xref: /openbmc/linux/arch/x86/kernel/traps.c (revision a16be368)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/text-patching.h>
47 #include <asm/ftrace.h>
48 #include <asm/traps.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/internal.h>
51 #include <asm/cpu.h>
52 #include <asm/cpu_entry_area.h>
53 #include <asm/mce.h>
54 #include <asm/fixmap.h>
55 #include <asm/mach_traps.h>
56 #include <asm/alternative.h>
57 #include <asm/fpu/xstate.h>
58 #include <asm/vm86.h>
59 #include <asm/umip.h>
60 #include <asm/insn.h>
61 #include <asm/insn-eval.h>
62 
63 #ifdef CONFIG_X86_64
64 #include <asm/x86_init.h>
65 #include <asm/pgalloc.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
72 
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
74 
75 static inline void cond_local_irq_enable(struct pt_regs *regs)
76 {
77 	if (regs->flags & X86_EFLAGS_IF)
78 		local_irq_enable();
79 }
80 
81 static inline void cond_local_irq_disable(struct pt_regs *regs)
82 {
83 	if (regs->flags & X86_EFLAGS_IF)
84 		local_irq_disable();
85 }
86 
87 int is_valid_bugaddr(unsigned long addr)
88 {
89 	unsigned short ud;
90 
91 	if (addr < TASK_SIZE_MAX)
92 		return 0;
93 
94 	if (probe_kernel_address((unsigned short *)addr, ud))
95 		return 0;
96 
97 	return ud == INSN_UD0 || ud == INSN_UD2;
98 }
99 
100 int fixup_bug(struct pt_regs *regs, int trapnr)
101 {
102 	if (trapnr != X86_TRAP_UD)
103 		return 0;
104 
105 	switch (report_bug(regs->ip, regs)) {
106 	case BUG_TRAP_TYPE_NONE:
107 	case BUG_TRAP_TYPE_BUG:
108 		break;
109 
110 	case BUG_TRAP_TYPE_WARN:
111 		regs->ip += LEN_UD2;
112 		return 1;
113 	}
114 
115 	return 0;
116 }
117 
118 static nokprobe_inline int
119 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
120 		  struct pt_regs *regs,	long error_code)
121 {
122 	if (v8086_mode(regs)) {
123 		/*
124 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
125 		 * On nmi (interrupt 2), do_trap should not be called.
126 		 */
127 		if (trapnr < X86_TRAP_UD) {
128 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
129 						error_code, trapnr))
130 				return 0;
131 		}
132 	} else if (!user_mode(regs)) {
133 		if (fixup_exception(regs, trapnr, error_code, 0))
134 			return 0;
135 
136 		tsk->thread.error_code = error_code;
137 		tsk->thread.trap_nr = trapnr;
138 		die(str, regs, error_code);
139 	}
140 
141 	/*
142 	 * We want error_code and trap_nr set for userspace faults and
143 	 * kernelspace faults which result in die(), but not
144 	 * kernelspace faults which are fixed up.  die() gives the
145 	 * process no chance to handle the signal and notice the
146 	 * kernel fault information, so that won't result in polluting
147 	 * the information about previously queued, but not yet
148 	 * delivered, faults.  See also exc_general_protection below.
149 	 */
150 	tsk->thread.error_code = error_code;
151 	tsk->thread.trap_nr = trapnr;
152 
153 	return -1;
154 }
155 
156 static void show_signal(struct task_struct *tsk, int signr,
157 			const char *type, const char *desc,
158 			struct pt_regs *regs, long error_code)
159 {
160 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
161 	    printk_ratelimit()) {
162 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
163 			tsk->comm, task_pid_nr(tsk), type, desc,
164 			regs->ip, regs->sp, error_code);
165 		print_vma_addr(KERN_CONT " in ", regs->ip);
166 		pr_cont("\n");
167 	}
168 }
169 
170 static void
171 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
172 	long error_code, int sicode, void __user *addr)
173 {
174 	struct task_struct *tsk = current;
175 
176 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
177 		return;
178 
179 	show_signal(tsk, signr, "trap ", str, regs, error_code);
180 
181 	if (!sicode)
182 		force_sig(signr);
183 	else
184 		force_sig_fault(signr, sicode, addr);
185 }
186 NOKPROBE_SYMBOL(do_trap);
187 
188 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
189 	unsigned long trapnr, int signr, int sicode, void __user *addr)
190 {
191 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
192 
193 	/*
194 	 * WARN*()s end up here; fix them up before we call the
195 	 * notifier chain.
