xref: /openbmc/linux/arch/x86/kernel/traps.c (revision aa5b395b)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <asm/stacktrace.h>
41 #include <asm/processor.h>
42 #include <asm/debugreg.h>
43 #include <linux/atomic.h>
44 #include <asm/text-patching.h>
45 #include <asm/ftrace.h>
46 #include <asm/traps.h>
47 #include <asm/desc.h>
48 #include <asm/fpu/internal.h>
49 #include <asm/cpu_entry_area.h>
50 #include <asm/mce.h>
51 #include <asm/fixmap.h>
52 #include <asm/mach_traps.h>
53 #include <asm/alternative.h>
54 #include <asm/fpu/xstate.h>
55 #include <asm/trace/mpx.h>
56 #include <asm/mpx.h>
57 #include <asm/vm86.h>
58 #include <asm/umip.h>
59 #include <asm/insn.h>
60 #include <asm/insn-eval.h>
61 
62 #ifdef CONFIG_X86_64
63 #include <asm/x86_init.h>
64 #include <asm/pgalloc.h>
65 #include <asm/proto.h>
66 #else
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
69 #include <asm/proto.h>
70 #endif
71 
72 DECLARE_BITMAP(system_vectors, NR_VECTORS);
73 
74 static inline void cond_local_irq_enable(struct pt_regs *regs)
75 {
76 	if (regs->flags & X86_EFLAGS_IF)
77 		local_irq_enable();
78 }
79 
80 static inline void cond_local_irq_disable(struct pt_regs *regs)
81 {
82 	if (regs->flags & X86_EFLAGS_IF)
83 		local_irq_disable();
84 }
85 
86 /*
87  * In IST context, we explicitly disable preemption.  This serves two
88  * purposes: it makes it much less likely that we would accidentally
89  * schedule in IST context and it will force a warning if we somehow
90  * manage to schedule by accident.
91  */
92 void ist_enter(struct pt_regs *regs)
93 {
94 	if (user_mode(regs)) {
95 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
96 	} else {
97 		/*
98 		 * We might have interrupted pretty much anything.  In
99 		 * fact, if we're a machine check, we can even interrupt
100 		 * NMI processing.  We don't want in_nmi() to return true,
101 		 * but we need to notify RCU.
102 		 */
103 		rcu_nmi_enter();
104 	}
105 
106 	preempt_disable();
107 
108 	/* This code is a bit fragile.  Test it. */
109 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
110 }
111 NOKPROBE_SYMBOL(ist_enter);
112 
113 void ist_exit(struct pt_regs *regs)
114 {
115 	preempt_enable_no_resched();
116 
117 	if (!user_mode(regs))
118 		rcu_nmi_exit();
119 }
120 
121 /**
122  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
123  * @regs:	regs passed to the IST exception handler
124  *
125  * IST exception handlers normally cannot schedule.  As a special
126  * exception, if the exception interrupted userspace code (i.e.
127  * user_mode(regs) would return true) and the exception was not
128  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
129  * begins a non-atomic section within an ist_enter()/ist_exit() region.
130  * Callers are responsible for enabling interrupts themselves inside
131  * the non-atomic section, and callers must call ist_end_non_atomic()
132  * before ist_exit().
133  */
134 void ist_begin_non_atomic(struct pt_regs *regs)
135 {
136 	BUG_ON(!user_mode(regs));
137 
138 	/*
139 	 * Sanity check: we need to be on the normal thread stack.  This
140 	 * will catch asm bugs and any attempt to use ist_preempt_enable
141 	 * from double_fault.
142 	 */
143 	BUG_ON(!on_thread_stack());
144 
145 	preempt_enable_no_resched();
146 }
147 
148 /**
149  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
150  *
151  * Ends a non-atomic section started with ist_begin_non_atomic().
