xref: /openbmc/linux/arch/x86/kernel/traps.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 #include <linux/ioasid.h>
43 
44 #include <asm/stacktrace.h>
45 #include <asm/processor.h>
46 #include <asm/debugreg.h>
47 #include <asm/realmode.h>
48 #include <asm/text-patching.h>
49 #include <asm/ftrace.h>
50 #include <asm/traps.h>
51 #include <asm/desc.h>
52 #include <asm/fpu/api.h>
53 #include <asm/cpu.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/vm86.h>
61 #include <asm/umip.h>
62 #include <asm/insn.h>
63 #include <asm/insn-eval.h>
64 #include <asm/vdso.h>
65 
66 #ifdef CONFIG_X86_64
67 #include <asm/x86_init.h>
68 #include <asm/proto.h>
69 #else
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
73 #endif
74 
75 DECLARE_BITMAP(system_vectors, NR_VECTORS);
76 
77 static inline void cond_local_irq_enable(struct pt_regs *regs)
78 {
79 	if (regs->flags & X86_EFLAGS_IF)
80 		local_irq_enable();
81 }
82 
83 static inline void cond_local_irq_disable(struct pt_regs *regs)
84 {
85 	if (regs->flags & X86_EFLAGS_IF)
86 		local_irq_disable();
87 }
88 
89 __always_inline int is_valid_bugaddr(unsigned long addr)
90 {
91 	if (addr < TASK_SIZE_MAX)
92 		return 0;
93 
94 	/*
95 	 * We got #UD, if the text isn't readable we'd have gotten
96 	 * a different exception.
97 	 */
98 	return *(unsigned short *)addr == INSN_UD2;
99 }
100 
101 static nokprobe_inline int
102 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
103 		  struct pt_regs *regs,	long error_code)
104 {
105 	if (v8086_mode(regs)) {
106 		/*
107 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
108 		 * On nmi (interrupt 2), do_trap should not be called.
109 		 */
110 		if (trapnr < X86_TRAP_UD) {
111 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
112 						error_code, trapnr))
113 				return 0;
114 		}
115 	} else if (!user_mode(regs)) {
116 		if (fixup_exception(regs, trapnr, error_code, 0))
117 			return 0;
118 
119 		tsk->thread.error_code = error_code;
120 		tsk->thread.trap_nr = trapnr;
121 		die(str, regs, error_code);
122 	} else {
123 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
124 			return 0;
125 	}
126 
127 	/*
128 	 * We want error_code and trap_nr set for userspace faults and
129 	 * kernelspace faults which result in die(), but not
130 	 * kernelspace faults which are fixed up.  die() gives the
131 	 * process no chance to handle the signal and notice the
132 	 * kernel fault information, so that won't result in polluting
133 	 * the information about previously queued, but not yet
134 	 * delivered, faults.  See also exc_general_protection below.
135 	 */
136 	tsk->thread.error_code = error_code;
137 	tsk->thread.trap_nr = trapnr;
138 
139 	return -1;
140 }
141 
142 static void show_signal(struct task_struct *tsk, int signr,
143 			const char *type, const char *desc,
144 			struct pt_regs *regs, long error_code)
145 {
146 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
147 	    printk_ratelimit()) {
148 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
149 			tsk->comm, task_pid_nr(tsk), type, desc,
150 			regs->ip, regs->sp, error_code);
151 		print_vma_addr(KERN_CONT " in ", regs->ip);
152 		pr_cont("\n");
153 	}
154 }
155 
156 static void
157 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
158 	long error_code, int sicode, void __user *addr)
159 {
160 	struct task_struct *tsk = current;
161 
162 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
163 		return;
164 
165 	show_signal(tsk, signr, "trap ", str, regs, error_code);
166 
167 	if (!sicode)
168 		force_sig(signr);
169 	else
170 		force_sig_fault(signr, sicode, addr);
171 }
172 NOKPROBE_SYMBOL(do_trap);
173 
174 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
175 	unsigned long trapnr, int signr, int sicode, void __user *addr)
176 {
177 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
178 
179 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
180 			NOTIFY_STOP) {
181 		cond_local_irq_enable(regs);
182 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
183 		cond_local_irq_disable(regs);
184 	}
185 }
186 
187 /*
188  * Posix requires to provide the address of the faulting instruction for
189  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
190  *
191  * This address is usually regs->ip, but when an uprobe moved the code out
192  * of line then regs->ip points to the XOL code which would confuse
193  * anything which analyzes the fault address vs. the unmodified binary. If
194  * a trap happened in XOL code then uprobe maps regs->ip back to the
195  * original instruction address.