196 	 */
197 	if (!user_mode(regs) && fixup_bug(regs, trapnr))
198 		return;
199 
200 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
201 			NOTIFY_STOP) {
202 		cond_local_irq_enable(regs);
203 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
204 		cond_local_irq_disable(regs);
205 	}
206 }
207 
208 /*
209  * Posix requires to provide the address of the faulting instruction for
210  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
211  *
212  * This address is usually regs->ip, but when an uprobe moved the code out
213  * of line then regs->ip points to the XOL code which would confuse
214  * anything which analyzes the fault address vs. the unmodified binary. If
215  * a trap happened in XOL code then uprobe maps regs->ip back to the
216  * original instruction address.
217  */
218 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
219 {
220 	return (void __user *)uprobe_get_trap_addr(regs);
221 }
222 
223 DEFINE_IDTENTRY(exc_divide_error)
224 {
225 	do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
226 		      FPE_INTDIV, error_get_trap_addr(regs));
227 }
228 
229 DEFINE_IDTENTRY(exc_overflow)
230 {
231 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
232 }
233 
234 #ifdef CONFIG_X86_F00F_BUG
235 void handle_invalid_op(struct pt_regs *regs)
236 #else
237 static inline void handle_invalid_op(struct pt_regs *regs)
238 #endif
239 {
240 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
241 		      ILL_ILLOPN, error_get_trap_addr(regs));
242 }
243 
244 DEFINE_IDTENTRY(exc_invalid_op)
245 {
246 	handle_invalid_op(regs);
247 }
248 
249 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
250 {
251 	do_error_trap(regs, 0, "coprocessor segment overrun",
252 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
253 }
254 
255 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
256 {
257 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
258 		      0, NULL);
259 }
260 
261 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
262 {
263 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
264 		      SIGBUS, 0, NULL);
265 }
266 
267 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
268 {
269 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
270 		      0, NULL);
271 }
272 
273 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
274 {
275 	char *str = "alignment check";
276 
277 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
278 		return;
279 
280 	if (!user_mode(regs))
281 		die("Split lock detected\n", regs, error_code);
282 
283 	local_irq_enable();
284 
285 	if (handle_user_split_lock(regs, error_code))
286 		return;
287 
288 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
289 		error_code, BUS_ADRALN, NULL);
290 }
291 
292 #ifdef CONFIG_VMAP_STACK
293 __visible void __noreturn handle_stack_overflow(const char *message,
294 						struct pt_regs *regs,
295 						unsigned long fault_address)
296 {
297 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
298 		 (void *)fault_address, current->stack,
299 		 (char *)current->stack + THREAD_SIZE - 1);
300 	die(message, regs, 0);
301 
302 	/* Be absolutely certain we don't return. */
303 	panic("%s", message);
304 }
305 #endif
306 
307 /*
308  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
309  *
310  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
311  * SDM's warnings about double faults being unrecoverable, returning works as
312  * expected.  Presumably what the SDM actually means is that the CPU may get
313  * the register state wrong on entry, so returning could be a bad idea.
314  *
315  * Various CPU engineers have promised that double faults due to an IRET fault
316  * while the stack is read-only are, in fact, recoverable.
317  *
318  * On x86_32, this is entered through a task gate, and regs are synthesized
319  * from the TSS.  Returning is, in principle, okay, but changes to regs will
320  * be lost.  If, for some reason, we need to return to a context with modified
321  * regs, the shim code could be adjusted to synchronize the registers.
322  *
323  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
324  * to be read before doing anything else.
