1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #if defined(CONFIG_EDAC) 42 #include <linux/edac.h> 43 #endif 44 45 #include <asm/stacktrace.h> 46 #include <asm/processor.h> 47 #include <asm/debugreg.h> 48 #include <linux/atomic.h> 49 #include <asm/text-patching.h> 50 #include <asm/ftrace.h> 51 #include <asm/traps.h> 52 #include <asm/desc.h> 53 #include <asm/fpu/internal.h> 54 #include <asm/cpu_entry_area.h> 55 #include <asm/mce.h> 56 #include <asm/fixmap.h> 57 #include <asm/mach_traps.h> 58 #include <asm/alternative.h> 59 #include <asm/fpu/xstate.h> 60 #include <asm/trace/mpx.h> 61 #include <asm/mpx.h> 62 #include <asm/vm86.h> 63 #include <asm/umip.h> 64 65 #ifdef CONFIG_X86_64 66 #include <asm/x86_init.h> 67 #include <asm/pgalloc.h> 68 #include <asm/proto.h> 69 #else 70 #include <asm/processor-flags.h> 71 #include <asm/setup.h> 72 #include <asm/proto.h> 73 #endif 74 75 DECLARE_BITMAP(system_vectors, NR_VECTORS); 76 77 static inline void cond_local_irq_enable(struct pt_regs *regs) 78 { 79 if (regs->flags & X86_EFLAGS_IF) 80 local_irq_enable(); 81 } 82 83 static inline void cond_local_irq_disable(struct pt_regs *regs) 84 { 85 if (regs->flags & X86_EFLAGS_IF) 86 local_irq_disable(); 87 } 88 89 /* 90 * In IST context, we explicitly disable preemption. This serves two 91 * purposes: it makes it much less likely that we would accidentally 92 * schedule in IST context and it will force a warning if we somehow 93 * manage to schedule by accident. 94 */ 95 void ist_enter(struct pt_regs *regs) 96 { 97 if (user_mode(regs)) { 98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 99 } else { 100 /* 101 * We might have interrupted pretty much anything. In 102 * fact, if we're a machine check, we can even interrupt 103 * NMI processing. We don't want in_nmi() to return true, 104 * but we need to notify RCU. 105 */ 106 rcu_nmi_enter(); 107 } 108 109 preempt_disable(); 110 111 /* This code is a bit fragile. Test it. */ 112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 113 } 114 115 void ist_exit(struct pt_regs *regs) 116 { 117 preempt_enable_no_resched(); 118 119 if (!user_mode(regs)) 120 rcu_nmi_exit(); 121 } 122 123 /** 124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 125 * @regs: regs passed to the IST exception handler 126 * 127 * IST exception handlers normally cannot schedule. As a special 128 * exception, if the exception interrupted userspace code (i.e. 129 * user_mode(regs) would return true) and the exception was not 130 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 131 * begins a non-atomic section within an ist_enter()/ist_exit() region. 132 * Callers are responsible for enabling interrupts themselves inside 133 * the non-atomic section, and callers must call ist_end_non_atomic() 134 * before ist_exit(). 135 */ 136 void ist_begin_non_atomic(struct pt_regs *regs) 137 { 138 BUG_ON(!user_mode(regs)); 139 140 /* 141 * Sanity check: we need to be on the normal thread stack. This 142 * will catch asm bugs and any attempt to use ist_preempt_enable 143 * from double_fault. 144 */ 145 BUG_ON(!on_thread_stack()); 146 147 preempt_enable_no_resched(); 148 } 149 150 /** 151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 152 * 153 * Ends a non-atomic section started with ist_begin_non_atomic(). 154 */ 155 void ist_end_non_atomic(void) 156 { 157 preempt_disable(); 158 } 159 160 int is_valid_bugaddr(unsigned long addr) 161 { 162 unsigned short ud; 163 164 if (addr < TASK_SIZE_MAX) 165 return 0; 166 167 if (probe_kernel_address((unsigned short *)addr, ud)) 168 return 0; 169 170 return ud == INSN_UD0 || ud == INSN_UD2; 171 } 172 173 int fixup_bug(struct pt_regs *regs, int trapnr) 174 { 175 if (trapnr != X86_TRAP_UD) 176 return 0; 177 178 switch (report_bug(regs->ip, regs)) { 179 case BUG_TRAP_TYPE_NONE: 180 case BUG_TRAP_TYPE_BUG: 181 break; 182 183 case BUG_TRAP_TYPE_WARN: 184 regs->ip += LEN_UD2; 185 return 1; 186 } 187 188 return 0; 189 } 190 191 static nokprobe_inline int 192 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, 193 struct pt_regs *regs, long error_code) 194 { 195 if (v8086_mode(regs)) { 196 /* 197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 198 * On nmi (interrupt 2), do_trap should not be called. 