196  */
197 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
198 {
199 	return (void __user *)uprobe_get_trap_addr(regs);
200 }
201 
202 DEFINE_IDTENTRY(exc_divide_error)
203 {
204 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
205 		      FPE_INTDIV, error_get_trap_addr(regs));
206 }
207 
208 DEFINE_IDTENTRY(exc_overflow)
209 {
210 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
211 }
212 
213 #ifdef CONFIG_X86_F00F_BUG
214 void handle_invalid_op(struct pt_regs *regs)
215 #else
216 static inline void handle_invalid_op(struct pt_regs *regs)
217 #endif
218 {
219 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
220 		      ILL_ILLOPN, error_get_trap_addr(regs));
221 }
222 
223 static noinstr bool handle_bug(struct pt_regs *regs)
224 {
225 	bool handled = false;
226 
227 	if (!is_valid_bugaddr(regs->ip))
228 		return handled;
229 
230 	/*
231 	 * All lies, just get the WARN/BUG out.
232 	 */
233 	instrumentation_begin();
234 	/*
235 	 * Since we're emulating a CALL with exceptions, restore the interrupt
236 	 * state to what it was at the exception site.
237 	 */
238 	if (regs->flags & X86_EFLAGS_IF)
239 		raw_local_irq_enable();
240 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
241 		regs->ip += LEN_UD2;
242 		handled = true;
243 	}
244 	if (regs->flags & X86_EFLAGS_IF)
245 		raw_local_irq_disable();
246 	instrumentation_end();
247 
248 	return handled;
249 }
250 
251 DEFINE_IDTENTRY_RAW(exc_invalid_op)
252 {
253 	irqentry_state_t state;
254 
255 	/*
256 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
257 	 * handle it before exception entry to avoid recursive WARN
258 	 * in case exception entry is the one triggering WARNs.
259 	 */
260 	if (!user_mode(regs) && handle_bug(regs))
261 		return;
262 
263 	state = irqentry_enter(regs);
264 	instrumentation_begin();
265 	handle_invalid_op(regs);
266 	instrumentation_end();
267 	irqentry_exit(regs, state);
268 }
269 
270 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
271 {
272 	do_error_trap(regs, 0, "coprocessor segment overrun",
273 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
274 }
275 
276 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
277 {
278 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
279 		      0, NULL);
280 }
281 
282 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
283 {
284 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
285 		      SIGBUS, 0, NULL);
286 }
287 
288 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
289 {
290 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
291 		      0, NULL);
292 }
293 
294 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
295 {
296 	char *str = "alignment check";
297 
298 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
299 		return;
300 
301 	if (!user_mode(regs))
302 		die("Split lock detected\n", regs, error_code);
303 
304 	local_irq_enable();
305 
306 	if (handle_user_split_lock(regs, error_code))
307 		goto out;
308 
309 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
310 		error_code, BUS_ADRALN, NULL);
311 
312 out:
313 	local_irq_disable();
314 }
315 
316 #ifdef CONFIG_VMAP_STACK
317 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
318 						unsigned long fault_address,
319 						struct stack_info *info)
320 {
321 	const char *name = stack_type_name(info->type);
322 
323 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
324 	       name, (void *)fault_address, info->begin, info->end);
325 
326 	die("stack guard page", regs, 0);
327 
328 	/* Be absolutely certain we don't return. */
329 	panic("%s stack guard hit", name);
330 }
331 #endif
332 
333 /*
334  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
335  *
336  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
337  * SDM's warnings about double faults being unrecoverable, returning works as
338  * expected.  Presumably what the SDM actually means is that the CPU may get
339  * the register state wrong on entry, so returning could be a bad idea.
340  *
341  * Various CPU engineers have promised that double faults due to an IRET fault
342  * while the stack is read-only are, in fact, recoverable.
343  *
344  * On x86_32, this is entered through a task gate, and regs are synthesized
345  * from the TSS.  Returning is, in principle, okay, but changes to regs will
346  * be lost.  If, for some reason, we need to return to a context with modified
347  * regs, the shim code could be adjusted to synchronize the registers.
348  *
349  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
350  * to be read before doing anything else.
351  */
352 DEFINE_IDTENTRY_DF(exc_double_fault)
353 {
354 	static const char str[] = "double fault";
355 	struct task_struct *tsk = current;
356 
357 #ifdef CONFIG_VMAP_STACK
358 	unsigned long address = read_cr2();
359 	struct stack_info info;
360 #endif
361 
362 #ifdef CONFIG_X86_ESPFIX64
363 	extern unsigned char native_irq_return_iret[];
364 
365 	/*
366 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
367 	 * end up promoting it to a doublefault.  In that case, take
368 	 * advantage of the fact that we're not using the normal (TSS.sp0)
369 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
370 	 * and then modify our own IRET frame so that, when we return,
371 	 * we land directly at the #GP(0) vector with the stack already
372 	 * set up according to its expectations.