325  */
326 DEFINE_IDTENTRY_DF(exc_double_fault)
327 {
328 	static const char str[] = "double fault";
329 	struct task_struct *tsk = current;
330 
331 #ifdef CONFIG_VMAP_STACK
332 	unsigned long address = read_cr2();
333 #endif
334 
335 #ifdef CONFIG_X86_ESPFIX64
336 	extern unsigned char native_irq_return_iret[];
337 
338 	/*
339 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
340 	 * end up promoting it to a doublefault.  In that case, take
341 	 * advantage of the fact that we're not using the normal (TSS.sp0)
342 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
343 	 * and then modify our own IRET frame so that, when we return,
344 	 * we land directly at the #GP(0) vector with the stack already
345 	 * set up according to its expectations.
346 	 *
347 	 * The net result is that our #GP handler will think that we
348 	 * entered from usermode with the bad user context.
349 	 *
350 	 * No need for nmi_enter() here because we don't use RCU.
351 	 */
352 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
353 		regs->cs == __KERNEL_CS &&
354 		regs->ip == (unsigned long)native_irq_return_iret)
355 	{
356 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
357 		unsigned long *p = (unsigned long *)regs->sp;
358 
359 		/*
360 		 * regs->sp points to the failing IRET frame on the
361 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
362 		 * in gpregs->ss through gpregs->ip.
363 		 *
364 		 */
365 		gpregs->ip	= p[0];
366 		gpregs->cs	= p[1];
367 		gpregs->flags	= p[2];
368 		gpregs->sp	= p[3];
369 		gpregs->ss	= p[4];
370 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
371 
372 		/*
373 		 * Adjust our frame so that we return straight to the #GP
374 		 * vector with the expected RSP value.  This is safe because
375 		 * we won't enable interupts or schedule before we invoke
376 		 * general_protection, so nothing will clobber the stack
377 		 * frame we just set up.
378 		 *
379 		 * We will enter general_protection with kernel GSBASE,
380 		 * which is what the stub expects, given that the faulting
381 		 * RIP will be the IRET instruction.
382 		 */
383 		regs->ip = (unsigned long)asm_exc_general_protection;
384 		regs->sp = (unsigned long)&gpregs->orig_ax;
385 
386 		return;
387 	}
388 #endif
389 
390 	nmi_enter();
391 	instrumentation_begin();
392 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
393 
394 	tsk->thread.error_code = error_code;
395 	tsk->thread.trap_nr = X86_TRAP_DF;
396 
397 #ifdef CONFIG_VMAP_STACK
398 	/*
399 	 * If we overflow the stack into a guard page, the CPU will fail
400 	 * to deliver #PF and will send #DF instead.  Similarly, if we
401 	 * take any non-IST exception while too close to the bottom of
402 	 * the stack, the processor will get a page fault while
403 	 * delivering the exception and will generate a double fault.
404 	 *
405 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
406 	 * Page-Fault Exception (#PF):
407 	 *
408 	 *   Processors update CR2 whenever a page fault is detected. If a
409 	 *   second page fault occurs while an earlier page fault is being
410 	 *   delivered, the faulting linear address of the second fault will
411 	 *   overwrite the contents of CR2 (replacing the previous
412 	 *   address). These updates to CR2 occur even if the page fault
413 	 *   results in a double fault or occurs during the delivery of a
414 	 *   double fault.
415 	 *
416 	 * The logic below has a small possibility of incorrectly diagnosing
417 	 * some errors as stack overflows.  For example, if the IDT or GDT
418 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
419 	 * causing #GP and we hit this condition while CR2 coincidentally
420 	 * points to the stack guard page, we'll think we overflowed the
421 	 * stack.  Given that we're going to panic one way or another
422 	 * if this happens, this isn't necessarily worth fixing.
423 	 *
424 	 * If necessary, we could improve the test by only diagnosing
425 	 * a stack overflow if the saved RSP points within 47 bytes of
426 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
427 	 * take an exception, the stack is already aligned and there
428 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
429 	 * possible error code, so a stack overflow would *not* double
430 	 * fault.  With any less space left, exception delivery could
431 	 * fail, and, as a practical matter, we've overflowed the
432 	 * stack even if the actual trigger for the double fault was
433 	 * something else.
