; 630 task->thread.error_code = error_code; 631 info.si_signo = SIGFPE; 632 info.si_errno = 0; 633 info.si_addr = (void __user *)regs->ip; 634 if (trapnr == 16) { 635 unsigned short cwd, swd; 636 /* 637 * (~cwd & swd) will mask out exceptions that are not set to unmasked 638 * status. 0x3f is the exception bits in these regs, 0x200 is the 639 * C1 reg you need in case of a stack fault, 0x040 is the stack 640 * fault bit. We should only be taking one exception at a time, 641 * so if this combination doesn't produce any single exception, 642 * then we have a bad program that isn't synchronizing its FPU usage 643 * and it will suffer the consequences since we won't be able to 644 * fully reproduce the context of the exception 645 */ 646 cwd = get_fpu_cwd(task); 647 swd = get_fpu_swd(task); 648 649 err = swd & ~cwd; 650 } else { 651 /* 652 * The SIMD FPU exceptions are handled a little differently, as there 653 * is only a single status/control register. Thus, to determine which 654 * unmasked exception was caught we must mask the exception mask bits 655 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 656 */ 657 unsigned short mxcsr = get_fpu_mxcsr(task); 658 err = ~(mxcsr >> 7) & mxcsr; 659 } 660 661 if (err & 0x001) { /* Invalid op */ 662 /* 663 * swd & 0x240 == 0x040: Stack Underflow 664 * swd & 0x240 == 0x240: Stack Overflow 665 * User must clear the SF bit (0x40) if set 666 */ 667 info.si_code = FPE_FLTINV; 668 } else if (err & 0x004) { /* Divide by Zero */ 669 info.si_code = FPE_FLTDIV; 670 } else if (err & 0x008) { /* Overflow */ 671 info.si_code = FPE_FLTOVF; 672 } else if (err & 0x012) { /* Denormal, Underflow */ 673 info.si_code = FPE_FLTUND; 674 } else if (err & 0x020) { /* Precision */ 675 info.si_code = FPE_FLTRES; 676 } else { 677 /* 678 * If we're using IRQ 13, or supposedly even some trap 16 679 * implementations, it's possible we get a spurious trap... 680 */ 681 return; /* Spurious trap, no error */ 682 } 683 force_sig_info(SIGFPE, &info, task); 684 } 685 686 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 687 { 688 #ifdef CONFIG_X86_32 689 ignore_fpu_irq = 1; 690 #endif 691 692 math_error(regs, error_code, 16); 693 } 694 695 dotraplinkage void 696 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 697 { 698 math_error(regs, error_code, 19); 699 } 700 701 dotraplinkage void 702 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 703 { 704 conditional_sti(regs); 705 #if 0 706 /* No need to warn about this any longer. */ 707 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); 708 #endif 709 } 710 711 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void) 712 { 713 } 714 715 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void) 716 { 717 } 718 719 /* 720 * __math_state_restore assumes that cr0.TS is already clear and the 721 * fpu state is all ready for use. Used during context switch. 722 */ 723 void __math_state_restore(void) 724 { 725 struct thread_info *thread = current_thread_info(); 726 struct task_struct *tsk = thread->task; 727 728 /* 729 * Paranoid restore. send a SIGSEGV if we fail to restore the state. 730 */ 731 if (unlikely(restore_fpu_checking(tsk))) { 732 stts(); 733 force_sig(SIGSEGV, tsk); 734 return; 735 } 736 737 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */ 738 tsk->fpu_counter++; 739 } 740 741 /* 742 * 'math_state_restore()' saves the current math information in the 743 * old math state array, and gets the new ones from the current task 744 * 745 * Careful.. There are problems with IBM-designed IRQ13 behaviour. 746 * Don't touch unless you *really* know how it works. 