373 	 *
374 	 * The net result is that our #GP handler will think that we
375 	 * entered from usermode with the bad user context.
376 	 *
377 	 * No need for nmi_enter() here because we don't use RCU.
378 	 */
379 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
380 		regs->cs == __KERNEL_CS &&
381 		regs->ip == (unsigned long)native_irq_return_iret)
382 	{
383 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
384 		unsigned long *p = (unsigned long *)regs->sp;
385 
386 		/*
387 		 * regs->sp points to the failing IRET frame on the
388 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
389 		 * in gpregs->ss through gpregs->ip.
390 		 *
391 		 */
392 		gpregs->ip	= p[0];
393 		gpregs->cs	= p[1];
394 		gpregs->flags	= p[2];
395 		gpregs->sp	= p[3];
396 		gpregs->ss	= p[4];
397 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
398 
399 		/*
400 		 * Adjust our frame so that we return straight to the #GP
401 		 * vector with the expected RSP value.  This is safe because
402 		 * we won't enable interrupts or schedule before we invoke
403 		 * general_protection, so nothing will clobber the stack
404 		 * frame we just set up.
405 		 *
406 		 * We will enter general_protection with kernel GSBASE,
407 		 * which is what the stub expects, given that the faulting
408 		 * RIP will be the IRET instruction.
409 		 */
410 		regs->ip = (unsigned long)asm_exc_general_protection;
411 		regs->sp = (unsigned long)&gpregs->orig_ax;
412 
413 		return;
414 	}
415 #endif
416 
417 	irqentry_nmi_enter(regs);
418 	instrumentation_begin();
419 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
420 
421 	tsk->thread.error_code = error_code;
422 	tsk->thread.trap_nr = X86_TRAP_DF;
423 
424 #ifdef CONFIG_VMAP_STACK
425 	/*
426 	 * If we overflow the stack into a guard page, the CPU will fail
427 	 * to deliver #PF and will send #DF instead.  Similarly, if we
428 	 * take any non-IST exception while too close to the bottom of
429 	 * the stack, the processor will get a page fault while
430 	 * delivering the exception and will generate a double fault.
431 	 *
432 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
433 	 * Page-Fault Exception (#PF):
434 	 *
435 	 *   Processors update CR2 whenever a page fault is detected. If a
436 	 *   second page fault occurs while an earlier page fault is being
437 	 *   delivered, the faulting linear address of the second fault will
438 	 *   overwrite the contents of CR2 (replacing the previous
439 	 *   address). These updates to CR2 occur even if the page fault
440 	 *   results in a double fault or occurs during the delivery of a
441 	 *   double fault.
442 	 *
443 	 * The logic below has a small possibility of incorrectly diagnosing
444 	 * some errors as stack overflows.  For example, if the IDT or GDT
445 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
446 	 * causing #GP and we hit this condition while CR2 coincidentally
447 	 * points to the stack guard page, we'll think we overflowed the
448 	 * stack.  Given that we're going to panic one way or another
449 	 * if this happens, this isn't necessarily worth fixing.
450 	 *
451 	 * If necessary, we could improve the test by only diagnosing
452 	 * a stack overflow if the saved RSP points within 47 bytes of
453 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
454 	 * take an exception, the stack is already aligned and there
455 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
456 	 * possible error code, so a stack overflow would *not* double
457 	 * fault.  With any less space left, exception delivery could
458 	 * fail, and, as a practical matter, we've overflowed the
459 	 * stack even if the actual trigger for the double fault was
460 	 * something else.
461 	 */
462 	if (get_stack_guard_info((void *)address, &info))
463 		handle_stack_overflow(regs, address, &info);
464 #endif
465 
466 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
467 	die("double fault", regs, error_code);
468 	panic("Machine halted.");
469 	instrumentation_end();
470 }
471 
472 DEFINE_IDTENTRY(exc_bounds)
473 {
474 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
475 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
476 		return;
477 	cond_local_irq_enable(regs);
478 
479 	if (!user_mode(regs))
480 		die("bounds", regs, 0);
481 
482 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
483 
484 	cond_local_irq_disable(regs);
485 }
486 
487 enum kernel_gp_hint {
488 	GP_NO_HINT,
489 	GP_NON_CANONICAL,
490 	GP_CANONICAL
491 };
492 
493 /*
494  * When an uncaught #GP occurs, try to determine the memory address accessed by
495  * the instruction and return that address to the caller. Also, try to figure
496  * out whether any part of the access to that address was non-canonical.
