xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 852a53a0)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/text-patching.h>
47 #include <asm/ftrace.h>
48 #include <asm/traps.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/internal.h>
51 #include <asm/cpu.h>
52 #include <asm/cpu_entry_area.h>
53 #include <asm/mce.h>
54 #include <asm/fixmap.h>
55 #include <asm/mach_traps.h>
56 #include <asm/alternative.h>
57 #include <asm/fpu/xstate.h>
58 #include <asm/vm86.h>
59 #include <asm/umip.h>
60 #include <asm/insn.h>
61 #include <asm/insn-eval.h>
62 
63 #ifdef CONFIG_X86_64
64 #include <asm/x86_init.h>
65 #include <asm/proto.h>
66 #else
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
69 #include <asm/proto.h>
70 #endif
71 
72 DECLARE_BITMAP(system_vectors, NR_VECTORS);
73 
74 static inline void cond_local_irq_enable(struct pt_regs *regs)
75 {
76 	if (regs->flags & X86_EFLAGS_IF)
77 		local_irq_enable();
78 }
79 
80 static inline void cond_local_irq_disable(struct pt_regs *regs)
81 {
82 	if (regs->flags & X86_EFLAGS_IF)
83 		local_irq_disable();
84 }
85 
86 __always_inline int is_valid_bugaddr(unsigned long addr)
87 {
88 	if (addr < TASK_SIZE_MAX)
89 		return 0;
90 
91 	/*
92 	 * We got #UD, if the text isn't readable we'd have gotten
93 	 * a different exception.
94 	 */
95 	return *(unsigned short *)addr == INSN_UD2;
96 }
97 
98 static nokprobe_inline int
99 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
100 		  struct pt_regs *regs,	long error_code)
101 {
102 	if (v8086_mode(regs)) {
103 		/*
104 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
105 		 * On nmi (interrupt 2), do_trap should not be called.
106 		 */
107 		if (trapnr < X86_TRAP_UD) {
108 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
109 						error_code, trapnr))
110 				return 0;
111 		}
112 	} else if (!user_mode(regs)) {
113 		if (fixup_exception(regs, trapnr, error_code, 0))
114 			return 0;
115 
116 		tsk->thread.error_code = error_code;
117 		tsk->thread.trap_nr = trapnr;
118 		die(str, regs, error_code);
119 	}
120 
121 	/*
122 	 * We want error_code and trap_nr set for userspace faults and
123 	 * kernelspace faults which result in die(), but not
124 	 * kernelspace faults which are fixed up.  die() gives the
125 	 * process no chance to handle the signal and notice the
126 	 * kernel fault information, so that won't result in polluting
127 	 * the information about previously queued, but not yet
128 	 * delivered, faults.  See also exc_general_protection below.
129 	 */
130 	tsk->thread.error_code = error_code;
131 	tsk->thread.trap_nr = trapnr;
132 
133 	return -1;
134 }
135 
136 static void show_signal(struct task_struct *tsk, int signr,
137 			const char *type, const char *desc,
138 			struct pt_regs *regs, long error_code)
139 {
140 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
141 	    printk_ratelimit()) {
142 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
143 			tsk->comm, task_pid_nr(tsk), type, desc,
144 			regs->ip, regs->sp, error_code);
145 		print_vma_addr(KERN_CONT " in ", regs->ip);
146 		pr_cont("\n");
147 	}
148 }
149 
150 static void
151 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
152 	long error_code, int sicode, void __user *addr)
153 {
154 	struct task_struct *tsk = current;
155 
156 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
157 		return;
158 
159 	show_signal(tsk, signr, "trap ", str, regs, error_code);
160 
161 	if (!sicode)
162 		force_sig(signr);
163 	else
164 		force_sig_fault(signr, sicode, addr);
165 }
166 NOKPROBE_SYMBOL(do_trap);
167 
168 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
169 	unsigned long trapnr, int signr, int sicode, void __user *addr)
170 {
171 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
172 
173 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
174 			NOTIFY_STOP) {
175 		cond_local_irq_enable(regs);
176 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
177 		cond_local_irq_disable(regs);
178 	}
179 }
180 
181 /*
182  * Posix requires to provide the address of the faulting instruction for
183  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
184  *
185  * This address is usually regs->ip, but when an uprobe moved the code out
186  * of line then regs->ip points to the XOL code which would confuse
187  * anything which analyzes the fault address vs. the unmodified binary. If
188  * a trap happened in XOL code then uprobe maps regs->ip back to the
189  * original instruction address.