434 	 */
435 	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
436 		handle_stack_overflow("kernel stack overflow (double-fault)",
437 				      regs, address);
438 	}
439 #endif
440 
441 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
442 	die("double fault", regs, error_code);
443 	panic("Machine halted.");
444 	instrumentation_end();
445 }
446 
447 DEFINE_IDTENTRY(exc_bounds)
448 {
449 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
450 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
451 		return;
452 	cond_local_irq_enable(regs);
453 
454 	if (!user_mode(regs))
455 		die("bounds", regs, 0);
456 
457 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
458 
459 	cond_local_irq_disable(regs);
460 }
461 
462 enum kernel_gp_hint {
463 	GP_NO_HINT,
464 	GP_NON_CANONICAL,
465 	GP_CANONICAL
466 };
467 
468 /*
469  * When an uncaught #GP occurs, try to determine the memory address accessed by
470  * the instruction and return that address to the caller. Also, try to figure
471  * out whether any part of the access to that address was non-canonical.
472  */
473 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
474 						 unsigned long *addr)
475 {
476 	u8 insn_buf[MAX_INSN_SIZE];
477 	struct insn insn;
478 
479 	if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
480 		return GP_NO_HINT;
481 
482 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
483 	insn_get_modrm(&insn);
484 	insn_get_sib(&insn);
485 
486 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
487 	if (*addr == -1UL)
488 		return GP_NO_HINT;
489 
490 #ifdef CONFIG_X86_64
491 	/*
492 	 * Check that:
493 	 *  - the operand is not in the kernel half
494 	 *  - the last byte of the operand is not in the user canonical half
495 	 */
496 	if (*addr < ~__VIRTUAL_MASK &&
497 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
498 		return GP_NON_CANONICAL;
499 #endif
500 
501 	return GP_CANONICAL;
502 }
503 
504 #define GPFSTR "general protection fault"
505 
506 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
507 {
508 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
509 	enum kernel_gp_hint hint = GP_NO_HINT;
510 	struct task_struct *tsk;
511 	unsigned long gp_addr;
512 	int ret;
513 
514 	cond_local_irq_enable(regs);
515 
516 	if (static_cpu_has(X86_FEATURE_UMIP)) {
517 		if (user_mode(regs) && fixup_umip_exception(regs))
518 			goto exit;
519 	}
520 
521 	if (v8086_mode(regs)) {
522 		local_irq_enable();
523 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
524 		local_irq_disable();
525 		return;
526 	}
527 
528 	tsk = current;
529 
530 	if (user_mode(regs)) {
531 		tsk->thread.error_code = error_code;
532 		tsk->thread.trap_nr = X86_TRAP_GP;
533 
534 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
535 		force_sig(SIGSEGV);
536 		goto exit;
537 	}
538 
539 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
540 		goto exit;
541 
542 	tsk->thread.error_code = error_code;
543 	tsk->thread.trap_nr = X86_TRAP_GP;
544 
545 	/*
546 	 * To be potentially processing a kprobe fault and to trust the result
547 	 * from kprobe_running(), we have to be non-preemptible.
548 	 */
549 	if (!preemptible() &&
550 	    kprobe_running() &&
551 	    kprobe_fault_handler(regs, X86_TRAP_GP))
552 		goto exit;
553 
554 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
555 	if (ret == NOTIFY_STOP)
556 		goto exit;
557 
558 	if (error_code)
559 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
560 	else
561 		hint = get_kernel_gp_address(regs, &gp_addr);
562 
563 	if (hint != GP_NO_HINT)
564 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
565 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
566 						    : "maybe for address",
567 			 gp_addr);
568 
569 	/*
570 	 * KASAN is interested only in the non-canonical case, clear it
571 	 * otherwise.
