1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <linux/hardirq.h> 41 #include <linux/atomic.h> 42 43 #include <asm/stacktrace.h> 44 #include <asm/processor.h> 45 #include <asm/debugreg.h> 46 #include <asm/text-patching.h> 47 #include <asm/ftrace.h> 48 #include <asm/traps.h> 49 #include <asm/desc.h> 50 #include <asm/fpu/internal.h> 51 #include <asm/cpu.h> 52 #include <asm/cpu_entry_area.h> 53 #include <asm/mce.h> 54 #include <asm/fixmap.h> 55 #include <asm/mach_traps.h> 56 #include <asm/alternative.h> 57 #include <asm/fpu/xstate.h> 58 #include <asm/vm86.h> 59 #include <asm/umip.h> 60 #include <asm/insn.h> 61 #include <asm/insn-eval.h> 62 63 #ifdef CONFIG_X86_64 64 #include <asm/x86_init.h> 65 #include <asm/pgalloc.h> 66 #include <asm/proto.h> 67 #else 68 #include <asm/processor-flags.h> 69 #include <asm/setup.h> 70 #include <asm/proto.h> 71 #endif 72 73 DECLARE_BITMAP(system_vectors, NR_VECTORS); 74 75 static inline void cond_local_irq_enable(struct pt_regs *regs) 76 { 77 if (regs->flags & X86_EFLAGS_IF) 78 local_irq_enable(); 79 } 80 81 static inline void cond_local_irq_disable(struct pt_regs *regs) 82 { 83 if (regs->flags & X86_EFLAGS_IF) 84 local_irq_disable(); 85 } 86 87 int is_valid_bugaddr(unsigned long addr) 88 { 89 unsigned short ud; 90 91 if (addr < TASK_SIZE_MAX) 92 return 0; 93 94 if (probe_kernel_address((unsigned short *)addr, ud)) 95 return 0; 96 97 return ud == INSN_UD0 || ud == INSN_UD2; 98 } 99 100 int fixup_bug(struct pt_regs *regs, int trapnr) 101 { 102 if (trapnr != X86_TRAP_UD) 103 return 0; 104 105 switch (report_bug(regs->ip, regs)) { 106 case BUG_TRAP_TYPE_NONE: 107 case BUG_TRAP_TYPE_BUG: 108 break; 109 110 case BUG_TRAP_TYPE_WARN: 111 regs->ip += LEN_UD2; 112 return 1; 113 } 114 115 return 0; 116 } 117 118 static nokprobe_inline int 119 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 120 struct pt_regs *regs, long error_code) 121 { 122 if (v8086_mode(regs)) { 123 /* 124 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 125 * On nmi (interrupt 2), do_trap should not be called. 126 */ 127 if (trapnr < X86_TRAP_UD) { 128 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 129 error_code, trapnr)) 130 return 0; 131 } 132 } else if (!user_mode(regs)) { 133 if (fixup_exception(regs, trapnr, error_code, 0)) 134 return 0; 135 136 tsk->thread.error_code = error_code; 137 tsk->thread.trap_nr = trapnr; 138 die(str, regs, error_code); 139 } 140 141 /* 142 * We want error_code and trap_nr set for userspace faults and 143 * kernelspace faults which result in die(), but not 144 * kernelspace faults which are fixed up. die() gives the 145 * process no chance to handle the signal and notice the 146 * kernel fault information, so that won't result in polluting 147 * the information about previously queued, but not yet 148 * delivered, faults. See also do_general_protection below. 149 */ 150 tsk->thread.error_code = error_code; 151 tsk->thread.trap_nr = trapnr; 152 153 return -1; 154 } 155 156 static void show_signal(struct task_struct *tsk, int signr, 157 const char *type, const char *desc, 158 struct pt_regs *regs, long error_code) 159 { 160 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 161 printk_ratelimit()) { 162 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 163 tsk->comm, task_pid_nr(tsk), type, desc, 164 regs->ip, regs->sp, error_code); 165 print_vma_addr(KERN_CONT " in ", regs->ip); 166 pr_cont("\n"); 167 } 168 } 169 170 static void 171 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 172 long error_code, int sicode, void __user *addr) 173 { 174 struct task_struct *tsk = current; 175 176 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 177 return; 178 179 show_signal(tsk, signr, "trap ", str, regs, error_code); 180 181 if (!sicode) 182 force_sig(signr); 183 else 184 force_sig_fault(signr, sicode, addr); 185 } 186 NOKPROBE_SYMBOL(do_trap); 187 188 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 189 unsigned long trapnr, int signr, int sicode, void __user *addr) 190 { 191 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 192 193 /* 194 * WARN*()s end up here; fix them up before we call the 195 * notifier chain. 