xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 9ac17575)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/text-patching.h>
47 #include <asm/ftrace.h>
48 #include <asm/traps.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/internal.h>
51 #include <asm/cpu.h>
52 #include <asm/cpu_entry_area.h>
53 #include <asm/mce.h>
54 #include <asm/fixmap.h>
55 #include <asm/mach_traps.h>
56 #include <asm/alternative.h>
57 #include <asm/fpu/xstate.h>
58 #include <asm/vm86.h>
59 #include <asm/umip.h>
60 #include <asm/insn.h>
61 #include <asm/insn-eval.h>
62 
63 #ifdef CONFIG_X86_64
64 #include <asm/x86_init.h>
65 #include <asm/pgalloc.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
72 
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
74 
75 static inline void cond_local_irq_enable(struct pt_regs *regs)
76 {
77 	if (regs->flags & X86_EFLAGS_IF)
78 		local_irq_enable();
79 }
80 
81 static inline void cond_local_irq_disable(struct pt_regs *regs)
82 {
83 	if (regs->flags & X86_EFLAGS_IF)
84 		local_irq_disable();
85 }
86 
87 int is_valid_bugaddr(unsigned long addr)
88 {
89 	unsigned short ud;
90 
91 	if (addr < TASK_SIZE_MAX)
92 		return 0;
93 
94 	if (probe_kernel_address((unsigned short *)addr, ud))
95 		return 0;
96 
97 	return ud == INSN_UD0 || ud == INSN_UD2;
98 }
99 
100 int fixup_bug(struct pt_regs *regs, int trapnr)
101 {
102 	if (trapnr != X86_TRAP_UD)
103 		return 0;
104 
105 	switch (report_bug(regs->ip, regs)) {
106 	case BUG_TRAP_TYPE_NONE:
107 	case BUG_TRAP_TYPE_BUG:
108 		break;
109 
110 	case BUG_TRAP_TYPE_WARN:
111 		regs->ip += LEN_UD2;
112 		return 1;
113 	}
114 
115 	return 0;
116 }
117 
118 static nokprobe_inline int
119 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
120 		  struct pt_regs *regs,	long error_code)
121 {
122 	if (v8086_mode(regs)) {
123 		/*
124 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
125 		 * On nmi (interrupt 2), do_trap should not be called.
126 		 */
127 		if (trapnr < X86_TRAP_UD) {
128 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
129 						error_code, trapnr))
130 				return 0;
131 		}
132 	} else if (!user_mode(regs)) {
133 		if (fixup_exception(regs, trapnr, error_code, 0))
134 			return 0;
135 
136 		tsk->thread.error_code = error_code;
137 		tsk->thread.trap_nr = trapnr;
138 		die(str, regs, error_code);
139 	}
140 
141 	/*
142 	 * We want error_code and trap_nr set for userspace faults and
143 	 * kernelspace faults which result in die(), but not
144 	 * kernelspace faults which are fixed up.  die() gives the
145 	 * process no chance to handle the signal and notice the
146 	 * kernel fault information, so that won't result in polluting
147 	 * the information about previously queued, but not yet
148 	 * delivered, faults.  See also do_general_protection below.
149 	 */
150 	tsk->thread.error_code = error_code;
151 	tsk->thread.trap_nr = trapnr;
152 
153 	return -1;
154 }
155 
156 static void show_signal(struct task_struct *tsk, int signr,
157 			const char *type, const char *desc,
158 			struct pt_regs *regs, long error_code)
159 {
160 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
161 	    printk_ratelimit()) {
162 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
163 			tsk->comm, task_pid_nr(tsk), type, desc,
164 			regs->ip, regs->sp, error_code);
165 		print_vma_addr(KERN_CONT " in ", regs->ip);
166 		pr_cont("\n");
167 	}
168 }
169 
170 static void
171 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
172 	long error_code, int sicode, void __user *addr)
173 {
174 	struct task_struct *tsk = current;
175 
176 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
177 		return;
178 
179 	show_signal(tsk, signr, "trap ", str, regs, error_code);
180 
181 	if (!sicode)
182 		force_sig(signr);
183 	else
184 		force_sig_fault(signr, sicode, addr);
185 }
186 NOKPROBE_SYMBOL(do_trap);
187 
188 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
189 	unsigned long trapnr, int signr, int sicode, void __user *addr)
190 {
191 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
192 
193 	/*
194 	 * WARN*()s end up here; fix them up before we call the
195 	 * notifier chain.