199 */ 200 if (trapnr < X86_TRAP_UD) { 201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 202 error_code, trapnr)) 203 return 0; 204 } 205 return -1; 206 } 207 208 if (!user_mode(regs)) { 209 if (fixup_exception(regs, trapnr)) 210 return 0; 211 212 tsk->thread.error_code = error_code; 213 tsk->thread.trap_nr = trapnr; 214 die(str, regs, error_code); 215 } 216 217 return -1; 218 } 219 220 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, 221 siginfo_t *info) 222 { 223 unsigned long siaddr; 224 int sicode; 225 226 switch (trapnr) { 227 default: 228 return SEND_SIG_PRIV; 229 230 case X86_TRAP_DE: 231 sicode = FPE_INTDIV; 232 siaddr = uprobe_get_trap_addr(regs); 233 break; 234 case X86_TRAP_UD: 235 sicode = ILL_ILLOPN; 236 siaddr = uprobe_get_trap_addr(regs); 237 break; 238 case X86_TRAP_AC: 239 sicode = BUS_ADRALN; 240 siaddr = 0; 241 break; 242 } 243 244 info->si_signo = signr; 245 info->si_errno = 0; 246 info->si_code = sicode; 247 info->si_addr = (void __user *)siaddr; 248 return info; 249 } 250 251 static void 252 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 253 long error_code, siginfo_t *info) 254 { 255 struct task_struct *tsk = current; 256 257 258 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 259 return; 260 /* 261 * We want error_code and trap_nr set for userspace faults and 262 * kernelspace faults which result in die(), but not 263 * kernelspace faults which are fixed up. die() gives the 264 * process no chance to handle the signal and notice the 265 * kernel fault information, so that won't result in polluting 266 * the information about previously queued, but not yet 267 * delivered, faults. See also do_general_protection below. 268 */ 269 tsk->thread.error_code = error_code; 270 tsk->thread.trap_nr = trapnr; 271 272 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 273 printk_ratelimit()) { 274 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", 275 tsk->comm, tsk->pid, str, 276 regs->ip, regs->sp, error_code); 277 print_vma_addr(KERN_CONT " in ", regs->ip); 278 pr_cont("\n"); 279 } 280 281 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); 282 } 283 NOKPROBE_SYMBOL(do_trap); 284 285 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 286 unsigned long trapnr, int signr) 287 { 288 siginfo_t info; 289 290 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 291 292 /* 293 * WARN*()s end up here; fix them up before we call the 294 * notifier chain. 295 */ 296 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 297 return; 298 299 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 300 NOTIFY_STOP) { 301 cond_local_irq_enable(regs); 302 clear_siginfo(&info); 303 do_trap(trapnr, signr, str, regs, error_code, 304 fill_trap_info(regs, signr, trapnr, &info)); 305 } 306 } 307 308 #define DO_ERROR(trapnr, signr, str, name) \ 309 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 310 { \ 311 do_error_trap(regs, error_code, str, trapnr, signr); \ 312 } 313 314 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) 315 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) 316 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) 317 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) 318 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) 319 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) 320 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) 321 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) 322 323 #ifdef CONFIG_VMAP_STACK 324 __visible void __noreturn handle_stack_overflow(const char *message, 325 struct pt_regs *regs, 326 unsigned long fault_address) 327 { 328 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 329 (void *)fault_address, current->stack, 330 (char *)current->stack + THREAD_SIZE - 1); 331 die(message, regs, 0); 332 333 /* Be absolutely certain we don't return. */ 334 panic(message); 335 } 