152  */
153 void ist_end_non_atomic(void)
154 {
155 	preempt_disable();
156 }
157 
158 int is_valid_bugaddr(unsigned long addr)
159 {
160 	unsigned short ud;
161 
162 	if (addr < TASK_SIZE_MAX)
163 		return 0;
164 
165 	if (probe_kernel_address((unsigned short *)addr, ud))
166 		return 0;
167 
168 	return ud == INSN_UD0 || ud == INSN_UD2;
169 }
170 
171 int fixup_bug(struct pt_regs *regs, int trapnr)
172 {
173 	if (trapnr != X86_TRAP_UD)
174 		return 0;
175 
176 	switch (report_bug(regs->ip, regs)) {
177 	case BUG_TRAP_TYPE_NONE:
178 	case BUG_TRAP_TYPE_BUG:
179 		break;
180 
181 	case BUG_TRAP_TYPE_WARN:
182 		regs->ip += LEN_UD2;
183 		return 1;
184 	}
185 
186 	return 0;
187 }
188 
189 static nokprobe_inline int
190 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
191 		  struct pt_regs *regs,	long error_code)
192 {
193 	if (v8086_mode(regs)) {
194 		/*
195 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
196 		 * On nmi (interrupt 2), do_trap should not be called.
197 		 */
198 		if (trapnr < X86_TRAP_UD) {
199 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
200 						error_code, trapnr))
201 				return 0;
202 		}
203 	} else if (!user_mode(regs)) {
204 		if (fixup_exception(regs, trapnr, error_code, 0))
205 			return 0;
206 
207 		tsk->thread.error_code = error_code;
208 		tsk->thread.trap_nr = trapnr;
209 		die(str, regs, error_code);
210 	}
211 
212 	/*
213 	 * We want error_code and trap_nr set for userspace faults and
214 	 * kernelspace faults which result in die(), but not
215 	 * kernelspace faults which are fixed up.  die() gives the
216 	 * process no chance to handle the signal and notice the
217 	 * kernel fault information, so that won't result in polluting
218 	 * the information about previously queued, but not yet
219 	 * delivered, faults.  See also do_general_protection below.
220 	 */
221 	tsk->thread.error_code = error_code;
222 	tsk->thread.trap_nr = trapnr;
223 
224 	return -1;
225 }
226 
227 static void show_signal(struct task_struct *tsk, int signr,
228 			const char *type, const char *desc,
229 			struct pt_regs *regs, long error_code)
230 {
231 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
232 	    printk_ratelimit()) {
233 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
234 			tsk->comm, task_pid_nr(tsk), type, desc,
235 			regs->ip, regs->sp, error_code);
236 		print_vma_addr(KERN_CONT " in ", regs->ip);
237 		pr_cont("\n");
238 	}
239 }
240 
241 static void
242 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
243 	long error_code, int sicode, void __user *addr)
244 {
245 	struct task_struct *tsk = current;
246 
247 
248 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
249 		return;
250 
251 	show_signal(tsk, signr, "trap ", str, regs, error_code);
252 
253 	if (!sicode)
254 		force_sig(signr);
255 	else
256 		force_sig_fault(signr, sicode, addr);
257 }
258 NOKPROBE_SYMBOL(do_trap);
259 
260 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
261 	unsigned long trapnr, int signr, int sicode, void __user *addr)
262 {
263 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
264 
265 	/*
266 	 * WARN*()s end up here; fix them up before we call the
267 	 * notifier chain.
268 	 */
269 	if (!user_mode(regs) && fixup_bug(regs, trapnr))
270 		return;
271 
272 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
273 			NOTIFY_STOP) {
274 		cond_local_irq_enable(regs);
275 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
276 	}
277 }
278 
279 #define IP ((void __user *)uprobe_get_trap_addr(regs))
280 #define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
281 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
282 {									   \
283 	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
284 }
285 
286 DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
287 DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
288 DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
289 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
290 DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
291 DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
292 DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
293 DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
294 #undef IP
295 
296 #ifdef CONFIG_VMAP_STACK
297 __visible void __noreturn handle_stack_overflow(const char *message,
298 						struct pt_regs *regs,
299 						unsigned long fault_address)
300 {
301 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
302 		 (void *)fault_address, current->stack,
303 		 (char *)current->stack + THREAD_SIZE - 1);
304 	die(message, regs, 0);
305 
306 	/* Be absolutely certain we don't return. */
307 	panic("%s", message);
308 }
309 #endif
310 
311 #if defined(CONFIG_X86_64) || defined(CONFIG_DOUBLEFAULT)
312 /*
313  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
314  *
315  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
316  * SDM's warnings about double faults being unrecoverable, returning works as
317  * expected.  Presumably what the SDM actually means is that the CPU may get
318  * the register state wrong on entry, so returning could be a bad idea.