196 	 */
197 	if (!user_mode(regs) && fixup_bug(regs, trapnr))
198 		return;
199 
200 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
201 			NOTIFY_STOP) {
202 		cond_local_irq_enable(regs);
203 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
204 	}
205 }
206 
207 #define IP ((void __user *)uprobe_get_trap_addr(regs))
208 #define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
209 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
210 {									   \
211 	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
212 }
213 
214 DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
215 DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
216 DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
217 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
218 DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
219 DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
220 DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
221 #undef IP
222 
223 dotraplinkage void do_alignment_check(struct pt_regs *regs, long error_code)
224 {
225 	char *str = "alignment check";
226 
227 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
228 
229 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
230 		return;
231 
232 	if (!user_mode(regs))
233 		die("Split lock detected\n", regs, error_code);
234 
235 	local_irq_enable();
236 
237 	if (handle_user_split_lock(regs, error_code))
238 		return;
239 
240 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
241 		error_code, BUS_ADRALN, NULL);
242 }
243 
244 #ifdef CONFIG_VMAP_STACK
245 __visible void __noreturn handle_stack_overflow(const char *message,
246 						struct pt_regs *regs,
247 						unsigned long fault_address)
248 {
249 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
250 		 (void *)fault_address, current->stack,
251 		 (char *)current->stack + THREAD_SIZE - 1);
252 	die(message, regs, 0);
253 
254 	/* Be absolutely certain we don't return. */
255 	panic("%s", message);
256 }
257 #endif
258 
259 /*
260  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
261  *
262  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
263  * SDM's warnings about double faults being unrecoverable, returning works as
264  * expected.  Presumably what the SDM actually means is that the CPU may get
265  * the register state wrong on entry, so returning could be a bad idea.
266  *
267  * Various CPU engineers have promised that double faults due to an IRET fault
268  * while the stack is read-only are, in fact, recoverable.
269  *
270  * On x86_32, this is entered through a task gate, and regs are synthesized
271  * from the TSS.  Returning is, in principle, okay, but changes to regs will
272  * be lost.  If, for some reason, we need to return to a context with modified
273  * regs, the shim code could be adjusted to synchronize the registers.
274  */
275 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
276 {
277 	static const char str[] = "double fault";
278 	struct task_struct *tsk = current;
279 
280 #ifdef CONFIG_X86_ESPFIX64
281 	extern unsigned char native_irq_return_iret[];
282 
283 	/*
284 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
285 	 * end up promoting it to a doublefault.  In that case, take
286 	 * advantage of the fact that we're not using the normal (TSS.sp0)
287 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
288 	 * and then modify our own IRET frame so that, when we return,
289 	 * we land directly at the #GP(0) vector with the stack already
290 	 * set up according to its expectations.
291 	 *
292 	 * The net result is that our #GP handler will think that we
293 	 * entered from usermode with the bad user context.
294 	 *
295 	 * No need for nmi_enter() here because we don't use RCU.
296 	 */
297 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
298 		regs->cs == __KERNEL_CS &&
299 		regs->ip == (unsigned long)native_irq_return_iret)
300 	{
301 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
302 
303 		/*
304 		 * regs->sp points to the failing IRET frame on the
305 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
306 		 * in gpregs->ss through gpregs->ip.
307 		 *
308 		 */
309 		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
310 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
311 
312 		/*
313 		 * Adjust our frame so that we return straight to the #GP
314 		 * vector with the expected RSP value.  This is safe because
315 		 * we won't enable interupts or schedule before we invoke
316 		 * general_protection, so nothing will clobber the stack
317 		 * frame we just set up.
318 		 *
319 		 * We will enter general_protection with kernel GSBASE,
320 		 * which is what the stub expects, given that the faulting
321 		 * RIP will be the IRET instruction.
322 		 */
323 		regs->ip = (unsigned long)general_protection;
324 		regs->sp = (unsigned long)&gpregs->orig_ax;
325 
326 		return;
327 	}
328 #endif
329 
330 	nmi_enter();
331 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
332 
333 	tsk->thread.error_code = error_code;
334 	tsk->thread.trap_nr = X86_TRAP_DF;
335 
336 #ifdef CONFIG_VMAP_STACK
337 	/*
338 	 * If we overflow the stack into a guard page, the CPU will fail
339 	 * to deliver #PF and will send #DF instead.  Similarly, if we
340 	 * take any non-IST exception while too close to the bottom of
341 	 * the stack, the processor will get a page fault while
342 	 * delivering the exception and will generate a double fault.