196 */ 197 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 198 return; 199 200 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 201 NOTIFY_STOP) { 202 cond_local_irq_enable(regs); 203 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 204 } 205 } 206 207 #define IP ((void __user *)uprobe_get_trap_addr(regs)) 208 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ 209 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 210 { \ 211 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ 212 } 213 214 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) 215 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) 216 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) 217 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) 218 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) 219 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) 220 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) 221 #undef IP 222 223 dotraplinkage void do_alignment_check(struct pt_regs *regs, long error_code) 224 { 225 char *str = "alignment check"; 226 227 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 228 229 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 230 return; 231 232 if (!user_mode(regs)) 233 die("Split lock detected\n", regs, error_code); 234 235 local_irq_enable(); 236 237 if (handle_user_split_lock(regs, error_code)) 238 return; 239 240 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 241 error_code, BUS_ADRALN, NULL); 242 } 243 244 #ifdef CONFIG_VMAP_STACK 245 __visible void __noreturn handle_stack_overflow(const char *message, 246 struct pt_regs *regs, 247 unsigned long fault_address) 248 { 249 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 250 (void *)fault_address, current->stack, 251 (char *)current->stack + THREAD_SIZE - 1); 252 die(message, regs, 0); 253 254 /* Be absolutely certain we don't return. */ 255 panic("%s", message); 256 } 257 #endif 258 259 /* 260 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 261 * 262 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 263 * SDM's warnings about double faults being unrecoverable, returning works as 264 * expected. Presumably what the SDM actually means is that the CPU may get 265 * the register state wrong on entry, so returning could be a bad idea. 266 * 267 * Various CPU engineers have promised that double faults due to an IRET fault 268 * while the stack is read-only are, in fact, recoverable. 269 * 270 * On x86_32, this is entered through a task gate, and regs are synthesized 271 * from the TSS. Returning is, in principle, okay, but changes to regs will 272 * be lost. If, for some reason, we need to return to a context with modified 273 * regs, the shim code could be adjusted to synchronize the registers. 274 */ 275 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2) 276 { 277 static const char str[] = "double fault"; 278 struct task_struct *tsk = current; 279 280 #ifdef CONFIG_X86_ESPFIX64 281 extern unsigned char native_irq_return_iret[]; 282 283 /* 284 * If IRET takes a non-IST fault on the espfix64 stack, then we 285 * end up promoting it to a doublefault. In that case, take 286 * advantage of the fact that we're not using the normal (TSS.sp0) 287 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 288 * and then modify our own IRET frame so that, when we return, 289 * we land directly at the #GP(0) vector with the stack already 290 * set up according to its expectations. 291 * 292 * The net result is that our #GP handler will think that we 293 * entered from usermode with the bad user context. 294 * 295 * No need for nmi_enter() here because we don't use RCU. 296 */ 297 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 298 regs->cs == __KERNEL_CS && 299 regs->ip == (unsigned long)native_irq_return_iret) 300 { 301 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 302 303 /* 304 * regs->sp points to the failing IRET frame on the 305 * ESPFIX64 stack. Copy it to the entry stack. This fills 306 * in gpregs->ss through gpregs->ip. 307 * 308 */ 309 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 310 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 311 312 /* 313 * Adjust our frame so that we return straight to the #GP 314 * vector with the expected RSP value. This is safe because 315 * we won't enable interupts or schedule before we invoke 316 * general_protection, so nothing will clobber the stack 317 * frame we just set up. 318 * 319 * We will enter general_protection with kernel GSBASE, 320 * which is what the stub expects, given that the faulting 321 * RIP will be the IRET instruction. 