319  *
320  * Various CPU engineers have promised that double faults due to an IRET fault
321  * while the stack is read-only are, in fact, recoverable.
322  *
323  * On x86_32, this is entered through a task gate, and regs are synthesized
324  * from the TSS.  Returning is, in principle, okay, but changes to regs will
325  * be lost.  If, for some reason, we need to return to a context with modified
326  * regs, the shim code could be adjusted to synchronize the registers.
327  */
328 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
329 {
330 	static const char str[] = "double fault";
331 	struct task_struct *tsk = current;
332 
333 #ifdef CONFIG_X86_ESPFIX64
334 	extern unsigned char native_irq_return_iret[];
335 
336 	/*
337 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
338 	 * end up promoting it to a doublefault.  In that case, take
339 	 * advantage of the fact that we're not using the normal (TSS.sp0)
340 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
341 	 * and then modify our own IRET frame so that, when we return,
342 	 * we land directly at the #GP(0) vector with the stack already
343 	 * set up according to its expectations.
344 	 *
345 	 * The net result is that our #GP handler will think that we
346 	 * entered from usermode with the bad user context.
347 	 *
348 	 * No need for ist_enter here because we don't use RCU.
349 	 */
350 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
351 		regs->cs == __KERNEL_CS &&
352 		regs->ip == (unsigned long)native_irq_return_iret)
353 	{
354 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
355 
356 		/*
357 		 * regs->sp points to the failing IRET frame on the
358 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
359 		 * in gpregs->ss through gpregs->ip.
360 		 *
361 		 */
362 		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
363 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
364 
365 		/*
366 		 * Adjust our frame so that we return straight to the #GP
367 		 * vector with the expected RSP value.  This is safe because
368 		 * we won't enable interupts or schedule before we invoke
369 		 * general_protection, so nothing will clobber the stack
370 		 * frame we just set up.
371 		 *
372 		 * We will enter general_protection with kernel GSBASE,
373 		 * which is what the stub expects, given that the faulting
374 		 * RIP will be the IRET instruction.
375 		 */
376 		regs->ip = (unsigned long)general_protection;
377 		regs->sp = (unsigned long)&gpregs->orig_ax;
378 
379 		return;
380 	}
381 #endif
382 
383 	ist_enter(regs);
384 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
385 
386 	tsk->thread.error_code = error_code;
387 	tsk->thread.trap_nr = X86_TRAP_DF;
388 
389 #ifdef CONFIG_VMAP_STACK
390 	/*
391 	 * If we overflow the stack into a guard page, the CPU will fail
392 	 * to deliver #PF and will send #DF instead.  Similarly, if we
393 	 * take any non-IST exception while too close to the bottom of
394 	 * the stack, the processor will get a page fault while
395 	 * delivering the exception and will generate a double fault.
396 	 *
397 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
398 	 * Page-Fault Exception (#PF):
399 	 *
400 	 *   Processors update CR2 whenever a page fault is detected. If a
401 	 *   second page fault occurs while an earlier page fault is being
402 	 *   delivered, the faulting linear address of the second fault will
403 	 *   overwrite the contents of CR2 (replacing the previous
404 	 *   address). These updates to CR2 occur even if the page fault
405 	 *   results in a double fault or occurs during the delivery of a
406 	 *   double fault.
407 	 *
408 	 * The logic below has a small possibility of incorrectly diagnosing
409 	 * some errors as stack overflows.  For example, if the IDT or GDT
410 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
411 	 * causing #GP and we hit this condition while CR2 coincidentally
412 	 * points to the stack guard page, we'll think we overflowed the
413 	 * stack.  Given that we're going to panic one way or another
414 	 * if this happens, this isn't necessarily worth fixing.
415 	 *
416 	 * If necessary, we could improve the test by only diagnosing
417 	 * a stack overflow if the saved RSP points within 47 bytes of
418 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
419 	 * take an exception, the stack is already aligned and there
420 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
421 	 * possible error code, so a stack overflow would *not* double
422 	 * fault.  With any less space left, exception delivery could
423 	 * fail, and, as a practical matter, we've overflowed the
424 	 * stack even if the actual trigger for the double fault was
425 	 * something else.