343 	 *
344 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
345 	 * Page-Fault Exception (#PF):
346 	 *
347 	 *   Processors update CR2 whenever a page fault is detected. If a
348 	 *   second page fault occurs while an earlier page fault is being
349 	 *   delivered, the faulting linear address of the second fault will
350 	 *   overwrite the contents of CR2 (replacing the previous
351 	 *   address). These updates to CR2 occur even if the page fault
352 	 *   results in a double fault or occurs during the delivery of a
353 	 *   double fault.
354 	 *
355 	 * The logic below has a small possibility of incorrectly diagnosing
356 	 * some errors as stack overflows.  For example, if the IDT or GDT
357 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
358 	 * causing #GP and we hit this condition while CR2 coincidentally
359 	 * points to the stack guard page, we'll think we overflowed the
360 	 * stack.  Given that we're going to panic one way or another
361 	 * if this happens, this isn't necessarily worth fixing.
362 	 *
363 	 * If necessary, we could improve the test by only diagnosing
364 	 * a stack overflow if the saved RSP points within 47 bytes of
365 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
366 	 * take an exception, the stack is already aligned and there
367 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
368 	 * possible error code, so a stack overflow would *not* double
369 	 * fault.  With any less space left, exception delivery could
370 	 * fail, and, as a practical matter, we've overflowed the
371 	 * stack even if the actual trigger for the double fault was
372 	 * something else.
373 	 */
374 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
375 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
376 #endif
377 
378 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
379 	die("double fault", regs, error_code);
380 	panic("Machine halted.");
381 }
382 
383 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
384 {
385 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
386 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
387 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
388 		return;
389 	cond_local_irq_enable(regs);
390 
391 	if (!user_mode(regs))
392 		die("bounds", regs, error_code);
393 
394 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
395 }
396 
397 enum kernel_gp_hint {
398 	GP_NO_HINT,
399 	GP_NON_CANONICAL,
400 	GP_CANONICAL
401 };
402 
403 /*
404  * When an uncaught #GP occurs, try to determine the memory address accessed by
405  * the instruction and return that address to the caller. Also, try to figure
406  * out whether any part of the access to that address was non-canonical.
407  */
408 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
409 						 unsigned long *addr)
410 {
411 	u8 insn_buf[MAX_INSN_SIZE];
412 	struct insn insn;
413 
414 	if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
415 		return GP_NO_HINT;
416 
417 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
418 	insn_get_modrm(&insn);
419 	insn_get_sib(&insn);
420 
421 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
422 	if (*addr == -1UL)
423 		return GP_NO_HINT;
424 
425 #ifdef CONFIG_X86_64
426 	/*
427 	 * Check that:
428 	 *  - the operand is not in the kernel half
429 	 *  - the last byte of the operand is not in the user canonical half
430 	 */
431 	if (*addr < ~__VIRTUAL_MASK &&
432 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
433 		return GP_NON_CANONICAL;
434 #endif
435 
436 	return GP_CANONICAL;
437 }
438 
439 #define GPFSTR "general protection fault"
440 
441 dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code)
442 {
443 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
444 	enum kernel_gp_hint hint = GP_NO_HINT;
445 	struct task_struct *tsk;
446 	unsigned long gp_addr;
447 	int ret;
448 
449 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
450 	cond_local_irq_enable(regs);
451 
452 	if (static_cpu_has(X86_FEATURE_UMIP)) {
453 		if (user_mode(regs) && fixup_umip_exception(regs))
454 			return;
455 	}
456 
457 	if (v8086_mode(regs)) {
458 		local_irq_enable();
459 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
460 		return;
461 	}
462 
463 	tsk = current;
464 
465 	if (user_mode(regs)) {
466 		tsk->thread.error_code = error_code;
467 		tsk->thread.trap_nr = X86_TRAP_GP;
468 
469 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
470 		force_sig(SIGSEGV);
471 
472 		return;
473 	}
474 
475 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
476 		return;
477 
478 	tsk->thread.error_code = error_code;
479 	tsk->thread.trap_nr = X86_TRAP_GP;
480 
481 	/*
482 	 * To be potentially processing a kprobe fault and to trust the result
483 	 * from kprobe_running(), we have to be non-preemptible.