190  */
191 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
192 {
193 	return (void __user *)uprobe_get_trap_addr(regs);
194 }
195 
196 DEFINE_IDTENTRY(exc_divide_error)
197 {
198 	do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
199 		      FPE_INTDIV, error_get_trap_addr(regs));
200 }
201 
202 DEFINE_IDTENTRY(exc_overflow)
203 {
204 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
205 }
206 
207 #ifdef CONFIG_X86_F00F_BUG
208 void handle_invalid_op(struct pt_regs *regs)
209 #else
210 static inline void handle_invalid_op(struct pt_regs *regs)
211 #endif
212 {
213 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
214 		      ILL_ILLOPN, error_get_trap_addr(regs));
215 }
216 
217 static noinstr bool handle_bug(struct pt_regs *regs)
218 {
219 	bool handled = false;
220 
221 	if (!is_valid_bugaddr(regs->ip))
222 		return handled;
223 
224 	/*
225 	 * All lies, just get the WARN/BUG out.
226 	 */
227 	instrumentation_begin();
228 	/*
229 	 * Since we're emulating a CALL with exceptions, restore the interrupt
230 	 * state to what it was at the exception site.
231 	 */
232 	if (regs->flags & X86_EFLAGS_IF)
233 		raw_local_irq_enable();
234 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
235 		regs->ip += LEN_UD2;
236 		handled = true;
237 	}
238 	if (regs->flags & X86_EFLAGS_IF)
239 		raw_local_irq_disable();
240 	instrumentation_end();
241 
242 	return handled;
243 }
244 
245 DEFINE_IDTENTRY_RAW(exc_invalid_op)
246 {
247 	irqentry_state_t state;
248 
249 	/*
250 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
251 	 * handle it before exception entry to avoid recursive WARN
252 	 * in case exception entry is the one triggering WARNs.
253 	 */
254 	if (!user_mode(regs) && handle_bug(regs))
255 		return;
256 
257 	state = irqentry_enter(regs);
258 	instrumentation_begin();
259 	handle_invalid_op(regs);
260 	instrumentation_end();
261 	irqentry_exit(regs, state);
262 }
263 
264 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
265 {
266 	do_error_trap(regs, 0, "coprocessor segment overrun",
267 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
268 }
269 
270 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
271 {
272 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
273 		      0, NULL);
274 }
275 
276 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
277 {
278 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
279 		      SIGBUS, 0, NULL);
280 }
281 
282 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
283 {
284 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
285 		      0, NULL);
286 }
287 
288 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
289 {
290 	char *str = "alignment check";
291 
292 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
293 		return;
294 
295 	if (!user_mode(regs))
296 		die("Split lock detected\n", regs, error_code);
297 
298 	local_irq_enable();
299 
300 	if (handle_user_split_lock(regs, error_code))
301 		return;
302 
303 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
304 		error_code, BUS_ADRALN, NULL);
305 
306 	local_irq_disable();
307 }
308 
309 #ifdef CONFIG_VMAP_STACK
310 __visible void __noreturn handle_stack_overflow(const char *message,
311 						struct pt_regs *regs,
312 						unsigned long fault_address)
313 {
314 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
315 		 (void *)fault_address, current->stack,
316 		 (char *)current->stack + THREAD_SIZE - 1);
317 	die(message, regs, 0);
318 
319 	/* Be absolutely certain we don't return. */
320 	panic("%s", message);
321 }
322 #endif
323 
324 /*
325  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
326  *
327  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
328  * SDM's warnings about double faults being unrecoverable, returning works as
329  * expected.  Presumably what the SDM actually means is that the CPU may get
330  * the register state wrong on entry, so returning could be a bad idea.
331  *
332  * Various CPU engineers have promised that double faults due to an IRET fault
333  * while the stack is read-only are, in fact, recoverable.
334  *
335  * On x86_32, this is entered through a task gate, and regs are synthesized
336  * from the TSS.  Returning is, in principle, okay, but changes to regs will
337  * be lost.  If, for some reason, we need to return to a context with modified
338  * regs, the shim code could be adjusted to synchronize the registers.
339  *
340  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
341  * to be read before doing anything else.
342  */
343 DEFINE_IDTENTRY_DF(exc_double_fault)
344 {
345 	static const char str[] = "double fault";
346 	struct task_struct *tsk = current;
347 
348 #ifdef CONFIG_VMAP_STACK
349 	unsigned long address = read_cr2();
350 #endif
351 
352 #ifdef CONFIG_X86_ESPFIX64
353 	extern unsigned char native_irq_return_iret[];
354 
355 	/*
356 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
357 	 * end up promoting it to a doublefault.  In that case, take
358 	 * advantage of the fact that we're not using the normal (TSS.sp0)
359 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
360 	 * and then modify our own IRET frame so that, when we return,
361 	 * we land directly at the #GP(0) vector with the stack already
362 	 * set up according to its expectations.