497  */
498 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
499 						 unsigned long *addr)
500 {
501 	u8 insn_buf[MAX_INSN_SIZE];
502 	struct insn insn;
503 	int ret;
504 
505 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
506 			MAX_INSN_SIZE))
507 		return GP_NO_HINT;
508 
509 	ret = insn_decode_kernel(&insn, insn_buf);
510 	if (ret < 0)
511 		return GP_NO_HINT;
512 
513 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
514 	if (*addr == -1UL)
515 		return GP_NO_HINT;
516 
517 #ifdef CONFIG_X86_64
518 	/*
519 	 * Check that:
520 	 *  - the operand is not in the kernel half
521 	 *  - the last byte of the operand is not in the user canonical half
522 	 */
523 	if (*addr < ~__VIRTUAL_MASK &&
524 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
525 		return GP_NON_CANONICAL;
526 #endif
527 
528 	return GP_CANONICAL;
529 }
530 
531 #define GPFSTR "general protection fault"
532 
533 static bool fixup_iopl_exception(struct pt_regs *regs)
534 {
535 	struct thread_struct *t = &current->thread;
536 	unsigned char byte;
537 	unsigned long ip;
538 
539 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
540 		return false;
541 
542 	if (insn_get_effective_ip(regs, &ip))
543 		return false;
544 
545 	if (get_user(byte, (const char __user *)ip))
546 		return false;
547 
548 	if (byte != 0xfa && byte != 0xfb)
549 		return false;
550 
551 	if (!t->iopl_warn && printk_ratelimit()) {
552 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
553 		       current->comm, task_pid_nr(current), ip);
554 		print_vma_addr(KERN_CONT " in ", ip);
555 		pr_cont("\n");
556 		t->iopl_warn = 1;
557 	}
558 
559 	regs->ip += 1;
560 	return true;
561 }
562 
563 /*
564  * The unprivileged ENQCMD instruction generates #GPs if the
565  * IA32_PASID MSR has not been populated.  If possible, populate
566  * the MSR from a PASID previously allocated to the mm.
567  */
568 static bool try_fixup_enqcmd_gp(void)
569 {
570 #ifdef CONFIG_IOMMU_SVA
571 	u32 pasid;
572 
573 	/*
574 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
575 	 * writing to the MSR is only possible when fpregs
576 	 * are valid and the fpstate is not.  This is
577 	 * guaranteed when handling a userspace exception
578 	 * in *before* interrupts are re-enabled.
579 	 */
580 	lockdep_assert_irqs_disabled();
581 
582 	/*
583 	 * Hardware without ENQCMD will not generate
584 	 * #GPs that can be fixed up here.
585 	 */
586 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
587 		return false;
588 
589 	pasid = current->mm->pasid;
590 
591 	/*
592 	 * If the mm has not been allocated a
593 	 * PASID, the #GP can not be fixed up.
594 	 */
595 	if (!pasid_valid(pasid))
596 		return false;
597 
598 	/*
599 	 * Did this thread already have its PASID activated?
600 	 * If so, the #GP must be from something else.
601 	 */
602 	if (current->pasid_activated)
603 		return false;
604 
605 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
606 	current->pasid_activated = 1;
607 
608 	return true;
609 #else
610 	return false;
611 #endif
612 }
613 
614 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
615 {
616 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
617 	enum kernel_gp_hint hint = GP_NO_HINT;
618 	struct task_struct *tsk;
619 	unsigned long gp_addr;
620 	int ret;
621 
622 	if (user_mode(regs) && try_fixup_enqcmd_gp())
623 		return;
624 
625 	cond_local_irq_enable(regs);
626 
627 	if (static_cpu_has(X86_FEATURE_UMIP)) {
628 		if (user_mode(regs) && fixup_umip_exception(regs))
629 			goto exit;
630 	}
631 
632 	if (v8086_mode(regs)) {
633 		local_irq_enable();
634 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
635 		local_irq_disable();
636 		return;
637 	}
638 
639 	tsk = current;
640 
641 	if (user_mode(regs)) {
642 		if (fixup_iopl_exception(regs))
643 			goto exit;
644 
645 		tsk->thread.error_code = error_code;
646 		tsk->thread.trap_nr = X86_TRAP_GP;
647 
648 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
649 			goto exit;
650 
651 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
652 		force_sig(SIGSEGV);
653 		goto exit;
654 	}
655 
656 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
657 		goto exit;
658 
659 	tsk->thread.error_code = error_code;
660 	tsk->thread.trap_nr = X86_TRAP_GP;
661 
662 	/*
663 	 * To be potentially processing a kprobe fault and to trust the result
664 	 * from kprobe_running(), we have to be non-preemptible.
665 	 */
666 	if (!preemptible() &&
667 	    kprobe_running() &&
668 	    kprobe_fault_handler(regs, X86_TRAP_GP))
669 		goto exit;
670 
671 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
672 	if (ret == NOTIFY_STOP)
673 		goto exit;
674 
675 	if (error_code)
676 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
677 	else
678 		hint = get_kernel_gp_address(regs, &gp_addr);
679 
680 	if (hint != GP_NO_HINT)
681 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
682 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
683 						    : "maybe for address",
684 			 gp_addr);
685 
686 	/*
687 	 * KASAN is interested only in the non-canonical case, clear it
688 	 * otherwise.