322 */ 323 regs->ip = (unsigned long)general_protection; 324 regs->sp = (unsigned long)&gpregs->orig_ax; 325 326 return; 327 } 328 #endif 329 330 nmi_enter(); 331 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 332 333 tsk->thread.error_code = error_code; 334 tsk->thread.trap_nr = X86_TRAP_DF; 335 336 #ifdef CONFIG_VMAP_STACK 337 /* 338 * If we overflow the stack into a guard page, the CPU will fail 339 * to deliver #PF and will send #DF instead. Similarly, if we 340 * take any non-IST exception while too close to the bottom of 341 * the stack, the processor will get a page fault while 342 * delivering the exception and will generate a double fault. 343 * 344 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 345 * Page-Fault Exception (#PF): 346 * 347 * Processors update CR2 whenever a page fault is detected. If a 348 * second page fault occurs while an earlier page fault is being 349 * delivered, the faulting linear address of the second fault will 350 * overwrite the contents of CR2 (replacing the previous 351 * address). These updates to CR2 occur even if the page fault 352 * results in a double fault or occurs during the delivery of a 353 * double fault. 354 * 355 * The logic below has a small possibility of incorrectly diagnosing 356 * some errors as stack overflows. For example, if the IDT or GDT 357 * gets corrupted such that #GP delivery fails due to a bad descriptor 358 * causing #GP and we hit this condition while CR2 coincidentally 359 * points to the stack guard page, we'll think we overflowed the 360 * stack. Given that we're going to panic one way or another 361 * if this happens, this isn't necessarily worth fixing. 362 * 363 * If necessary, we could improve the test by only diagnosing 364 * a stack overflow if the saved RSP points within 47 bytes of 365 * the bottom of the stack: if RSP == tsk_stack + 48 and we 366 * take an exception, the stack is already aligned and there 367 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 368 * possible error code, so a stack overflow would *not* double 369 * fault. With any less space left, exception delivery could 370 * fail, and, as a practical matter, we've overflowed the 371 * stack even if the actual trigger for the double fault was 372 * something else. 373 */ 374 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 375 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 376 #endif 377 378 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 379 die("double fault", regs, error_code); 380 panic("Machine halted."); 381 } 382 383 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 384 { 385 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 386 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 387 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 388 return; 389 cond_local_irq_enable(regs); 390 391 if (!user_mode(regs)) 392 die("bounds", regs, error_code); 393 394 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); 395 } 396 397 enum kernel_gp_hint { 398 GP_NO_HINT, 399 GP_NON_CANONICAL, 400 GP_CANONICAL 401 }; 402 403 /* 404 * When an uncaught #GP occurs, try to determine the memory address accessed by 405 * the instruction and return that address to the caller. Also, try to figure 406 * out whether any part of the access to that address was non-canonical. 407 */ 408 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 409 unsigned long *addr) 410 { 411 u8 insn_buf[MAX_INSN_SIZE]; 412 struct insn insn; 413 414 if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) 415 return GP_NO_HINT; 416 417 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); 418 insn_get_modrm(&insn); 419 insn_get_sib(&insn); 420 421 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 422 if (*addr == -1UL) 423 return GP_NO_HINT; 424 425 #ifdef CONFIG_X86_64 426 /* 427 * Check that: 428 * - the operand is not in the kernel half 429 * - the last byte of the operand is not in the user canonical half 430 */ 431 if (*addr < ~__VIRTUAL_MASK && 432 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 433 return GP_NON_CANONICAL; 434 #endif 435 436 return GP_CANONICAL; 437 } 438 439 #define GPFSTR "general protection fault" 440 441 dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code) 442 { 443 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 444 enum kernel_gp_hint hint = GP_NO_HINT; 445 struct task_struct *tsk; 446 unsigned long gp_addr; 447 int ret; 448 449 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 450 cond_local_irq_enable(regs); 451 452 if (static_cpu_has(X86_FEATURE_UMIP)) { 453 if (user_mode(regs) && fixup_umip_exception(regs)) 454 return; 455 } 456 457 if (v8086_mode(regs)) { 458 local_irq_enable(); 459 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 460 return; 461 } 462 463 tsk = current; 464 465 if (user_mode(regs)) { 466 tsk->thread.error_code = error_code; 467 tsk->thread.trap_nr = X86_TRAP_GP; 468 469 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 470 force_sig(SIGSEGV); 471 472 return; 473 } 474 475 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 476 return; 477 478 tsk->thread.error_code = error_code; 479 tsk->thread.trap_nr = X86_TRAP_GP; 480 481 /* 482 * To be potentially processing a kprobe fault and to trust the result 483 * from kprobe_running(), we have to be non-preemptible. 