336 #endif 337 338 #ifdef CONFIG_X86_64 339 /* Runs on IST stack */ 340 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 341 { 342 static const char str[] = "double fault"; 343 struct task_struct *tsk = current; 344 #ifdef CONFIG_VMAP_STACK 345 unsigned long cr2; 346 #endif 347 348 #ifdef CONFIG_X86_ESPFIX64 349 extern unsigned char native_irq_return_iret[]; 350 351 /* 352 * If IRET takes a non-IST fault on the espfix64 stack, then we 353 * end up promoting it to a doublefault. In that case, take 354 * advantage of the fact that we're not using the normal (TSS.sp0) 355 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 356 * and then modify our own IRET frame so that, when we return, 357 * we land directly at the #GP(0) vector with the stack already 358 * set up according to its expectations. 359 * 360 * The net result is that our #GP handler will think that we 361 * entered from usermode with the bad user context. 362 * 363 * No need for ist_enter here because we don't use RCU. 364 */ 365 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 366 regs->cs == __KERNEL_CS && 367 regs->ip == (unsigned long)native_irq_return_iret) 368 { 369 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 370 371 /* 372 * regs->sp points to the failing IRET frame on the 373 * ESPFIX64 stack. Copy it to the entry stack. This fills 374 * in gpregs->ss through gpregs->ip. 375 * 376 */ 377 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 378 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 379 380 /* 381 * Adjust our frame so that we return straight to the #GP 382 * vector with the expected RSP value. This is safe because 383 * we won't enable interupts or schedule before we invoke 384 * general_protection, so nothing will clobber the stack 385 * frame we just set up. 386 */ 387 regs->ip = (unsigned long)general_protection; 388 regs->sp = (unsigned long)&gpregs->orig_ax; 389 390 return; 391 } 392 #endif 393 394 ist_enter(regs); 395 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 396 397 tsk->thread.error_code = error_code; 398 tsk->thread.trap_nr = X86_TRAP_DF; 399 400 #ifdef CONFIG_VMAP_STACK 401 /* 402 * If we overflow the stack into a guard page, the CPU will fail 403 * to deliver #PF and will send #DF instead. Similarly, if we 404 * take any non-IST exception while too close to the bottom of 405 * the stack, the processor will get a page fault while 406 * delivering the exception and will generate a double fault. 407 * 408 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 409 * Page-Fault Exception (#PF): 410 * 411 * Processors update CR2 whenever a page fault is detected. If a 412 * second page fault occurs while an earlier page fault is being 413 * delivered, the faulting linear address of the second fault will 414 * overwrite the contents of CR2 (replacing the previous 415 * address). These updates to CR2 occur even if the page fault 416 * results in a double fault or occurs during the delivery of a 417 * double fault. 418 * 419 * The logic below has a small possibility of incorrectly diagnosing 420 * some errors as stack overflows. For example, if the IDT or GDT 421 * gets corrupted such that #GP delivery fails due to a bad descriptor 422 * causing #GP and we hit this condition while CR2 coincidentally 423 * points to the stack guard page, we'll think we overflowed the 424 * stack. Given that we're going to panic one way or another 425 * if this happens, this isn't necessarily worth fixing. 426 * 427 * If necessary, we could improve the test by only diagnosing 428 * a stack overflow if the saved RSP points within 47 bytes of 429 * the bottom of the stack: if RSP == tsk_stack + 48 and we 430 * take an exception, the stack is already aligned and there 431 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 432 * possible error code, so a stack overflow would *not* double 433 * fault. With any less space left, exception delivery could 434 * fail, and, as a practical matter, we've overflowed the 435 * stack even if the actual trigger for the double fault was 436 * something else. 437 */ 438 cr2 = read_cr2(); 439 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 440 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 441 #endif 442 443 #ifdef CONFIG_DOUBLEFAULT 444 df_debug(regs, error_code); 445 #endif 446 /* 447 * This is always a kernel trap and never fixable (and thus must 448 * never return). 