484 	 */
485 	if (!preemptible() &&
486 	    kprobe_running() &&
487 	    kprobe_fault_handler(regs, X86_TRAP_GP))
488 		return;
489 
490 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
491 	if (ret == NOTIFY_STOP)
492 		return;
493 
494 	if (error_code)
495 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
496 	else
497 		hint = get_kernel_gp_address(regs, &gp_addr);
498 
499 	if (hint != GP_NO_HINT)
500 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
501 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
502 						    : "maybe for address",
503 			 gp_addr);
504 
505 	/*
506 	 * KASAN is interested only in the non-canonical case, clear it
507 	 * otherwise.
508 	 */
509 	if (hint != GP_NON_CANONICAL)
510 		gp_addr = 0;
511 
512 	die_addr(desc, regs, error_code, gp_addr);
513 
514 }
515 NOKPROBE_SYMBOL(do_general_protection);
516 
517 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
518 {
519 	if (poke_int3_handler(regs))
520 		return;
521 
522 	/*
523 	 * Unlike any other non-IST entry, we can be called from pretty much
524 	 * any location in the kernel through kprobes -- text_poke() will most
525 	 * likely be handled by poke_int3_handler() above. This means this
526 	 * handler is effectively NMI-like.
527 	 */
528 	if (!user_mode(regs))
529 		nmi_enter();
530 
531 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
532 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
533 				SIGTRAP) == NOTIFY_STOP)
534 		goto exit;
535 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
536 
537 #ifdef CONFIG_KPROBES
538 	if (kprobe_int3_handler(regs))
539 		goto exit;
540 #endif
541 
542 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
543 			SIGTRAP) == NOTIFY_STOP)
544 		goto exit;
545 
546 	cond_local_irq_enable(regs);
547 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
548 	cond_local_irq_disable(regs);
549 
550 exit:
551 	if (!user_mode(regs))
552 		nmi_exit();
553 }
554 NOKPROBE_SYMBOL(do_int3);
555 
556 #ifdef CONFIG_X86_64
557 /*
558  * Help handler running on a per-cpu (IST or entry trampoline) stack
559  * to switch to the normal thread stack if the interrupted code was in
560  * user mode. The actual stack switch is done in entry_64.S
561  */
562 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
563 {
564 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
565 	if (regs != eregs)
566 		*regs = *eregs;
567 	return regs;
568 }
569 NOKPROBE_SYMBOL(sync_regs);
570 
571 struct bad_iret_stack {
572 	void *error_entry_ret;
573 	struct pt_regs regs;
574 };
575 
576 asmlinkage __visible notrace
577 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
578 {
579 	/*
580 	 * This is called from entry_64.S early in handling a fault
581 	 * caused by a bad iret to user mode.  To handle the fault
582 	 * correctly, we want to move our stack frame to where it would
583 	 * be had we entered directly on the entry stack (rather than
584 	 * just below the IRET frame) and we want to pretend that the
585 	 * exception came from the IRET target.
586 	 */
587 	struct bad_iret_stack *new_stack =
588 		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
589 
590 	/* Copy the IRET target to the new stack. */
591 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
592 
593 	/* Copy the remainder of the stack from the current stack. */
594 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
595 
596 	BUG_ON(!user_mode(&new_stack->regs));
597 	return new_stack;
598 }
599 NOKPROBE_SYMBOL(fixup_bad_iret);
600 #endif
601 
602 static bool is_sysenter_singlestep(struct pt_regs *regs)
603 {
604 	/*
605 	 * We don't try for precision here.  If we're anywhere in the region of
606 	 * code that can be single-stepped in the SYSENTER entry path, then
607 	 * assume that this is a useless single-step trap due to SYSENTER
608 	 * being invoked with TF set.  (We don't know in advance exactly
609 	 * which instructions will be hit because BTF could plausibly
610 	 * be set.)
611 	 */
612 #ifdef CONFIG_X86_32
613 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
614 		(unsigned long)__end_SYSENTER_singlestep_region -
615 		(unsigned long)__begin_SYSENTER_singlestep_region;
616 #elif defined(CONFIG_IA32_EMULATION)
617 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
618 		(unsigned long)__end_entry_SYSENTER_compat -
619 		(unsigned long)entry_SYSENTER_compat;
620 #else
621 	return false;
622 #endif
623 }
624 
625 /*
626  * Our handling of the processor debug registers is non-trivial.
627  * We do not clear them on entry and exit from the kernel. Therefore
628  * it is possible to get a watchpoint trap here from inside the kernel.