572 	 */
573 	if (hint != GP_NON_CANONICAL)
574 		gp_addr = 0;
575 
576 	die_addr(desc, regs, error_code, gp_addr);
577 
578 exit:
579 	cond_local_irq_disable(regs);
580 }
581 
582 static bool do_int3(struct pt_regs *regs)
583 {
584 	int res;
585 
586 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
587 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
588 			 SIGTRAP) == NOTIFY_STOP)
589 		return true;
590 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
591 
592 #ifdef CONFIG_KPROBES
593 	if (kprobe_int3_handler(regs))
594 		return true;
595 #endif
596 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
597 
598 	return res == NOTIFY_STOP;
599 }
600 
601 static void do_int3_user(struct pt_regs *regs)
602 {
603 	if (do_int3(regs))
604 		return;
605 
606 	cond_local_irq_enable(regs);
607 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
608 	cond_local_irq_disable(regs);
609 }
610 
611 DEFINE_IDTENTRY_RAW(exc_int3)
612 {
613 	/*
614 	 * poke_int3_handler() is completely self contained code; it does (and
615 	 * must) *NOT* call out to anything, lest it hits upon yet another
616 	 * INT3.
617 	 */
618 	if (poke_int3_handler(regs))
619 		return;
620 
621 	/*
622 	 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore
623 	 * can trigger INT3, hence poke_int3_handler() must be done
624 	 * before. If the entry came from kernel mode, then use nmi_enter()
625 	 * because the INT3 could have been hit in any context including
626 	 * NMI.
627 	 */
628 	if (user_mode(regs)) {
629 		idtentry_enter_user(regs);
630 		instrumentation_begin();
631 		do_int3_user(regs);
632 		instrumentation_end();
633 		idtentry_exit_user(regs);
634 	} else {
635 		nmi_enter();
636 		instrumentation_begin();
637 		if (!do_int3(regs))
638 			die("int3", regs, 0);
639 		instrumentation_end();
640 		nmi_exit();
641 	}
642 }
643 
644 #ifdef CONFIG_X86_64
645 /*
646  * Help handler running on a per-cpu (IST or entry trampoline) stack
647  * to switch to the normal thread stack if the interrupted code was in
648  * user mode. The actual stack switch is done in entry_64.S
649  */
650 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
651 {
652 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
653 	if (regs != eregs)
654 		*regs = *eregs;
655 	return regs;
656 }
657 
658 struct bad_iret_stack {
659 	void *error_entry_ret;
660 	struct pt_regs regs;
661 };
662 
663 asmlinkage __visible noinstr
664 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
665 {
666 	/*
667 	 * This is called from entry_64.S early in handling a fault
668 	 * caused by a bad iret to user mode.  To handle the fault
669 	 * correctly, we want to move our stack frame to where it would
670 	 * be had we entered directly on the entry stack (rather than
671 	 * just below the IRET frame) and we want to pretend that the
672 	 * exception came from the IRET target.
673 	 */
674 	struct bad_iret_stack tmp, *new_stack =
675 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
676 
677 	/* Copy the IRET target to the temporary storage. */
678 	memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
679 
680 	/* Copy the remainder of the stack from the current stack. */
681 	memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
682 
683 	/* Update the entry stack */
684 	memcpy(new_stack, &tmp, sizeof(tmp));
685 
686 	BUG_ON(!user_mode(&new_stack->regs));
687 	return new_stack;
688 }
689 #endif
690 
691 static bool is_sysenter_singlestep(struct pt_regs *regs)
692 {
693 	/*
694 	 * We don't try for precision here.  If we're anywhere in the region of
695 	 * code that can be single-stepped in the SYSENTER entry path, then
696 	 * assume that this is a useless single-step trap due to SYSENTER
697 	 * being invoked with TF set.  (We don't know in advance exactly
698 	 * which instructions will be hit because BTF could plausibly
699 	 * be set.)