449 */ 450 for (;;) 451 die(str, regs, error_code); 452 } 453 #endif 454 455 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 456 { 457 const struct mpx_bndcsr *bndcsr; 458 siginfo_t *info; 459 460 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 461 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 462 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 463 return; 464 cond_local_irq_enable(regs); 465 466 if (!user_mode(regs)) 467 die("bounds", regs, error_code); 468 469 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 470 /* The exception is not from Intel MPX */ 471 goto exit_trap; 472 } 473 474 /* 475 * We need to look at BNDSTATUS to resolve this exception. 476 * A NULL here might mean that it is in its 'init state', 477 * which is all zeros which indicates MPX was not 478 * responsible for the exception. 479 */ 480 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 481 if (!bndcsr) 482 goto exit_trap; 483 484 trace_bounds_exception_mpx(bndcsr); 485 /* 486 * The error code field of the BNDSTATUS register communicates status 487 * information of a bound range exception #BR or operation involving 488 * bound directory. 489 */ 490 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 491 case 2: /* Bound directory has invalid entry. */ 492 if (mpx_handle_bd_fault()) 493 goto exit_trap; 494 break; /* Success, it was handled */ 495 case 1: /* Bound violation. */ 496 info = mpx_generate_siginfo(regs); 497 if (IS_ERR(info)) { 498 /* 499 * We failed to decode the MPX instruction. Act as if 500 * the exception was not caused by MPX. 501 */ 502 goto exit_trap; 503 } 504 /* 505 * Success, we decoded the instruction and retrieved 506 * an 'info' containing the address being accessed 507 * which caused the exception. This information 508 * allows and application to possibly handle the 509 * #BR exception itself. 510 */ 511 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); 512 kfree(info); 513 break; 514 case 0: /* No exception caused by Intel MPX operations. */ 515 goto exit_trap; 516 default: 517 die("bounds", regs, error_code); 518 } 519 520 return; 521 522 exit_trap: 523 /* 524 * This path out is for all the cases where we could not 525 * handle the exception in some way (like allocating a 526 * table or telling userspace about it. We will also end 527 * up here if the kernel has MPX turned off at compile 528 * time.. 529 */ 530 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); 531 } 532 533 dotraplinkage void 534 do_general_protection(struct pt_regs *regs, long error_code) 535 { 536 struct task_struct *tsk; 537 538 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 539 cond_local_irq_enable(regs); 540 541 if (static_cpu_has(X86_FEATURE_UMIP)) { 542 if (user_mode(regs) && fixup_umip_exception(regs)) 543 return; 544 } 545 546 if (v8086_mode(regs)) { 547 local_irq_enable(); 548 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 549 return; 550 } 551 552 tsk = current; 553 if (!user_mode(regs)) { 554 if (fixup_exception(regs, X86_TRAP_GP)) 555 return; 556 557 tsk->thread.error_code = error_code; 558 tsk->thread.trap_nr = X86_TRAP_GP; 559 if (notify_die(DIE_GPF, "general protection fault", regs, error_code, 560 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 561 die("general protection fault", regs, error_code); 562 return; 563 } 564 565 tsk->thread.error_code = error_code; 566 tsk->thread.trap_nr = X86_TRAP_GP; 567 568 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 569 printk_ratelimit()) { 570 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", 571 tsk->comm, task_pid_nr(tsk), 572 regs->ip, regs->sp, error_code); 573 print_vma_addr(KERN_CONT " in ", regs->ip); 574 pr_cont("\n"); 575 } 576 577 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); 578 } 579 NOKPROBE_SYMBOL(do_general_protection); 580 581 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 582 { 583 #ifdef CONFIG_DYNAMIC_FTRACE 584 /* 585 * ftrace must be first, everything else may cause a recursive crash. 