484 */ 485 if (!preemptible() && 486 kprobe_running() && 487 kprobe_fault_handler(regs, X86_TRAP_GP)) 488 return; 489 490 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); 491 if (ret == NOTIFY_STOP) 492 return; 493 494 if (error_code) 495 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 496 else 497 hint = get_kernel_gp_address(regs, &gp_addr); 498 499 if (hint != GP_NO_HINT) 500 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 501 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 502 : "maybe for address", 503 gp_addr); 504 505 /* 506 * KASAN is interested only in the non-canonical case, clear it 507 * otherwise. 508 */ 509 if (hint != GP_NON_CANONICAL) 510 gp_addr = 0; 511 512 die_addr(desc, regs, error_code, gp_addr); 513 514 } 515 NOKPROBE_SYMBOL(do_general_protection); 516 517 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 518 { 519 if (poke_int3_handler(regs)) 520 return; 521 522 /* 523 * Unlike any other non-IST entry, we can be called from pretty much 524 * any location in the kernel through kprobes -- text_poke() will most 525 * likely be handled by poke_int3_handler() above. This means this 526 * handler is effectively NMI-like. 527 */ 528 if (!user_mode(regs)) 529 nmi_enter(); 530 531 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 532 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 533 SIGTRAP) == NOTIFY_STOP) 534 goto exit; 535 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 536 537 #ifdef CONFIG_KPROBES 538 if (kprobe_int3_handler(regs)) 539 goto exit; 540 #endif 541 542 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 543 SIGTRAP) == NOTIFY_STOP) 544 goto exit; 545 546 cond_local_irq_enable(regs); 547 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); 548 cond_local_irq_disable(regs); 549 550 exit: 551 if (!user_mode(regs)) 552 nmi_exit(); 553 } 554 NOKPROBE_SYMBOL(do_int3); 555 556 #ifdef CONFIG_X86_64 557 /* 558 * Help handler running on a per-cpu (IST or entry trampoline) stack 559 * to switch to the normal thread stack if the interrupted code was in 560 * user mode. The actual stack switch is done in entry_64.S 561 */ 562 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 563 { 564 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 565 if (regs != eregs) 566 *regs = *eregs; 567 return regs; 568 } 569 NOKPROBE_SYMBOL(sync_regs); 570 571 struct bad_iret_stack { 572 void *error_entry_ret; 573 struct pt_regs regs; 574 }; 575 576 asmlinkage __visible notrace 577 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 578 { 579 /* 580 * This is called from entry_64.S early in handling a fault 581 * caused by a bad iret to user mode. To handle the fault 582 * correctly, we want to move our stack frame to where it would 583 * be had we entered directly on the entry stack (rather than 584 * just below the IRET frame) and we want to pretend that the 585 * exception came from the IRET target. 586 */ 587 struct bad_iret_stack *new_stack = 588 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 589 590 /* Copy the IRET target to the new stack. */ 591 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 592 593 /* Copy the remainder of the stack from the current stack. */ 594 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 595 596 BUG_ON(!user_mode(&new_stack->regs)); 597 return new_stack; 598 } 599 NOKPROBE_SYMBOL(fixup_bad_iret); 600 #endif 601 602 static bool is_sysenter_singlestep(struct pt_regs *regs) 603 { 604 /* 605 * We don't try for precision here. If we're anywhere in the region of 606 * code that can be single-stepped in the SYSENTER entry path, then 607 * assume that this is a useless single-step trap due to SYSENTER 608 * being invoked with TF set. (We don't know in advance exactly 609 * which instructions will be hit because BTF could plausibly 610 * be set.) 611 */ 612 #ifdef CONFIG_X86_32 613 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 614 (unsigned long)__end_SYSENTER_singlestep_region - 615 (unsigned long)__begin_SYSENTER_singlestep_region; 616 #elif defined(CONFIG_IA32_EMULATION) 617 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 618 (unsigned long)__end_entry_SYSENTER_compat - 619 (unsigned long)entry_SYSENTER_compat; 620 #else 621 return false; 622 #endif 623 } 624 625 /* 626 * Our handling of the processor debug registers is non-trivial. 