700 	 */
701 #ifdef CONFIG_X86_32
702 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
703 		(unsigned long)__end_SYSENTER_singlestep_region -
704 		(unsigned long)__begin_SYSENTER_singlestep_region;
705 #elif defined(CONFIG_IA32_EMULATION)
706 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
707 		(unsigned long)__end_entry_SYSENTER_compat -
708 		(unsigned long)entry_SYSENTER_compat;
709 #else
710 	return false;
711 #endif
712 }
713 
714 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
715 {
716 	/*
717 	 * Disable breakpoints during exception handling; recursive exceptions
718 	 * are exceedingly 'fun'.
719 	 *
720 	 * Since this function is NOKPROBE, and that also applies to
721 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
722 	 * HW_BREAKPOINT_W on our stack)
723 	 *
724 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
725 	 * includes the entry stack is excluded for everything.
726 	 */
727 	get_debugreg(*dr7, 7);
728 	set_debugreg(0, 7);
729 
730 	/*
731 	 * Ensure the compiler doesn't lower the above statements into
732 	 * the critical section; disabling breakpoints late would not
733 	 * be good.
734 	 */
735 	barrier();
736 
737 	/*
738 	 * The Intel SDM says:
739 	 *
740 	 *   Certain debug exceptions may clear bits 0-3. The remaining
741 	 *   contents of the DR6 register are never cleared by the
742 	 *   processor. To avoid confusion in identifying debug
743 	 *   exceptions, debug handlers should clear the register before
744 	 *   returning to the interrupted task.
745 	 *
746 	 * Keep it simple: clear DR6 immediately.
747 	 */
748 	get_debugreg(*dr6, 6);
749 	set_debugreg(0, 6);
750 	/* Filter out all the reserved bits which are preset to 1 */
751 	*dr6 &= ~DR6_RESERVED;
752 }
753 
754 static __always_inline void debug_exit(unsigned long dr7)
755 {
756 	/*
757 	 * Ensure the compiler doesn't raise this statement into
758 	 * the critical section; enabling breakpoints early would
759 	 * not be good.
760 	 */
761 	barrier();
762 	set_debugreg(dr7, 7);
763 }
764 
765 /*
766  * Our handling of the processor debug registers is non-trivial.
767  * We do not clear them on entry and exit from the kernel. Therefore
768  * it is possible to get a watchpoint trap here from inside the kernel.
769  * However, the code in ./ptrace.c has ensured that the user can
770  * only set watchpoints on userspace addresses. Therefore the in-kernel
771  * watchpoint trap can only occur in code which is reading/writing
772  * from user space. Such code must not hold kernel locks (since it
773  * can equally take a page fault), therefore it is safe to call
774  * force_sig_info even though that claims and releases locks.
775  *
776  * Code in ./signal.c ensures that the debug control register
777  * is restored before we deliver any signal, and therefore that
778  * user code runs with the correct debug control register even though
779  * we clear it here.
780  *
781  * Being careful here means that we don't have to be as careful in a
782  * lot of more complicated places (task switching can be a bit lazy
783  * about restoring all the debug state, and ptrace doesn't have to
784  * find every occurrence of the TF bit that could be saved away even
785  * by user code)
786  *
787  * May run on IST stack.
788  */
789 static void noinstr handle_debug(struct pt_regs *regs, unsigned long dr6,
790 				 bool user_icebp)
791 {
792 	struct task_struct *tsk = current;
793 	int si_code;
794 
795 	/* Store the virtualized DR6 value */
796 	tsk->thread.debugreg6 = dr6;
797 
798 	instrumentation_begin();
799 #ifdef CONFIG_KPROBES
800 	if (kprobe_debug_handler(regs)) {
801 		instrumentation_end();
802 		return;
803 	}
804 #endif
805 
806 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
807 		       SIGTRAP) == NOTIFY_STOP) {
808 		instrumentation_end();
809 		return;
810 	}
811 
812 	/*
813 	 * Let others (NMI) know that the debug stack is in use
814 	 * as we may switch to the interrupt stack.
815 	 */
816 	debug_stack_usage_inc();
817 
818 	/* It's safe to allow irq's after DR6 has been saved */
819 	cond_local_irq_enable(regs);
820 
821 	if (v8086_mode(regs)) {
822 		handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
823 				 X86_TRAP_DB);
824 		goto out;
825 	}
826 
827 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
828 		/*
829 		 * Historical junk that used to handle SYSENTER single-stepping.