586 * See note by declaration of modifying_ftrace_code in ftrace.c 587 */ 588 if (unlikely(atomic_read(&modifying_ftrace_code)) && 589 ftrace_int3_handler(regs)) 590 return; 591 #endif 592 if (poke_int3_handler(regs)) 593 return; 594 595 /* 596 * Use ist_enter despite the fact that we don't use an IST stack. 597 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel 598 * mode or even during context tracking state changes. 599 * 600 * This means that we can't schedule. That's okay. 601 */ 602 ist_enter(regs); 603 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 604 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 605 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 606 SIGTRAP) == NOTIFY_STOP) 607 goto exit; 608 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 609 610 #ifdef CONFIG_KPROBES 611 if (kprobe_int3_handler(regs)) 612 goto exit; 613 #endif 614 615 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 616 SIGTRAP) == NOTIFY_STOP) 617 goto exit; 618 619 cond_local_irq_enable(regs); 620 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); 621 cond_local_irq_disable(regs); 622 623 exit: 624 ist_exit(regs); 625 } 626 NOKPROBE_SYMBOL(do_int3); 627 628 #ifdef CONFIG_X86_64 629 /* 630 * Help handler running on a per-cpu (IST or entry trampoline) stack 631 * to switch to the normal thread stack if the interrupted code was in 632 * user mode. The actual stack switch is done in entry_64.S 633 */ 634 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 635 { 636 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 637 if (regs != eregs) 638 *regs = *eregs; 639 return regs; 640 } 641 NOKPROBE_SYMBOL(sync_regs); 642 643 struct bad_iret_stack { 644 void *error_entry_ret; 645 struct pt_regs regs; 646 }; 647 648 asmlinkage __visible notrace 649 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 650 { 651 /* 652 * This is called from entry_64.S early in handling a fault 653 * caused by a bad iret to user mode. To handle the fault 654 * correctly, we want to move our stack frame to where it would 655 * be had we entered directly on the entry stack (rather than 656 * just below the IRET frame) and we want to pretend that the 657 * exception came from the IRET target. 658 */ 659 struct bad_iret_stack *new_stack = 660 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 661 662 /* Copy the IRET target to the new stack. */ 663 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 664 665 /* Copy the remainder of the stack from the current stack. */ 666 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 667 668 BUG_ON(!user_mode(&new_stack->regs)); 669 return new_stack; 670 } 671 NOKPROBE_SYMBOL(fixup_bad_iret); 672 #endif 673 674 static bool is_sysenter_singlestep(struct pt_regs *regs) 675 { 676 /* 677 * We don't try for precision here. If we're anywhere in the region of 678 * code that can be single-stepped in the SYSENTER entry path, then 679 * assume that this is a useless single-step trap due to SYSENTER 680 * being invoked with TF set. (We don't know in advance exactly 681 * which instructions will be hit because BTF could plausibly 682 * be set.) 683 */ 684 #ifdef CONFIG_X86_32 685 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 686 (unsigned long)__end_SYSENTER_singlestep_region - 687 (unsigned long)__begin_SYSENTER_singlestep_region; 688 #elif defined(CONFIG_IA32_EMULATION) 689 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 690 (unsigned long)__end_entry_SYSENTER_compat - 691 (unsigned long)entry_SYSENTER_compat; 692 #else 693 return false; 694 #endif 695 } 696 697 /* 698 * Our handling of the processor debug registers is non-trivial. 699 * We do not clear them on entry and exit from the kernel. Therefore 700 * it is possible to get a watchpoint trap here from inside the kernel. 