629  * However, the code in ./ptrace.c has ensured that the user can
630  * only set watchpoints on userspace addresses. Therefore the in-kernel
631  * watchpoint trap can only occur in code which is reading/writing
632  * from user space. Such code must not hold kernel locks (since it
633  * can equally take a page fault), therefore it is safe to call
634  * force_sig_info even though that claims and releases locks.
635  *
636  * Code in ./signal.c ensures that the debug control register
637  * is restored before we deliver any signal, and therefore that
638  * user code runs with the correct debug control register even though
639  * we clear it here.
640  *
641  * Being careful here means that we don't have to be as careful in a
642  * lot of more complicated places (task switching can be a bit lazy
643  * about restoring all the debug state, and ptrace doesn't have to
644  * find every occurrence of the TF bit that could be saved away even
645  * by user code)
646  *
647  * May run on IST stack.
648  */
649 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
650 {
651 	struct task_struct *tsk = current;
652 	int user_icebp = 0;
653 	unsigned long dr6;
654 	int si_code;
655 
656 	nmi_enter();
657 
658 	get_debugreg(dr6, 6);
659 	/*
660 	 * The Intel SDM says:
661 	 *
662 	 *   Certain debug exceptions may clear bits 0-3. The remaining
663 	 *   contents of the DR6 register are never cleared by the
664 	 *   processor. To avoid confusion in identifying debug
665 	 *   exceptions, debug handlers should clear the register before
666 	 *   returning to the interrupted task.
667 	 *
668 	 * Keep it simple: clear DR6 immediately.
669 	 */
670 	set_debugreg(0, 6);
671 
672 	/* Filter out all the reserved bits which are preset to 1 */
673 	dr6 &= ~DR6_RESERVED;
674 
675 	/*
676 	 * The SDM says "The processor clears the BTF flag when it
677 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
678 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
679 	 */
680 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
681 
682 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
683 		     is_sysenter_singlestep(regs))) {
684 		dr6 &= ~DR_STEP;
685 		if (!dr6)
686 			goto exit;
687 		/*
688 		 * else we might have gotten a single-step trap and hit a
689 		 * watchpoint at the same time, in which case we should fall
690 		 * through and handle the watchpoint.
691 		 */
692 	}
693 
694 	/*
695 	 * If dr6 has no reason to give us about the origin of this trap,
696 	 * then it's very likely the result of an icebp/int01 trap.
697 	 * User wants a sigtrap for that.
698 	 */
699 	if (!dr6 && user_mode(regs))
700 		user_icebp = 1;
701 
702 	/* Store the virtualized DR6 value */
703 	tsk->thread.debugreg6 = dr6;
704 
705 #ifdef CONFIG_KPROBES
706 	if (kprobe_debug_handler(regs))
707 		goto exit;
708 #endif
709 
710 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
711 							SIGTRAP) == NOTIFY_STOP)
712 		goto exit;
713 
714 	/*
715 	 * Let others (NMI) know that the debug stack is in use
716 	 * as we may switch to the interrupt stack.
717 	 */
718 	debug_stack_usage_inc();
719 
720 	/* It's safe to allow irq's after DR6 has been saved */
721 	cond_local_irq_enable(regs);
722 
723 	if (v8086_mode(regs)) {
724 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
725 					X86_TRAP_DB);
726 		cond_local_irq_disable(regs);
727 		debug_stack_usage_dec();
728 		goto exit;
729 	}
730 
731 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
732 		/*
733 		 * Historical junk that used to handle SYSENTER single-stepping.
734 		 * This should be unreachable now.  If we survive for a while
735 		 * without anyone hitting this warning, we'll turn this into
736 		 * an oops.