363 	 *
364 	 * The net result is that our #GP handler will think that we
365 	 * entered from usermode with the bad user context.
366 	 *
367 	 * No need for nmi_enter() here because we don't use RCU.
368 	 */
369 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
370 		regs->cs == __KERNEL_CS &&
371 		regs->ip == (unsigned long)native_irq_return_iret)
372 	{
373 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
374 		unsigned long *p = (unsigned long *)regs->sp;
375 
376 		/*
377 		 * regs->sp points to the failing IRET frame on the
378 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
379 		 * in gpregs->ss through gpregs->ip.
380 		 *
381 		 */
382 		gpregs->ip	= p[0];
383 		gpregs->cs	= p[1];
384 		gpregs->flags	= p[2];
385 		gpregs->sp	= p[3];
386 		gpregs->ss	= p[4];
387 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
388 
389 		/*
390 		 * Adjust our frame so that we return straight to the #GP
391 		 * vector with the expected RSP value.  This is safe because
392 		 * we won't enable interupts or schedule before we invoke
393 		 * general_protection, so nothing will clobber the stack
394 		 * frame we just set up.
395 		 *
396 		 * We will enter general_protection with kernel GSBASE,
397 		 * which is what the stub expects, given that the faulting
398 		 * RIP will be the IRET instruction.
399 		 */
400 		regs->ip = (unsigned long)asm_exc_general_protection;
401 		regs->sp = (unsigned long)&gpregs->orig_ax;
402 
403 		return;
404 	}
405 #endif
406 
407 	idtentry_enter_nmi(regs);
408 	instrumentation_begin();
409 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
410 
411 	tsk->thread.error_code = error_code;
412 	tsk->thread.trap_nr = X86_TRAP_DF;
413 
414 #ifdef CONFIG_VMAP_STACK
415 	/*
416 	 * If we overflow the stack into a guard page, the CPU will fail
417 	 * to deliver #PF and will send #DF instead.  Similarly, if we
418 	 * take any non-IST exception while too close to the bottom of
419 	 * the stack, the processor will get a page fault while
420 	 * delivering the exception and will generate a double fault.
421 	 *
422 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
423 	 * Page-Fault Exception (#PF):
424 	 *
425 	 *   Processors update CR2 whenever a page fault is detected. If a
426 	 *   second page fault occurs while an earlier page fault is being
427 	 *   delivered, the faulting linear address of the second fault will
428 	 *   overwrite the contents of CR2 (replacing the previous
429 	 *   address). These updates to CR2 occur even if the page fault
430 	 *   results in a double fault or occurs during the delivery of a
431 	 *   double fault.
432 	 *
433 	 * The logic below has a small possibility of incorrectly diagnosing
434 	 * some errors as stack overflows.  For example, if the IDT or GDT
435 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
436 	 * causing #GP and we hit this condition while CR2 coincidentally
437 	 * points to the stack guard page, we'll think we overflowed the
438 	 * stack.  Given that we're going to panic one way or another
439 	 * if this happens, this isn't necessarily worth fixing.
440 	 *
441 	 * If necessary, we could improve the test by only diagnosing
442 	 * a stack overflow if the saved RSP points within 47 bytes of
443 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
444 	 * take an exception, the stack is already aligned and there
445 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
446 	 * possible error code, so a stack overflow would *not* double
447 	 * fault.  With any less space left, exception delivery could
448 	 * fail, and, as a practical matter, we've overflowed the
449 	 * stack even if the actual trigger for the double fault was
450 	 * something else.
451 	 */
452 	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
453 		handle_stack_overflow("kernel stack overflow (double-fault)",
454 				      regs, address);
455 	}
456 #endif
457 
458 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
459 	die("double fault", regs, error_code);
460 	panic("Machine halted.");
461 	instrumentation_end();
462 }
463 
464 DEFINE_IDTENTRY(exc_bounds)
465 {
466 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
467 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
468 		return;
469 	cond_local_irq_enable(regs);
470 
471 	if (!user_mode(regs))
472 		die("bounds", regs, 0);
473 
474 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
475 
476 	cond_local_irq_disable(regs);
477 }
478 
479 enum kernel_gp_hint {
480 	GP_NO_HINT,
481 	GP_NON_CANONICAL,
482 	GP_CANONICAL
483 };
484 
485 /*
486  * When an uncaught #GP occurs, try to determine the memory address accessed by
487  * the instruction and return that address to the caller. Also, try to figure
488  * out whether any part of the access to that address was non-canonical.