701 * However, the code in ./ptrace.c has ensured that the user can 702 * only set watchpoints on userspace addresses. Therefore the in-kernel 703 * watchpoint trap can only occur in code which is reading/writing 704 * from user space. Such code must not hold kernel locks (since it 705 * can equally take a page fault), therefore it is safe to call 706 * force_sig_info even though that claims and releases locks. 707 * 708 * Code in ./signal.c ensures that the debug control register 709 * is restored before we deliver any signal, and therefore that 710 * user code runs with the correct debug control register even though 711 * we clear it here. 712 * 713 * Being careful here means that we don't have to be as careful in a 714 * lot of more complicated places (task switching can be a bit lazy 715 * about restoring all the debug state, and ptrace doesn't have to 716 * find every occurrence of the TF bit that could be saved away even 717 * by user code) 718 * 719 * May run on IST stack. 720 */ 721 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 722 { 723 struct task_struct *tsk = current; 724 int user_icebp = 0; 725 unsigned long dr6; 726 int si_code; 727 728 ist_enter(regs); 729 730 get_debugreg(dr6, 6); 731 /* 732 * The Intel SDM says: 733 * 734 * Certain debug exceptions may clear bits 0-3. The remaining 735 * contents of the DR6 register are never cleared by the 736 * processor. To avoid confusion in identifying debug 737 * exceptions, debug handlers should clear the register before 738 * returning to the interrupted task. 739 * 740 * Keep it simple: clear DR6 immediately. 741 */ 742 set_debugreg(0, 6); 743 744 /* Filter out all the reserved bits which are preset to 1 */ 745 dr6 &= ~DR6_RESERVED; 746 747 /* 748 * The SDM says "The processor clears the BTF flag when it 749 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 750 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 751 */ 752 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 753 754 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 755 is_sysenter_singlestep(regs))) { 756 dr6 &= ~DR_STEP; 757 if (!dr6) 758 goto exit; 759 /* 760 * else we might have gotten a single-step trap and hit a 761 * watchpoint at the same time, in which case we should fall 762 * through and handle the watchpoint. 763 */ 764 } 765 766 /* 767 * If dr6 has no reason to give us about the origin of this trap, 768 * then it's very likely the result of an icebp/int01 trap. 769 * User wants a sigtrap for that. 770 */ 771 if (!dr6 && user_mode(regs)) 772 user_icebp = 1; 773 774 /* Store the virtualized DR6 value */ 775 tsk->thread.debugreg6 = dr6; 776 777 #ifdef CONFIG_KPROBES 778 if (kprobe_debug_handler(regs)) 779 goto exit; 780 #endif 781 782 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 783 SIGTRAP) == NOTIFY_STOP) 784 goto exit; 785 786 /* 787 * Let others (NMI) know that the debug stack is in use 788 * as we may switch to the interrupt stack. 789 */ 790 debug_stack_usage_inc(); 791 792 /* It's safe to allow irq's after DR6 has been saved */ 793 cond_local_irq_enable(regs); 794 795 if (v8086_mode(regs)) { 796 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 797 X86_TRAP_DB); 798 cond_local_irq_disable(regs); 799 debug_stack_usage_dec(); 800 goto exit; 801 } 802 803 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 804 /* 805 * Historical junk that used to handle SYSENTER single-stepping. 