426 	 */
427 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
428 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
429 #endif
430 
431 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
432 	die("double fault", regs, error_code);
433 	panic("Machine halted.");
434 }
435 #endif
436 
437 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
438 {
439 	const struct mpx_bndcsr *bndcsr;
440 
441 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
442 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
443 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
444 		return;
445 	cond_local_irq_enable(regs);
446 
447 	if (!user_mode(regs))
448 		die("bounds", regs, error_code);
449 
450 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
451 		/* The exception is not from Intel MPX */
452 		goto exit_trap;
453 	}
454 
455 	/*
456 	 * We need to look at BNDSTATUS to resolve this exception.
457 	 * A NULL here might mean that it is in its 'init state',
458 	 * which is all zeros which indicates MPX was not
459 	 * responsible for the exception.
460 	 */
461 	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
462 	if (!bndcsr)
463 		goto exit_trap;
464 
465 	trace_bounds_exception_mpx(bndcsr);
466 	/*
467 	 * The error code field of the BNDSTATUS register communicates status
468 	 * information of a bound range exception #BR or operation involving
469 	 * bound directory.
470 	 */
471 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
472 	case 2:	/* Bound directory has invalid entry. */
473 		if (mpx_handle_bd_fault())
474 			goto exit_trap;
475 		break; /* Success, it was handled */
476 	case 1: /* Bound violation. */
477 	{
478 		struct task_struct *tsk = current;
479 		struct mpx_fault_info mpx;
480 
481 		if (mpx_fault_info(&mpx, regs)) {
482 			/*
483 			 * We failed to decode the MPX instruction.  Act as if
484 			 * the exception was not caused by MPX.
485 			 */
486 			goto exit_trap;
487 		}
488 		/*
489 		 * Success, we decoded the instruction and retrieved
490 		 * an 'mpx' containing the address being accessed
491 		 * which caused the exception.  This information
492 		 * allows and application to possibly handle the
493 		 * #BR exception itself.
494 		 */
495 		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
496 				       error_code))
497 			break;
498 
499 		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
500 
501 		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
502 		break;
503 	}
504 	case 0: /* No exception caused by Intel MPX operations. */
505 		goto exit_trap;
506 	default:
507 		die("bounds", regs, error_code);
508 	}
509 
510 	return;
511 
512 exit_trap:
513 	/*
514 	 * This path out is for all the cases where we could not
515 	 * handle the exception in some way (like allocating a
516 	 * table or telling userspace about it.  We will also end
517 	 * up here if the kernel has MPX turned off at compile
518 	 * time..
519 	 */
520 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
521 }
522 
523 enum kernel_gp_hint {
524 	GP_NO_HINT,
525 	GP_NON_CANONICAL,
526 	GP_CANONICAL
527 };
528 
529 /*
530  * When an uncaught #GP occurs, try to determine the memory address accessed by
531  * the instruction and return that address to the caller. Also, try to figure
532  * out whether any part of the access to that address was non-canonical.
533  */
534 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
535 						 unsigned long *addr)
536 {
537 	u8 insn_buf[MAX_INSN_SIZE];
538 	struct insn insn;
539 
540 	if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
541 		return GP_NO_HINT;
542 
543 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
544 	insn_get_modrm(&insn);
545 	insn_get_sib(&insn);
546 
547 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
548 	if (*addr == -1UL)
549 		return GP_NO_HINT;
550 
551 #ifdef CONFIG_X86_64
552 	/*
553 	 * Check that:
554 	 *  - the operand is not in the kernel half
555 	 *  - the last byte of the operand is not in the user canonical half
556 	 */
557 	if (*addr < ~__VIRTUAL_MASK &&
558 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
559 		return GP_NON_CANONICAL;
560 #endif
561 
562 	return GP_CANONICAL;
563 }
564 
565 #define GPFSTR "general protection fault"
566 
567 dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code)
568 {
569 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
570 	enum kernel_gp_hint hint = GP_NO_HINT;
571 	struct task_struct *tsk;
572 	unsigned long gp_addr;
573 	int ret;
574 
575 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
576 	cond_local_irq_enable(regs);
577 
578 	if (static_cpu_has(X86_FEATURE_UMIP)) {
579 		if (user_mode(regs) && fixup_umip_exception(regs))
580 			return;
581 	}
582 
583 	if (v8086_mode(regs)) {
584 		local_irq_enable();
585 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
586 		return;
587 	}
588 
589 	tsk = current;
590 
591 	if (user_mode(regs)) {
592 		tsk->thread.error_code = error_code;
593 		tsk->thread.trap_nr = X86_TRAP_GP;
594 
595 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
596 		force_sig(SIGSEGV);
597 
598 		return;
599 	}
600 
601 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
602 		return;
603 
604 	tsk->thread.error_code = error_code;
605 	tsk->thread.trap_nr = X86_TRAP_GP;
606 
607 	/*
608 	 * To be potentially processing a kprobe fault and to trust the result
609 	 * from kprobe_running(), we have to be non-preemptible.