489  */
490 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
491 						 unsigned long *addr)
492 {
493 	u8 insn_buf[MAX_INSN_SIZE];
494 	struct insn insn;
495 
496 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
497 			MAX_INSN_SIZE))
498 		return GP_NO_HINT;
499 
500 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
501 	insn_get_modrm(&insn);
502 	insn_get_sib(&insn);
503 
504 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
505 	if (*addr == -1UL)
506 		return GP_NO_HINT;
507 
508 #ifdef CONFIG_X86_64
509 	/*
510 	 * Check that:
511 	 *  - the operand is not in the kernel half
512 	 *  - the last byte of the operand is not in the user canonical half
513 	 */
514 	if (*addr < ~__VIRTUAL_MASK &&
515 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
516 		return GP_NON_CANONICAL;
517 #endif
518 
519 	return GP_CANONICAL;
520 }
521 
522 #define GPFSTR "general protection fault"
523 
524 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
525 {
526 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
527 	enum kernel_gp_hint hint = GP_NO_HINT;
528 	struct task_struct *tsk;
529 	unsigned long gp_addr;
530 	int ret;
531 
532 	cond_local_irq_enable(regs);
533 
534 	if (static_cpu_has(X86_FEATURE_UMIP)) {
535 		if (user_mode(regs) && fixup_umip_exception(regs))
536 			goto exit;
537 	}
538 
539 	if (v8086_mode(regs)) {
540 		local_irq_enable();
541 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
542 		local_irq_disable();
543 		return;
544 	}
545 
546 	tsk = current;
547 
548 	if (user_mode(regs)) {
549 		tsk->thread.error_code = error_code;
550 		tsk->thread.trap_nr = X86_TRAP_GP;
551 
552 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
553 		force_sig(SIGSEGV);
554 		goto exit;
555 	}
556 
557 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
558 		goto exit;
559 
560 	tsk->thread.error_code = error_code;
561 	tsk->thread.trap_nr = X86_TRAP_GP;
562 
563 	/*
564 	 * To be potentially processing a kprobe fault and to trust the result
565 	 * from kprobe_running(), we have to be non-preemptible.
566 	 */
567 	if (!preemptible() &&
568 	    kprobe_running() &&
569 	    kprobe_fault_handler(regs, X86_TRAP_GP))
570 		goto exit;
571 
572 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
573 	if (ret == NOTIFY_STOP)
574 		goto exit;
575 
576 	if (error_code)
577 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
578 	else
579 		hint = get_kernel_gp_address(regs, &gp_addr);
580 
581 	if (hint != GP_NO_HINT)
582 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
583 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
584 						    : "maybe for address",
585 			 gp_addr);
586 
587 	/*
588 	 * KASAN is interested only in the non-canonical case, clear it
589 	 * otherwise.
590 	 */
591 	if (hint != GP_NON_CANONICAL)
592 		gp_addr = 0;
593 
594 	die_addr(desc, regs, error_code, gp_addr);
595 
596 exit:
597 	cond_local_irq_disable(regs);
598 }
599 
600 static bool do_int3(struct pt_regs *regs)
601 {
602 	int res;
603 
604 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
605 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
606 			 SIGTRAP) == NOTIFY_STOP)
607 		return true;
608 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
609 
610 #ifdef CONFIG_KPROBES
611 	if (kprobe_int3_handler(regs))
612 		return true;
613 #endif
614 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
615 
616 	return res == NOTIFY_STOP;
617 }
618 
619 static void do_int3_user(struct pt_regs *regs)
620 {
621 	if (do_int3(regs))
622 		return;
623 
624 	cond_local_irq_enable(regs);
625 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
626 	cond_local_irq_disable(regs);
627 }
628 
629 DEFINE_IDTENTRY_RAW(exc_int3)
630 {
631 	/*
632 	 * poke_int3_handler() is completely self contained code; it does (and
633 	 * must) *NOT* call out to anything, lest it hits upon yet another
634 	 * INT3.
635 	 */
636 	if (poke_int3_handler(regs))
637 		return;
638 
639 	/*
640 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
641 	 * and therefore can trigger INT3, hence poke_int3_handler() must
642 	 * be done before. If the entry came from kernel mode, then use
643 	 * nmi_enter() because the INT3 could have been hit in any context
644 	 * including NMI.