806 * This should be unreachable now. If we survive for a while 807 * without anyone hitting this warning, we'll turn this into 808 * an oops. 809 */ 810 tsk->thread.debugreg6 &= ~DR_STEP; 811 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 812 regs->flags &= ~X86_EFLAGS_TF; 813 } 814 si_code = get_si_code(tsk->thread.debugreg6); 815 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 816 send_sigtrap(tsk, regs, error_code, si_code); 817 cond_local_irq_disable(regs); 818 debug_stack_usage_dec(); 819 820 exit: 821 ist_exit(regs); 822 } 823 NOKPROBE_SYMBOL(do_debug); 824 825 /* 826 * Note that we play around with the 'TS' bit in an attempt to get 827 * the correct behaviour even in the presence of the asynchronous 828 * IRQ13 behaviour 829 */ 830 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 831 { 832 struct task_struct *task = current; 833 struct fpu *fpu = &task->thread.fpu; 834 siginfo_t info; 835 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 836 "simd exception"; 837 838 cond_local_irq_enable(regs); 839 840 if (!user_mode(regs)) { 841 if (fixup_exception(regs, trapnr)) 842 return; 843 844 task->thread.error_code = error_code; 845 task->thread.trap_nr = trapnr; 846 847 if (notify_die(DIE_TRAP, str, regs, error_code, 848 trapnr, SIGFPE) != NOTIFY_STOP) 849 die(str, regs, error_code); 850 return; 851 } 852 853 /* 854 * Save the info for the exception handler and clear the error. 855 */ 856 fpu__save(fpu); 857 858 task->thread.trap_nr = trapnr; 859 task->thread.error_code = error_code; 860 clear_siginfo(&info); 861 info.si_signo = SIGFPE; 862 info.si_errno = 0; 863 info.si_addr = (void __user *)uprobe_get_trap_addr(regs); 864 865 info.si_code = fpu__exception_code(fpu, trapnr); 866 867 /* Retry when we get spurious exceptions: */ 868 if (!info.si_code) 869 return; 870 871 force_sig_info(SIGFPE, &info, task); 872 } 873 874 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 875 { 876 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 877 math_error(regs, error_code, X86_TRAP_MF); 878 } 879 880 dotraplinkage void 881 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 882 { 883 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 884 math_error(regs, error_code, X86_TRAP_XF); 885 } 886 887 dotraplinkage void 888 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 889 { 890 cond_local_irq_enable(regs); 891 } 892 893 dotraplinkage void 894 do_device_not_available(struct pt_regs *regs, long error_code) 895 { 896 unsigned long cr0; 897 898 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 899 900 #ifdef CONFIG_MATH_EMULATION 901 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { 902 struct math_emu_info info = { }; 903 904 cond_local_irq_enable(regs); 905 906 info.regs = regs; 907 math_emulate(&info); 908 return; 909 } 910 #endif 911 912 /* This should not happen. */ 913 cr0 = read_cr0(); 914 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 915 /* Try to fix it up and carry on. */ 916 write_cr0(cr0 & ~X86_CR0_TS); 917 } else { 918 /* 919 * Something terrible happened, and we're better off trying 920 * to kill the task than getting stuck in a never-ending 921 * loop of #NM faults. 922 */ 923 die("unexpected #NM exception", regs, error_code); 924 } 925 } 926 NOKPROBE_SYMBOL(do_device_not_available); 927 928 #ifdef CONFIG_X86_32 929 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 930 { 931 siginfo_t info; 932 933 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 934 local_irq_enable(); 935 936 clear_siginfo(&info); 937 info.si_signo = SIGILL; 938 info.si_errno = 0; 939 info.si_code = ILL_BADSTK; 940 info.si_addr = NULL; 941 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 942 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 943 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 944 &info); 945 } 946 } 947 #endif 948 949 void __init trap_init(void) 950 { 951 /* Init cpu_entry_area before IST entries are set up */ 952 setup_cpu_entry_areas(); 953 954 idt_setup_traps(); 955 956 /* 957 * Set the IDT descriptor to a fixed read-only location, so that the 958 * "sidt" instruction will not leak the location of the kernel, and 959 * to defend the IDT against arbitrary memory write vulnerabilities. 960 * It will be reloaded in cpu_init() */ 961 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 962 PAGE_KERNEL_RO); 963 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 964 965 /* 966 * Should be a barrier for any external CPU state: 967 */ 968 cpu_init(); 969 970 idt_setup_ist_traps(); 971 972 x86_init.irqs.trap_init(); 973 974 idt_setup_debugidt_traps(); 975 } 976