689 	 */
690 	if (hint != GP_NON_CANONICAL)
691 		gp_addr = 0;
692 
693 	die_addr(desc, regs, error_code, gp_addr);
694 
695 exit:
696 	cond_local_irq_disable(regs);
697 }
698 
699 static bool do_int3(struct pt_regs *regs)
700 {
701 	int res;
702 
703 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
704 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
705 			 SIGTRAP) == NOTIFY_STOP)
706 		return true;
707 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
708 
709 #ifdef CONFIG_KPROBES
710 	if (kprobe_int3_handler(regs))
711 		return true;
712 #endif
713 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
714 
715 	return res == NOTIFY_STOP;
716 }
717 NOKPROBE_SYMBOL(do_int3);
718 
719 static void do_int3_user(struct pt_regs *regs)
720 {
721 	if (do_int3(regs))
722 		return;
723 
724 	cond_local_irq_enable(regs);
725 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
726 	cond_local_irq_disable(regs);
727 }
728 
729 DEFINE_IDTENTRY_RAW(exc_int3)
730 {
731 	/*
732 	 * poke_int3_handler() is completely self contained code; it does (and
733 	 * must) *NOT* call out to anything, lest it hits upon yet another
734 	 * INT3.
735 	 */
736 	if (poke_int3_handler(regs))
737 		return;
738 
739 	/*
740 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
741 	 * and therefore can trigger INT3, hence poke_int3_handler() must
742 	 * be done before. If the entry came from kernel mode, then use
743 	 * nmi_enter() because the INT3 could have been hit in any context
744 	 * including NMI.
745 	 */
746 	if (user_mode(regs)) {
747 		irqentry_enter_from_user_mode(regs);
748 		instrumentation_begin();
749 		do_int3_user(regs);
750 		instrumentation_end();
751 		irqentry_exit_to_user_mode(regs);
752 	} else {
753 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
754 
755 		instrumentation_begin();
756 		if (!do_int3(regs))
757 			die("int3", regs, 0);
758 		instrumentation_end();
759 		irqentry_nmi_exit(regs, irq_state);
760 	}
761 }
762 
763 #ifdef CONFIG_X86_64
764 /*
765  * Help handler running on a per-cpu (IST or entry trampoline) stack
766  * to switch to the normal thread stack if the interrupted code was in
767  * user mode. The actual stack switch is done in entry_64.S
768  */
769 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
770 {
771 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
772 	if (regs != eregs)
773 		*regs = *eregs;
774 	return regs;
775 }
776 
777 #ifdef CONFIG_AMD_MEM_ENCRYPT
778 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
779 {
780 	unsigned long sp, *stack;
781 	struct stack_info info;
782 	struct pt_regs *regs_ret;
783 
784 	/*
785 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
786 	 * trust it and switch to the current kernel stack
787 	 */
788 	if (ip_within_syscall_gap(regs)) {
789 		sp = this_cpu_read(cpu_current_top_of_stack);
790 		goto sync;
791 	}
792 
793 	/*
794 	 * From here on the RSP value is trusted. Now check whether entry
795 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
796 	 * use the fall-back stack instead in this case.
797 	 */
798 	sp    = regs->sp;
799 	stack = (unsigned long *)sp;
800 
801 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
802 	    info.type > STACK_TYPE_EXCEPTION_LAST)
803 		sp = __this_cpu_ist_top_va(VC2);
804 
805 sync:
806 	/*
807 	 * Found a safe stack - switch to it as if the entry didn't happen via
808 	 * IST stack. The code below only copies pt_regs, the real switch happens
809 	 * in assembly code.
810 	 */
811 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
812 
813 	regs_ret = (struct pt_regs *)sp;
814 	*regs_ret = *regs;
815 
816 	return regs_ret;
817 }
818 #endif
819 
820 struct bad_iret_stack {
821 	void *error_entry_ret;
822 	struct pt_regs regs;
823 };
824 
825 asmlinkage __visible noinstr
826 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
827 {
828 	/*
829 	 * This is called from entry_64.S early in handling a fault
830 	 * caused by a bad iret to user mode.  To handle the fault
831 	 * correctly, we want to move our stack frame to where it would
832 	 * be had we entered directly on the entry stack (rather than
833 	 * just below the IRET frame) and we want to pretend that the
834 	 * exception came from the IRET target.