627 * We do not clear them on entry and exit from the kernel. Therefore 628 * it is possible to get a watchpoint trap here from inside the kernel. 629 * However, the code in ./ptrace.c has ensured that the user can 630 * only set watchpoints on userspace addresses. Therefore the in-kernel 631 * watchpoint trap can only occur in code which is reading/writing 632 * from user space. Such code must not hold kernel locks (since it 633 * can equally take a page fault), therefore it is safe to call 634 * force_sig_info even though that claims and releases locks. 635 * 636 * Code in ./signal.c ensures that the debug control register 637 * is restored before we deliver any signal, and therefore that 638 * user code runs with the correct debug control register even though 639 * we clear it here. 640 * 641 * Being careful here means that we don't have to be as careful in a 642 * lot of more complicated places (task switching can be a bit lazy 643 * about restoring all the debug state, and ptrace doesn't have to 644 * find every occurrence of the TF bit that could be saved away even 645 * by user code) 646 * 647 * May run on IST stack. 648 */ 649 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 650 { 651 struct task_struct *tsk = current; 652 int user_icebp = 0; 653 unsigned long dr6; 654 int si_code; 655 656 nmi_enter(); 657 658 get_debugreg(dr6, 6); 659 /* 660 * The Intel SDM says: 661 * 662 * Certain debug exceptions may clear bits 0-3. The remaining 663 * contents of the DR6 register are never cleared by the 664 * processor. To avoid confusion in identifying debug 665 * exceptions, debug handlers should clear the register before 666 * returning to the interrupted task. 667 * 668 * Keep it simple: clear DR6 immediately. 669 */ 670 set_debugreg(0, 6); 671 672 /* Filter out all the reserved bits which are preset to 1 */ 673 dr6 &= ~DR6_RESERVED; 674 675 /* 676 * The SDM says "The processor clears the BTF flag when it 677 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 678 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 679 */ 680 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 681 682 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 683 is_sysenter_singlestep(regs))) { 684 dr6 &= ~DR_STEP; 685 if (!dr6) 686 goto exit; 687 /* 688 * else we might have gotten a single-step trap and hit a 689 * watchpoint at the same time, in which case we should fall 690 * through and handle the watchpoint. 691 */ 692 } 693 694 /* 695 * If dr6 has no reason to give us about the origin of this trap, 696 * then it's very likely the result of an icebp/int01 trap. 697 * User wants a sigtrap for that. 698 */ 699 if (!dr6 && user_mode(regs)) 700 user_icebp = 1; 701 702 /* Store the virtualized DR6 value */ 703 tsk->thread.debugreg6 = dr6; 704 705 #ifdef CONFIG_KPROBES 706 if (kprobe_debug_handler(regs)) 707 goto exit; 708 #endif 709 710 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 711 SIGTRAP) == NOTIFY_STOP) 712 goto exit; 713 714 /* 715 * Let others (NMI) know that the debug stack is in use 716 * as we may switch to the interrupt stack. 717 */ 718 debug_stack_usage_inc(); 719 720 /* It's safe to allow irq's after DR6 has been saved */ 721 cond_local_irq_enable(regs); 722 723 if (v8086_mode(regs)) { 724 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 725 X86_TRAP_DB); 726 cond_local_irq_disable(regs); 727 debug_stack_usage_dec(); 728 goto exit; 729 } 730 731 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 732 /* 733 * Historical junk that used to handle SYSENTER single-stepping. 734 * This should be unreachable now. If we survive for a while 735 * without anyone hitting this warning, we'll turn this into 736 * an oops. 737 */ 738 tsk->thread.debugreg6 &= ~DR_STEP; 739 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 740 regs->flags &= ~X86_EFLAGS_TF; 741 } 742 si_code = get_si_code(tsk->thread.debugreg6); 743 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 744 send_sigtrap(regs, error_code, si_code); 745 cond_local_irq_disable(regs); 746 debug_stack_usage_dec(); 747 748 exit: 749 nmi_exit(); 750 } 751 NOKPROBE_SYMBOL(do_debug); 752 753 /* 754 * Note that we play around with the 'TS' bit in an attempt to get 755 * the correct behaviour even in the presence