610 	 */
611 	if (!preemptible() &&
612 	    kprobe_running() &&
613 	    kprobe_fault_handler(regs, X86_TRAP_GP))
614 		return;
615 
616 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
617 	if (ret == NOTIFY_STOP)
618 		return;
619 
620 	if (error_code)
621 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
622 	else
623 		hint = get_kernel_gp_address(regs, &gp_addr);
624 
625 	if (hint != GP_NO_HINT)
626 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
627 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
628 						    : "maybe for address",
629 			 gp_addr);
630 
631 	/*
632 	 * KASAN is interested only in the non-canonical case, clear it
633 	 * otherwise.
634 	 */
635 	if (hint != GP_NON_CANONICAL)
636 		gp_addr = 0;
637 
638 	die_addr(desc, regs, error_code, gp_addr);
639 
640 }
641 NOKPROBE_SYMBOL(do_general_protection);
642 
643 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
644 {
645 	if (poke_int3_handler(regs))
646 		return;
647 
648 	/*
649 	 * Use ist_enter despite the fact that we don't use an IST stack.
650 	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
651 	 * mode or even during context tracking state changes.
652 	 *
653 	 * This means that we can't schedule.  That's okay.
654 	 */
655 	ist_enter(regs);
656 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
657 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
658 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
659 				SIGTRAP) == NOTIFY_STOP)
660 		goto exit;
661 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
662 
663 #ifdef CONFIG_KPROBES
664 	if (kprobe_int3_handler(regs))
665 		goto exit;
666 #endif
667 
668 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
669 			SIGTRAP) == NOTIFY_STOP)
670 		goto exit;
671 
672 	cond_local_irq_enable(regs);
673 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
674 	cond_local_irq_disable(regs);
675 
676 exit:
677 	ist_exit(regs);
678 }
679 NOKPROBE_SYMBOL(do_int3);
680 
681 #ifdef CONFIG_X86_64
682 /*
683  * Help handler running on a per-cpu (IST or entry trampoline) stack
684  * to switch to the normal thread stack if the interrupted code was in
685  * user mode. The actual stack switch is done in entry_64.S
686  */
687 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
688 {
689 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
690 	if (regs != eregs)
691 		*regs = *eregs;
692 	return regs;
693 }
694 NOKPROBE_SYMBOL(sync_regs);
695 
696 struct bad_iret_stack {
697 	void *error_entry_ret;
698 	struct pt_regs regs;
699 };
700 
701 asmlinkage __visible notrace
702 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
703 {
704 	/*
705 	 * This is called from entry_64.S early in handling a fault
706 	 * caused by a bad iret to user mode.  To handle the fault
707 	 * correctly, we want to move our stack frame to where it would
708 	 * be had we entered directly on the entry stack (rather than
709 	 * just below the IRET frame) and we want to pretend that the
710 	 * exception came from the IRET target.
711 	 */
712 	struct bad_iret_stack *new_stack =
713 		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
714 
715 	/* Copy the IRET target to the new stack. */
716 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
717 
718 	/* Copy the remainder of the stack from the current stack. */
719 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
720 
721 	BUG_ON(!user_mode(&new_stack->regs));
722 	return new_stack;
723 }
724 NOKPROBE_SYMBOL(fixup_bad_iret);
725 #endif
726 
727 static bool is_sysenter_singlestep(struct pt_regs *regs)
728 {
729 	/*
730 	 * We don't try for precision here.  If we're anywhere in the region of
731 	 * code that can be single-stepped in the SYSENTER entry path, then
732 	 * assume that this is a useless single-step trap due to SYSENTER
733 	 * being invoked with TF set.  (We don't know in advance exactly
734 	 * which instructions will be hit because BTF could plausibly
735 	 * be set.)