835 	 */
836 	struct bad_iret_stack tmp, *new_stack =
837 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
838 
839 	/* Copy the IRET target to the temporary storage. */
840 	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
841 
842 	/* Copy the remainder of the stack from the current stack. */
843 	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
844 
845 	/* Update the entry stack */
846 	__memcpy(new_stack, &tmp, sizeof(tmp));
847 
848 	BUG_ON(!user_mode(&new_stack->regs));
849 	return new_stack;
850 }
851 #endif
852 
853 static bool is_sysenter_singlestep(struct pt_regs *regs)
854 {
855 	/*
856 	 * We don't try for precision here.  If we're anywhere in the region of
857 	 * code that can be single-stepped in the SYSENTER entry path, then
858 	 * assume that this is a useless single-step trap due to SYSENTER
859 	 * being invoked with TF set.  (We don't know in advance exactly
860 	 * which instructions will be hit because BTF could plausibly
861 	 * be set.)
862 	 */
863 #ifdef CONFIG_X86_32
864 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
865 		(unsigned long)__end_SYSENTER_singlestep_region -
866 		(unsigned long)__begin_SYSENTER_singlestep_region;
867 #elif defined(CONFIG_IA32_EMULATION)
868 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
869 		(unsigned long)__end_entry_SYSENTER_compat -
870 		(unsigned long)entry_SYSENTER_compat;
871 #else
872 	return false;
873 #endif
874 }
875 
876 static __always_inline unsigned long debug_read_clear_dr6(void)
877 {
878 	unsigned long dr6;
879 
880 	/*
881 	 * The Intel SDM says:
882 	 *
883 	 *   Certain debug exceptions may clear bits 0-3. The remaining
884 	 *   contents of the DR6 register are never cleared by the
885 	 *   processor. To avoid confusion in identifying debug
886 	 *   exceptions, debug handlers should clear the register before
887 	 *   returning to the interrupted task.
888 	 *
889 	 * Keep it simple: clear DR6 immediately.
890 	 */
891 	get_debugreg(dr6, 6);
892 	set_debugreg(DR6_RESERVED, 6);
893 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
894 
895 	return dr6;
896 }
897 
898 /*
899  * Our handling of the processor debug registers is non-trivial.
900  * We do not clear them on entry and exit from the kernel. Therefore
901  * it is possible to get a watchpoint trap here from inside the kernel.
902  * However, the code in ./ptrace.c has ensured that the user can
903  * only set watchpoints on userspace addresses. Therefore the in-kernel
904  * watchpoint trap can only occur in code which is reading/writing
905  * from user space. Such code must not hold kernel locks (since it
906  * can equally take a page fault), therefore it is safe to call
907  * force_sig_info even though that claims and releases locks.
908  *
909  * Code in ./signal.c ensures that the debug control register
910  * is restored before we deliver any signal, and therefore that
911  * user code runs with the correct debug control register even though
912  * we clear it here.
913  *
914  * Being careful here means that we don't have to be as careful in a
915  * lot of more complicated places (task switching can be a bit lazy
916  * about restoring all the debug state, and ptrace doesn't have to
917  * find every occurrence of the TF bit that could be saved away even
918  * by user code)
919  *
920  * May run on IST stack.
921  */
922 
923 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
924 {
925 	/*
926 	 * Notifiers will clear bits in @dr6 to indicate the event has been
927 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
928 	 *
929 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
930 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
931 	 */
932 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
933 		return true;
934 
935 	return false;
936 }
937 
938 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
939 					     unsigned long dr6)
940 {
941 	/*
942 	 * Disable breakpoints during exception handling; recursive exceptions
943 	 * are exceedingly 'fun'.
944 	 *
945 	 * Since this function is NOKPROBE, and that also applies to
946 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
947 	 * HW_BREAKPOINT_W on our stack)
948 	 *
949 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
950 	 * includes the entry stack is excluded for everything.
951 	 */
952 	unsigned long dr7 = local_db_save();
953 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
954 	instrumentation_begin();
955 
956 	/*
957 	 * If something gets miswired and we end up here for a user mode
958 	 * #DB, we will malfunction.
959 	 */
960 	WARN_ON_ONCE(user_mode(regs));
961 
962 	if (test_thread_flag(TIF_BLOCKSTEP)) {
963 		/*
964 		 * The SDM says "The processor clears the BTF flag when it
965 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
966 		 * it for userspace, but we just took a kernel #DB, so re-set
967 		 * BTF.
968 		 */
969 		unsigned long debugctl;
970 
971 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
972 		debugctl |= DEBUGCTLMSR_BTF;
973 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
974 	}
975 
976 	/*
977 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
978 	 * watchpoint at the same time then that will still be handled.
979 	 */
980 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
981 		dr6 &= ~DR_STEP;
982 
983 	/*
984 	 * The kernel doesn't use INT1
985 	 */
986 	if (!dr6)
987 		goto out;
988 
989 	if (notify_debug(regs, &dr6))
990 		goto out;
991 
992 	/*
993 	 * The kernel doesn't use TF single-step outside of:
994 	 *
995 	 *  - Kprobes, consumed through kprobe_debug_handler()
996 	 *  - KGDB, consumed through notify_debug()
997 	 *
998 	 * So if we get here with DR_STEP set, something is wonky.