of the asynchronous 756 * IRQ13 behaviour 757 */ 758 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 759 { 760 struct task_struct *task = current; 761 struct fpu *fpu = &task->thread.fpu; 762 int si_code; 763 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 764 "simd exception"; 765 766 cond_local_irq_enable(regs); 767 768 if (!user_mode(regs)) { 769 if (fixup_exception(regs, trapnr, error_code, 0)) 770 return; 771 772 task->thread.error_code = error_code; 773 task->thread.trap_nr = trapnr; 774 775 if (notify_die(DIE_TRAP, str, regs, error_code, 776 trapnr, SIGFPE) != NOTIFY_STOP) 777 die(str, regs, error_code); 778 return; 779 } 780 781 /* 782 * Save the info for the exception handler and clear the error. 783 */ 784 fpu__save(fpu); 785 786 task->thread.trap_nr = trapnr; 787 task->thread.error_code = error_code; 788 789 si_code = fpu__exception_code(fpu, trapnr); 790 /* Retry when we get spurious exceptions: */ 791 if (!si_code) 792 return; 793 794 force_sig_fault(SIGFPE, si_code, 795 (void __user *)uprobe_get_trap_addr(regs)); 796 } 797 798 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 799 { 800 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 801 math_error(regs, error_code, X86_TRAP_MF); 802 } 803 804 dotraplinkage void 805 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 806 { 807 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 808 math_error(regs, error_code, X86_TRAP_XF); 809 } 810 811 dotraplinkage void 812 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 813 { 814 /* 815 * This addresses a Pentium Pro Erratum: 816 * 817 * PROBLEM: If the APIC subsystem is configured in mixed mode with 818 * Virtual Wire mode implemented through the local APIC, an 819 * interrupt vector of 0Fh (Intel reserved encoding) may be 820 * generated by the local APIC (Int 15). This vector may be 821 * generated upon receipt of a spurious interrupt (an interrupt 822 * which is removed before the system receives the INTA sequence) 823 * instead of the programmed 8259 spurious interrupt vector. 824 * 825 * IMPLICATION: The spurious interrupt vector programmed in the 826 * 8259 is normally handled by an operating system's spurious 827 * interrupt handler. However, a vector of 0Fh is unknown to some 828 * operating systems, which would crash if this erratum occurred. 829 * 830 * In theory this could be limited to 32bit, but the handler is not 831 * hurting and who knows which other CPUs suffer from this. 832 */ 833 } 834 835 dotraplinkage void 836 do_device_not_available(struct pt_regs *regs, long error_code) 837 { 838 unsigned long cr0 = read_cr0(); 839 840 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 841 842 #ifdef CONFIG_MATH_EMULATION 843 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 844 struct math_emu_info info = { }; 845 846 cond_local_irq_enable(regs); 847 848 info.regs = regs; 849 math_emulate(&info); 850 return; 851 } 852 #endif 853 854 /* This should not happen. */ 855 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 856 /* Try to fix it up and carry on. */ 857 write_cr0(cr0 & ~X86_CR0_TS); 858 } else { 859 /* 860 * Something terrible happened, and we're better off trying 861 * to kill the task than getting stuck in a never-ending 862 * loop of #NM faults. 863 */ 864 die("unexpected #NM exception", regs, error_code); 865 } 866 } 867 NOKPROBE_SYMBOL(do_device_not_available); 868 869 #ifdef CONFIG_X86_32 870 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 871 { 872 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 873 local_irq_enable(); 874 875 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 876 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 877 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 878 ILL_BADSTK, (void __user *)NULL); 879 } 880 } 881 #endif 882 883 void __init trap_init(void) 884 { 885 /* Init cpu_entry_area before IST entries are set up */ 886 setup_cpu_entry_areas(); 887 888 idt_setup_traps(); 889 890 /* 891 * Set the IDT descriptor to a fixed read-only location, so that the 892 * "sidt" instruction will not leak the location of the kernel, and 893 * to defend the IDT against arbitrary memory write vulnerabilities. 894 * It will be reloaded in cpu_init() */ 895 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 896 PAGE_KERNEL_RO); 897 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 898 899 /* 900 * Should be a barrier for any external CPU state: 901 */ 902 cpu_init(); 903 904 idt_setup_ist_traps(); 905 906 idt_setup_debugidt_traps(); 907 } 908