830 		 * This should be unreachable now.  If we survive for a while
831 		 * without anyone hitting this warning, we'll turn this into
832 		 * an oops.
833 		 */
834 		tsk->thread.debugreg6 &= ~DR_STEP;
835 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
836 		regs->flags &= ~X86_EFLAGS_TF;
837 	}
838 
839 	si_code = get_si_code(tsk->thread.debugreg6);
840 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
841 		send_sigtrap(regs, 0, si_code);
842 
843 out:
844 	cond_local_irq_disable(regs);
845 	debug_stack_usage_dec();
846 	instrumentation_end();
847 }
848 
849 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
850 					     unsigned long dr6)
851 {
852 	nmi_enter();
853 	/*
854 	 * The SDM says "The processor clears the BTF flag when it
855 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
856 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
857 	 */
858 	clear_thread_flag(TIF_BLOCKSTEP);
859 
860 	/*
861 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
862 	 * watchpoint at the same time then that will still be handled.
863 	 */
864 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
865 		dr6 &= ~DR_STEP;
866 
867 	/*
868 	 * If DR6 is zero, no point in trying to handle it. The kernel is
869 	 * not using INT1.
870 	 */
871 	if (dr6)
872 		handle_debug(regs, dr6, false);
873 
874 	nmi_exit();
875 }
876 
877 static __always_inline void exc_debug_user(struct pt_regs *regs,
878 					   unsigned long dr6)
879 {
880 	idtentry_enter_user(regs);
881 	clear_thread_flag(TIF_BLOCKSTEP);
882 
883 	/*
884 	 * If dr6 has no reason to give us about the origin of this trap,
885 	 * then it's very likely the result of an icebp/int01 trap.
886 	 * User wants a sigtrap for that.
887 	 */
888 	handle_debug(regs, dr6, !dr6);
889 	idtentry_exit_user(regs);
890 }
891 
892 #ifdef CONFIG_X86_64
893 /* IST stack entry */
894 DEFINE_IDTENTRY_DEBUG(exc_debug)
895 {
896 	unsigned long dr6, dr7;
897 
898 	debug_enter(&dr6, &dr7);
899 	exc_debug_kernel(regs, dr6);
900 	debug_exit(dr7);
901 }
902 
903 /* User entry, runs on regular task stack */
904 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
905 {
906 	unsigned long dr6, dr7;
907 
908 	debug_enter(&dr6, &dr7);
909 	exc_debug_user(regs, dr6);
910 	debug_exit(dr7);
911 }
912 #else
913 /* 32 bit does not have separate entry points. */
914 DEFINE_IDTENTRY_DEBUG(exc_debug)
915 {
916 	unsigned long dr6, dr7;
917 
918 	debug_enter(&dr6, &dr7);
919 
920 	if (user_mode(regs))
921 		exc_debug_user(regs, dr6);
922 	else
923 		exc_debug_kernel(regs, dr6);
924 
925 	debug_exit(dr7);
926 }
927 #endif
928 
929 /*
930  * Note that we play around with the 'TS' bit in an attempt to get
931  * the correct behaviour even in the presence of the asynchronous
932  * IRQ13 behaviour
933  */
934 static void math_error(struct pt_regs *regs, int trapnr)
935 {
936 	struct task_struct *task = current;
937 	struct fpu *fpu = &task->thread.fpu;
938 	int si_code;
939 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
940 						"simd exception";
941 
942 	cond_local_irq_enable(regs);
943 
944 	if (!user_mode(regs)) {
945 		if (fixup_exception(regs, trapnr, 0, 0))
946 			goto exit;
947 
948 		task->thread.error_code = 0;
949 		task->thread.trap_nr = trapnr;
950 
951 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
952 			       SIGFPE) != NOTIFY_STOP)
953 			die(str, regs, 0);
954 		goto exit;
955 	}
956 
957 	/*
958 	 * Save the info for the exception handler and clear the error.