999 	 *
1000 	 * A known way to trigger this is through QEMU's GDB stub,
1001 	 * which leaks #DB into the guest and causes IST recursion.
1002 	 */
1003 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1004 		regs->flags &= ~X86_EFLAGS_TF;
1005 out:
1006 	instrumentation_end();
1007 	irqentry_nmi_exit(regs, irq_state);
1008 
1009 	local_db_restore(dr7);
1010 }
1011 
1012 static __always_inline void exc_debug_user(struct pt_regs *regs,
1013 					   unsigned long dr6)
1014 {
1015 	bool icebp;
1016 
1017 	/*
1018 	 * If something gets miswired and we end up here for a kernel mode
1019 	 * #DB, we will malfunction.
1020 	 */
1021 	WARN_ON_ONCE(!user_mode(regs));
1022 
1023 	/*
1024 	 * NB: We can't easily clear DR7 here because
1025 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1026 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1027 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1028 	 * Since we're not on the IST stack right now, everything will be
1029 	 * fine.
1030 	 */
1031 
1032 	irqentry_enter_from_user_mode(regs);
1033 	instrumentation_begin();
1034 
1035 	/*
1036 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1037 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1038 	 *
1039 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1040 	 * even if it is not the result of PTRACE_SINGLESTEP.
1041 	 */
1042 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1043 
1044 	/*
1045 	 * The SDM says "The processor clears the BTF flag when it
1046 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1047 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1048 	 */
1049 	clear_thread_flag(TIF_BLOCKSTEP);
1050 
1051 	/*
1052 	 * If dr6 has no reason to give us about the origin of this trap,
1053 	 * then it's very likely the result of an icebp/int01 trap.
1054 	 * User wants a sigtrap for that.
1055 	 */
1056 	icebp = !dr6;
1057 
1058 	if (notify_debug(regs, &dr6))
1059 		goto out;
1060 
1061 	/* It's safe to allow irq's after DR6 has been saved */
1062 	local_irq_enable();
1063 
1064 	if (v8086_mode(regs)) {
1065 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1066 		goto out_irq;
1067 	}
1068 
1069 	/* #DB for bus lock can only be triggered from userspace. */
1070 	if (dr6 & DR_BUS_LOCK)
1071 		handle_bus_lock(regs);
1072 
1073 	/* Add the virtual_dr6 bits for signals. */
1074 	dr6 |= current->thread.virtual_dr6;
1075 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1076 		send_sigtrap(regs, 0, get_si_code(dr6));
1077 
1078 out_irq:
1079 	local_irq_disable();
1080 out:
1081 	instrumentation_end();
1082 	irqentry_exit_to_user_mode(regs);
1083 }
1084 
1085 #ifdef CONFIG_X86_64
1086 /* IST stack entry */
1087 DEFINE_IDTENTRY_DEBUG(exc_debug)
1088 {
1089 	exc_debug_kernel(regs, debug_read_clear_dr6());
1090 }
1091 
1092 /* User entry, runs on regular task stack */
1093 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1094 {
1095 	exc_debug_user(regs, debug_read_clear_dr6());
1096 }
1097 #else
1098 /* 32 bit does not have separate entry points. */
1099 DEFINE_IDTENTRY_RAW(exc_debug)
1100 {
1101 	unsigned long dr6 = debug_read_clear_dr6();
1102 
1103 	if (user_mode(regs))
1104 		exc_debug_user(regs, dr6);
1105 	else
1106 		exc_debug_kernel(regs, dr6);
1107 }
1108 #endif
1109 
1110 /*
1111  * Note that we play around with the 'TS' bit in an attempt to get
1112  * the correct behaviour even in the presence of the asynchronous
1113  * IRQ13 behaviour
1114  */
1115 static void math_error(struct pt_regs *regs, int trapnr)
1116 {
1117 	struct task_struct *task = current;
1118 	struct fpu *fpu = &task->thread.fpu;
1119 	int si_code;
1120 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1121 						"simd exception";
1122 
1123 	cond_local_irq_enable(regs);
1124 
1125 	if (!user_mode(regs)) {
1126 		if (fixup_exception(regs, trapnr, 0, 0))
1127 			goto exit;
1128 
1129 		task->thread.error_code = 0;
1130 		task->thread.trap_nr = trapnr;
1131 
1132 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1133 			       SIGFPE) != NOTIFY_STOP)
1134 			die(str, regs, 0);
1135 		goto exit;
1136 	}
1137 
1138 	/*
1139 	 * Synchronize the FPU register state to the memory register state
1140 	 * if necessary. This allows the exception handler to inspect it.