737 		 */
738 		tsk->thread.debugreg6 &= ~DR_STEP;
739 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
740 		regs->flags &= ~X86_EFLAGS_TF;
741 	}
742 	si_code = get_si_code(tsk->thread.debugreg6);
743 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
744 		send_sigtrap(regs, error_code, si_code);
745 	cond_local_irq_disable(regs);
746 	debug_stack_usage_dec();
747 
748 exit:
749 	nmi_exit();
750 }
751 NOKPROBE_SYMBOL(do_debug);
752 
753 /*
754  * Note that we play around with the 'TS' bit in an attempt to get
755  * the correct behaviour even in the presence of the asynchronous
756  * IRQ13 behaviour
757  */
758 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
759 {
760 	struct task_struct *task = current;
761 	struct fpu *fpu = &task->thread.fpu;
762 	int si_code;
763 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
764 						"simd exception";
765 
766 	cond_local_irq_enable(regs);
767 
768 	if (!user_mode(regs)) {
769 		if (fixup_exception(regs, trapnr, error_code, 0))
770 			return;
771 
772 		task->thread.error_code = error_code;
773 		task->thread.trap_nr = trapnr;
774 
775 		if (notify_die(DIE_TRAP, str, regs, error_code,
776 					trapnr, SIGFPE) != NOTIFY_STOP)
777 			die(str, regs, error_code);
778 		return;
779 	}
780 
781 	/*
782 	 * Save the info for the exception handler and clear the error.
783 	 */
784 	fpu__save(fpu);
785 
786 	task->thread.trap_nr	= trapnr;
787 	task->thread.error_code = error_code;
788 
789 	si_code = fpu__exception_code(fpu, trapnr);
790 	/* Retry when we get spurious exceptions: */
791 	if (!si_code)
792 		return;
793 
794 	force_sig_fault(SIGFPE, si_code,
795 			(void __user *)uprobe_get_trap_addr(regs));
796 }
797 
798 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
799 {
800 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
801 	math_error(regs, error_code, X86_TRAP_MF);
802 }
803 
804 dotraplinkage void
805 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
806 {
807 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
808 	math_error(regs, error_code, X86_TRAP_XF);
809 }
810 
811 dotraplinkage void
812 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
813 {
814 	/*
815 	 * This addresses a Pentium Pro Erratum:
816 	 *
817 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
818 	 * Virtual Wire mode implemented through the local APIC, an
819 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
820 	 * generated by the local APIC (Int 15).  This vector may be
821 	 * generated upon receipt of a spurious interrupt (an interrupt
822 	 * which is removed before the system receives the INTA sequence)
823 	 * instead of the programmed 8259 spurious interrupt vector.
824 	 *
825 	 * IMPLICATION: The spurious interrupt vector programmed in the
826 	 * 8259 is normally handled by an operating system's spurious
827 	 * interrupt handler. However, a vector of 0Fh is unknown to some
828 	 * operating systems, which would crash if this erratum occurred.
829 	 *
830 	 * In theory this could be limited to 32bit, but the handler is not
831 	 * hurting and who knows which other CPUs suffer from this.
832 	 */
833 }
834 
835 dotraplinkage void
836 do_device_not_available(struct pt_regs *regs, long error_code)
837 {
838 	unsigned long cr0 = read_cr0();
839 
840 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
841 
842 #ifdef CONFIG_MATH_EMULATION
843 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
844 		struct math_emu_info info = { };
845 
846 		cond_local_irq_enable(regs);
847 
848 		info.regs = regs;
849 		math_emulate(&info);
850 		return;
851 	}
852 #endif
853 
854 	/* This should not happen. */
855 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
856 		/* Try to fix it up and carry on. */
857 		write_cr0(cr0 & ~X86_CR0_TS);
858 	} else {
859 		/*
860 		 * Something terrible happened, and we're better off trying
861 		 * to kill the task than getting stuck in a never-ending
862 		 * loop of #NM faults.
863 		 */
864 		die("unexpected #NM exception", regs, error_code);
865 	}
866 }
867 NOKPROBE_SYMBOL(do_device_not_available);
868 
869 #ifdef CONFIG_X86_32
870 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
871 {
872 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
873 	local_irq_enable();
874 
875 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
876 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
877 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
878 			ILL_BADSTK, (void __user *)NULL);
879 	}
880 }
881 #endif
882 
883 void __init trap_init(void)
884 {
885 	/* Init cpu_entry_area before IST entries are set up */
886 	setup_cpu_entry_areas();
887 
888 	idt_setup_traps();
889 
890 	/*
891 	 * Set the IDT descriptor to a fixed read-only location, so that the
892 	 * "sidt" instruction will not leak the location of the kernel, and
893 	 * to defend the IDT against arbitrary memory write vulnerabilities.
894 	 * It will be reloaded in cpu_init() */
895 	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
896 		    PAGE_KERNEL_RO);
897 	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
898 
899 	/*
900 	 * Should be a barrier for any external CPU state:
901 	 */
902 	cpu_init();
903 
904 	idt_setup_ist_traps();
905 
906 	idt_setup_debugidt_traps();
907 }
908