736 	 */
737 #ifdef CONFIG_X86_32
738 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
739 		(unsigned long)__end_SYSENTER_singlestep_region -
740 		(unsigned long)__begin_SYSENTER_singlestep_region;
741 #elif defined(CONFIG_IA32_EMULATION)
742 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
743 		(unsigned long)__end_entry_SYSENTER_compat -
744 		(unsigned long)entry_SYSENTER_compat;
745 #else
746 	return false;
747 #endif
748 }
749 
750 /*
751  * Our handling of the processor debug registers is non-trivial.
752  * We do not clear them on entry and exit from the kernel. Therefore
753  * it is possible to get a watchpoint trap here from inside the kernel.
754  * However, the code in ./ptrace.c has ensured that the user can
755  * only set watchpoints on userspace addresses. Therefore the in-kernel
756  * watchpoint trap can only occur in code which is reading/writing
757  * from user space. Such code must not hold kernel locks (since it
758  * can equally take a page fault), therefore it is safe to call
759  * force_sig_info even though that claims and releases locks.
760  *
761  * Code in ./signal.c ensures that the debug control register
762  * is restored before we deliver any signal, and therefore that
763  * user code runs with the correct debug control register even though
764  * we clear it here.
765  *
766  * Being careful here means that we don't have to be as careful in a
767  * lot of more complicated places (task switching can be a bit lazy
768  * about restoring all the debug state, and ptrace doesn't have to
769  * find every occurrence of the TF bit that could be saved away even
770  * by user code)
771  *
772  * May run on IST stack.
773  */
774 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
775 {
776 	struct task_struct *tsk = current;
777 	int user_icebp = 0;
778 	unsigned long dr6;
779 	int si_code;
780 
781 	ist_enter(regs);
782 
783 	get_debugreg(dr6, 6);
784 	/*
785 	 * The Intel SDM says:
786 	 *
787 	 *   Certain debug exceptions may clear bits 0-3. The remaining
788 	 *   contents of the DR6 register are never cleared by the
789 	 *   processor. To avoid confusion in identifying debug
790 	 *   exceptions, debug handlers should clear the register before
791 	 *   returning to the interrupted task.
792 	 *
793 	 * Keep it simple: clear DR6 immediately.
794 	 */
795 	set_debugreg(0, 6);
796 
797 	/* Filter out all the reserved bits which are preset to 1 */
798 	dr6 &= ~DR6_RESERVED;
799 
800 	/*
801 	 * The SDM says "The processor clears the BTF flag when it
802 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
803 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
804 	 */
805 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
806 
807 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
808 		     is_sysenter_singlestep(regs))) {
809 		dr6 &= ~DR_STEP;
810 		if (!dr6)
811 			goto exit;
812 		/*
813 		 * else we might have gotten a single-step trap and hit a
814 		 * watchpoint at the same time, in which case we should fall
815 		 * through and handle the watchpoint.
816 		 */
817 	}
818 
819 	/*
820 	 * If dr6 has no reason to give us about the origin of this trap,
821 	 * then it's very likely the result of an icebp/int01 trap.
822 	 * User wants a sigtrap for that.
823 	 */
824 	if (!dr6 && user_mode(regs))
825 		user_icebp = 1;
826 
827 	/* Store the virtualized DR6 value */
828 	tsk->thread.debugreg6 = dr6;
829 
830 #ifdef CONFIG_KPROBES
831 	if (kprobe_debug_handler(regs))
832 		goto exit;
833 #endif
834 
835 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
836 							SIGTRAP) == NOTIFY_STOP)
837 		goto exit;
838 
839 	/*
840 	 * Let others (NMI) know that the debug stack is in use
841 	 * as we may switch to the interrupt stack.
842 	 */
843 	debug_stack_usage_inc();
844 
845 	/* It's safe to allow irq's after DR6 has been saved */
846 	cond_local_irq_enable(regs);
847 
848 	if (v8086_mode(regs)) {
849 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
850 					X86_TRAP_DB);
851 		cond_local_irq_disable(regs);
852 		debug_stack_usage_dec();
853 		goto exit;
854 	}
855 
856 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
857 		/*
858 		 * Historical junk that used to handle SYSENTER single-stepping.
859 		 * This should be unreachable now.  If we survive for a while
860 		 * without anyone hitting this warning, we'll turn this into
861 		 * an oops.