1141 	 */
1142 	fpu_sync_fpstate(fpu);
1143 
1144 	task->thread.trap_nr	= trapnr;
1145 	task->thread.error_code = 0;
1146 
1147 	si_code = fpu__exception_code(fpu, trapnr);
1148 	/* Retry when we get spurious exceptions: */
1149 	if (!si_code)
1150 		goto exit;
1151 
1152 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1153 		goto exit;
1154 
1155 	force_sig_fault(SIGFPE, si_code,
1156 			(void __user *)uprobe_get_trap_addr(regs));
1157 exit:
1158 	cond_local_irq_disable(regs);
1159 }
1160 
1161 DEFINE_IDTENTRY(exc_coprocessor_error)
1162 {
1163 	math_error(regs, X86_TRAP_MF);
1164 }
1165 
1166 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1167 {
1168 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1169 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1170 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1171 			__exc_general_protection(regs, 0);
1172 			return;
1173 		}
1174 	}
1175 	math_error(regs, X86_TRAP_XF);
1176 }
1177 
1178 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1179 {
1180 	/*
1181 	 * This addresses a Pentium Pro Erratum:
1182 	 *
1183 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1184 	 * Virtual Wire mode implemented through the local APIC, an
1185 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1186 	 * generated by the local APIC (Int 15).  This vector may be
1187 	 * generated upon receipt of a spurious interrupt (an interrupt
1188 	 * which is removed before the system receives the INTA sequence)
1189 	 * instead of the programmed 8259 spurious interrupt vector.
1190 	 *
1191 	 * IMPLICATION: The spurious interrupt vector programmed in the
1192 	 * 8259 is normally handled by an operating system's spurious
1193 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1194 	 * operating systems, which would crash if this erratum occurred.
1195 	 *
1196 	 * In theory this could be limited to 32bit, but the handler is not
1197 	 * hurting and who knows which other CPUs suffer from this.
1198 	 */
1199 }
1200 
1201 static bool handle_xfd_event(struct pt_regs *regs)
1202 {
1203 	u64 xfd_err;
1204 	int err;
1205 
1206 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1207 		return false;
1208 
1209 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1210 	if (!xfd_err)
1211 		return false;
1212 
1213 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1214 
1215 	/* Die if that happens in kernel space */
1216 	if (WARN_ON(!user_mode(regs)))
1217 		return false;
1218 
1219 	local_irq_enable();
1220 
1221 	err = xfd_enable_feature(xfd_err);
1222 
1223 	switch (err) {
1224 	case -EPERM:
1225 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1226 		break;
1227 	case -EFAULT:
1228 		force_sig(SIGSEGV);
1229 		break;
1230 	}
1231 
1232 	local_irq_disable();
1233 	return true;
1234 }
1235 
1236 DEFINE_IDTENTRY(exc_device_not_available)
1237 {
1238 	unsigned long cr0 = read_cr0();
1239 
1240 	if (handle_xfd_event(regs))
1241 		return;
1242 
1243 #ifdef CONFIG_MATH_EMULATION
1244 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1245 		struct math_emu_info info = { };
1246 
1247 		cond_local_irq_enable(regs);
1248 
1249 		info.regs = regs;
1250 		math_emulate(&info);
1251 
1252 		cond_local_irq_disable(regs);
1253 		return;
1254 	}
1255 #endif
1256 
1257 	/* This should not happen. */
1258 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1259 		/* Try to fix it up and carry on. */
1260 		write_cr0(cr0 & ~X86_CR0_TS);
1261 	} else {
1262 		/*
1263 		 * Something terrible happened, and we're better off trying
1264 		 * to kill the task than getting stuck in a never-ending
1265 		 * loop of #NM faults.
1266 		 */
1267 		die("unexpected #NM exception", regs, 0);
1268 	}
1269 }
1270 
1271 #ifdef CONFIG_X86_32
1272 DEFINE_IDTENTRY_SW(iret_error)
1273 {
1274 	local_irq_enable();
1275 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1276 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1277 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1278 			ILL_BADSTK, (void __user *)NULL);
1279 	}
1280 	local_irq_disable();
1281 }
1282 #endif
1283 
1284 void __init trap_init(void)
1285 {
1286 	/* Init cpu_entry_area before IST entries are set up */
1287 	setup_cpu_entry_areas();
1288 
1289 	/* Init GHCB memory pages when running as an SEV-ES guest */
1290 	sev_es_init_vc_handling();
1291 
1292 	/* Initialize TSS before setting up traps so ISTs work */
1293 	cpu_init_exception_handling();
1294 	/* Setup traps as cpu_init() might #GP */
1295 	idt_setup_traps();
1296 	cpu_init();
1297 }
1298