959 	 */
960 	fpu__save(fpu);
961 
962 	task->thread.trap_nr	= trapnr;
963 	task->thread.error_code = 0;
964 
965 	si_code = fpu__exception_code(fpu, trapnr);
966 	/* Retry when we get spurious exceptions: */
967 	if (!si_code)
968 		goto exit;
969 
970 	force_sig_fault(SIGFPE, si_code,
971 			(void __user *)uprobe_get_trap_addr(regs));
972 exit:
973 	cond_local_irq_disable(regs);
974 }
975 
976 DEFINE_IDTENTRY(exc_coprocessor_error)
977 {
978 	math_error(regs, X86_TRAP_MF);
979 }
980 
981 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
982 {
983 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
984 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
985 		if (!static_cpu_has(X86_FEATURE_XMM)) {
986 			__exc_general_protection(regs, 0);
987 			return;
988 		}
989 	}
990 	math_error(regs, X86_TRAP_XF);
991 }
992 
993 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
994 {
995 	/*
996 	 * This addresses a Pentium Pro Erratum:
997 	 *
998 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
999 	 * Virtual Wire mode implemented through the local APIC, an
1000 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1001 	 * generated by the local APIC (Int 15).  This vector may be
1002 	 * generated upon receipt of a spurious interrupt (an interrupt
1003 	 * which is removed before the system receives the INTA sequence)
1004 	 * instead of the programmed 8259 spurious interrupt vector.
1005 	 *
1006 	 * IMPLICATION: The spurious interrupt vector programmed in the
1007 	 * 8259 is normally handled by an operating system's spurious
1008 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1009 	 * operating systems, which would crash if this erratum occurred.
1010 	 *
1011 	 * In theory this could be limited to 32bit, but the handler is not
1012 	 * hurting and who knows which other CPUs suffer from this.
1013 	 */
1014 }
1015 
1016 DEFINE_IDTENTRY(exc_device_not_available)
1017 {
1018 	unsigned long cr0 = read_cr0();
1019 
1020 #ifdef CONFIG_MATH_EMULATION
1021 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1022 		struct math_emu_info info = { };
1023 
1024 		cond_local_irq_enable(regs);
1025 
1026 		info.regs = regs;
1027 		math_emulate(&info);
1028 
1029 		cond_local_irq_disable(regs);
1030 		return;
1031 	}
1032 #endif
1033 
1034 	/* This should not happen. */
1035 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1036 		/* Try to fix it up and carry on. */
1037 		write_cr0(cr0 & ~X86_CR0_TS);
1038 	} else {
1039 		/*
1040 		 * Something terrible happened, and we're better off trying
1041 		 * to kill the task than getting stuck in a never-ending
1042 		 * loop of #NM faults.
1043 		 */
1044 		die("unexpected #NM exception", regs, 0);
1045 	}
1046 }
1047 
1048 #ifdef CONFIG_X86_32
1049 DEFINE_IDTENTRY_SW(iret_error)
1050 {
1051 	local_irq_enable();
1052 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1053 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1054 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1055 			ILL_BADSTK, (void __user *)NULL);
1056 	}
1057 	local_irq_disable();
1058 }
1059 #endif
1060 
1061 void __init trap_init(void)
1062 {
1063 	/* Init cpu_entry_area before IST entries are set up */
1064 	setup_cpu_entry_areas();
1065 
1066 	idt_setup_traps();
1067 
1068 	/*
1069 	 * Set the IDT descriptor to a fixed read-only location, so that the
1070 	 * "sidt" instruction will not leak the location of the kernel, and
1071 	 * to defend the IDT against arbitrary memory write vulnerabilities.
1072 	 * It will be reloaded in cpu_init() */
1073 	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
1074 		    PAGE_KERNEL_RO);
1075 	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
1076 
1077 	/*
1078 	 * Should be a barrier for any external CPU state:
1079 	 */
1080 	cpu_init();
1081 
1082 	idt_setup_ist_traps();
1083 
1084 	idt_setup_debugidt_traps();
1085 }
1086