862 		 */
863 		tsk->thread.debugreg6 &= ~DR_STEP;
864 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
865 		regs->flags &= ~X86_EFLAGS_TF;
866 	}
867 	si_code = get_si_code(tsk->thread.debugreg6);
868 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
869 		send_sigtrap(regs, error_code, si_code);
870 	cond_local_irq_disable(regs);
871 	debug_stack_usage_dec();
872 
873 exit:
874 	ist_exit(regs);
875 }
876 NOKPROBE_SYMBOL(do_debug);
877 
878 /*
879  * Note that we play around with the 'TS' bit in an attempt to get
880  * the correct behaviour even in the presence of the asynchronous
881  * IRQ13 behaviour
882  */
883 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
884 {
885 	struct task_struct *task = current;
886 	struct fpu *fpu = &task->thread.fpu;
887 	int si_code;
888 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
889 						"simd exception";
890 
891 	cond_local_irq_enable(regs);
892 
893 	if (!user_mode(regs)) {
894 		if (fixup_exception(regs, trapnr, error_code, 0))
895 			return;
896 
897 		task->thread.error_code = error_code;
898 		task->thread.trap_nr = trapnr;
899 
900 		if (notify_die(DIE_TRAP, str, regs, error_code,
901 					trapnr, SIGFPE) != NOTIFY_STOP)
902 			die(str, regs, error_code);
903 		return;
904 	}
905 
906 	/*
907 	 * Save the info for the exception handler and clear the error.
908 	 */
909 	fpu__save(fpu);
910 
911 	task->thread.trap_nr	= trapnr;
912 	task->thread.error_code = error_code;
913 
914 	si_code = fpu__exception_code(fpu, trapnr);
915 	/* Retry when we get spurious exceptions: */
916 	if (!si_code)
917 		return;
918 
919 	force_sig_fault(SIGFPE, si_code,
920 			(void __user *)uprobe_get_trap_addr(regs));
921 }
922 
923 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
924 {
925 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
926 	math_error(regs, error_code, X86_TRAP_MF);
927 }
928 
929 dotraplinkage void
930 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
931 {
932 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
933 	math_error(regs, error_code, X86_TRAP_XF);
934 }
935 
936 dotraplinkage void
937 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
938 {
939 	cond_local_irq_enable(regs);
940 }
941 
942 dotraplinkage void
943 do_device_not_available(struct pt_regs *regs, long error_code)
944 {
945 	unsigned long cr0 = read_cr0();
946 
947 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
948 
949 #ifdef CONFIG_MATH_EMULATION
950 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
951 		struct math_emu_info info = { };
952 
953 		cond_local_irq_enable(regs);
954 
955 		info.regs = regs;
956 		math_emulate(&info);
957 		return;
958 	}
959 #endif
960 
961 	/* This should not happen. */
962 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
963 		/* Try to fix it up and carry on. */
964 		write_cr0(cr0 & ~X86_CR0_TS);
965 	} else {
966 		/*
967 		 * Something terrible happened, and we're better off trying
968 		 * to kill the task than getting stuck in a never-ending
969 		 * loop of #NM faults.
970 		 */
971 		die("unexpected #NM exception", regs, error_code);
972 	}
973 }
974 NOKPROBE_SYMBOL(do_device_not_available);
975 
976 #ifdef CONFIG_X86_32
977 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
978 {
979 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
980 	local_irq_enable();
981 
982 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
983 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
984 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
985 			ILL_BADSTK, (void __user *)NULL);
986 	}
987 }
988 #endif
989 
990 void __init trap_init(void)
991 {
992 	/* Init cpu_entry_area before IST entries are set up */
993 	setup_cpu_entry_areas();
994 
995 	idt_setup_traps();
996 
997 	/*
998 	 * Set the IDT descriptor to a fixed read-only location, so that the
999 	 * "sidt" instruction will not leak the location of the kernel, and
1000 	 * to defend the IDT against arbitrary memory write vulnerabilities.
1001 	 * It will be reloaded in cpu_init() */
1002 	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
1003 		    PAGE_KERNEL_RO);
1004 	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
1005 
1006 	/*
1007 	 * Should be a barrier for any external CPU state:
1008 	 */
1009 	cpu_init();
1010 
1011 	idt_setup_ist_traps();
1012 
1013 	x86_init.irqs.trap_init();
1014 
1015 	idt_setup_debugidt_traps();
1016 }
1017