747 * 748 * Must be called with kernel preemption disabled (in this case, 749 * local interrupts are disabled at the call-site in entry.S). 750 */ 751 asmlinkage void math_state_restore(void) 752 { 753 struct thread_info *thread = current_thread_info(); 754 struct task_struct *tsk = thread->task; 755 756 if (!tsk_used_math(tsk)) { 757 local_irq_enable(); 758 /* 759 * does a slab alloc which can sleep 760 */ 761 if (init_fpu(tsk)) { 762 /* 763 * ran out of memory! 764 */ 765 do_group_exit(SIGKILL); 766 return; 767 } 768 local_irq_disable(); 769 } 770 771 clts(); /* Allow maths ops (or we recurse) */ 772 773 __math_state_restore(); 774 } 775 EXPORT_SYMBOL_GPL(math_state_restore); 776 777 dotraplinkage void __kprobes 778 do_device_not_available(struct pt_regs *regs, long error_code) 779 { 780 #ifdef CONFIG_MATH_EMULATION 781 if (read_cr0() & X86_CR0_EM) { 782 struct math_emu_info info = { }; 783 784 conditional_sti(regs); 785 786 info.regs = regs; 787 math_emulate(&info); 788 return; 789 } 790 #endif 791 math_state_restore(); /* interrupts still off */ 792 #ifdef CONFIG_X86_32 793 conditional_sti(regs); 794 #endif 795 } 796 797 #ifdef CONFIG_X86_32 798 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 799 { 800 siginfo_t info; 801 local_irq_enable(); 802 803 info.si_signo = SIGILL; 804 info.si_errno = 0; 805 info.si_code = ILL_BADSTK; 806 info.si_addr = NULL; 807 if (notify_die(DIE_TRAP, "iret exception", 808 regs, error_code, 32, SIGILL) == NOTIFY_STOP) 809 return; 810 do_trap(32, SIGILL, "iret exception", regs, error_code, &info); 811 } 812 #endif 813 814 /* Set of traps needed for early debugging. */ 815 void __init early_trap_init(void) 816 { 817 set_intr_gate_ist(1, &debug, DEBUG_STACK); 818 /* int3 can be called from all */ 819 set_system_intr_gate_ist(3, &int3, DEBUG_STACK); 820 set_intr_gate(14, &page_fault); 821 load_idt(&idt_descr); 822 } 823 824 void __init trap_init(void) 825 { 826 int i; 827 828 #ifdef CONFIG_EISA 829 void __iomem *p = early_ioremap(0x0FFFD9, 4); 830 831 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) 832 EISA_bus = 1; 833 early_iounmap(p, 4); 834 #endif 835 836 set_intr_gate(0, ÷_error); 837 set_intr_gate_ist(2, &nmi, NMI_STACK); 838 /* int4 can be called from all */ 839 set_system_intr_gate(4, &overflow); 840 set_intr_gate(5, &bounds); 841 set_intr_gate(6, &invalid_op); 842 set_intr_gate(7, &device_not_available); 843 #ifdef CONFIG_X86_32 844 set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS); 845 #else 846 set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK); 847 #endif 848 set_intr_gate(9, &coprocessor_segment_overrun); 849 set_intr_gate(10, &invalid_TSS); 850 set_intr_gate(11, &segment_not_present); 851 set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK); 852 set_intr_gate(13, &general_protection); 853 set_intr_gate(15, &spurious_interrupt_bug); 854 set_intr_gate(16, &coprocessor_error); 855 set_intr_gate(17, &alignment_check); 856 #ifdef CONFIG_X86_MCE 857 set_intr_gate_ist(18, &machine_check, MCE_STACK); 858 #endif 859 set_intr_gate(19, &simd_coprocessor_error); 860 861 /* Reserve all the builtin and the syscall vector: */ 862 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) 863 set_bit(i, used_vectors); 864 865 #ifdef CONFIG_IA32_EMULATION 866 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall); 867 set_bit(IA32_SYSCALL_VECTOR, used_vectors); 868 #endif 869 870 #ifdef CONFIG_X86_32 871 set_system_trap_gate(SYSCALL_VECTOR, &system_call); 872 set_bit(SYSCALL_VECTOR, used_vectors); 873 #endif 874 875 /* 876 * Should be a barrier for any external CPU state: 877 */ 878 cpu_init(); 879 880 x86_init.irqs.trap_init(); 881 } 882