645 	 */
646 	if (user_mode(regs)) {
647 		irqentry_enter_from_user_mode(regs);
648 		instrumentation_begin();
649 		do_int3_user(regs);
650 		instrumentation_end();
651 		irqentry_exit_to_user_mode(regs);
652 	} else {
653 		bool irq_state = idtentry_enter_nmi(regs);
654 		instrumentation_begin();
655 		if (!do_int3(regs))
656 			die("int3", regs, 0);
657 		instrumentation_end();
658 		idtentry_exit_nmi(regs, irq_state);
659 	}
660 }
661 
662 #ifdef CONFIG_X86_64
663 /*
664  * Help handler running on a per-cpu (IST or entry trampoline) stack
665  * to switch to the normal thread stack if the interrupted code was in
666  * user mode. The actual stack switch is done in entry_64.S
667  */
668 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
669 {
670 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
671 	if (regs != eregs)
672 		*regs = *eregs;
673 	return regs;
674 }
675 
676 struct bad_iret_stack {
677 	void *error_entry_ret;
678 	struct pt_regs regs;
679 };
680 
681 asmlinkage __visible noinstr
682 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
683 {
684 	/*
685 	 * This is called from entry_64.S early in handling a fault
686 	 * caused by a bad iret to user mode.  To handle the fault
687 	 * correctly, we want to move our stack frame to where it would
688 	 * be had we entered directly on the entry stack (rather than
689 	 * just below the IRET frame) and we want to pretend that the
690 	 * exception came from the IRET target.
691 	 */
692 	struct bad_iret_stack tmp, *new_stack =
693 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
694 
695 	/* Copy the IRET target to the temporary storage. */
696 	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
697 
698 	/* Copy the remainder of the stack from the current stack. */
699 	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
700 
701 	/* Update the entry stack */
702 	__memcpy(new_stack, &tmp, sizeof(tmp));
703 
704 	BUG_ON(!user_mode(&new_stack->regs));
705 	return new_stack;
706 }
707 #endif
708 
709 static bool is_sysenter_singlestep(struct pt_regs *regs)
710 {
711 	/*
712 	 * We don't try for precision here.  If we're anywhere in the region of
713 	 * code that can be single-stepped in the SYSENTER entry path, then
714 	 * assume that this is a useless single-step trap due to SYSENTER
715 	 * being invoked with TF set.  (We don't know in advance exactly
716 	 * which instructions will be hit because BTF could plausibly
717 	 * be set.)
718 	 */
719 #ifdef CONFIG_X86_32
720 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
721 		(unsigned long)__end_SYSENTER_singlestep_region -
722 		(unsigned long)__begin_SYSENTER_singlestep_region;
723 #elif defined(CONFIG_IA32_EMULATION)
724 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
725 		(unsigned long)__end_entry_SYSENTER_compat -
726 		(unsigned long)entry_SYSENTER_compat;
727 #else
728 	return false;
729 #endif
730 }
731 
732 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
733 {
734 	/*
735 	 * Disable breakpoints during exception handling; recursive exceptions
736 	 * are exceedingly 'fun'.
737 	 *
738 	 * Since this function is NOKPROBE, and that also applies to
739 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
740 	 * HW_BREAKPOINT_W on our stack)
741 	 *
742 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
743 	 * includes the entry stack is excluded for everything.
744 	 */
745 	*dr7 = local_db_save();
746 
747 	/*
748 	 * The Intel SDM says:
749 	 *
750 	 *   Certain debug exceptions may clear bits 0-3. The remaining
751 	 *   contents of the DR6 register are never cleared by the
752 	 *   processor. To avoid confusion in identifying debug
753 	 *   exceptions, debug handlers should clear the register before
754 	 *   returning to the interrupted task.
755 	 *
756 	 * Keep it simple: clear DR6 immediately.
757 	 */
758 	get_debugreg(*dr6, 6);
759 	set_debugreg(0, 6);
760 	/* Filter out all the reserved bits which are preset to 1 */
761 	*dr6 &= ~DR6_RESERVED;
762 }
763 
764 static __always_inline void debug_exit(unsigned long dr7)
765 {
766 	local_db_restore(dr7);
767 }
768 
769 /*
770  * Our handling of the processor debug registers is non-trivial.
771  * We do not clear them on entry and exit from the kernel. Therefore
772  * it is possible to get a watchpoint trap here from inside the kernel.
773  * However, the code in ./ptrace.c has ensured that the user can
774  * only set watchpoints on userspace addresses. Therefore the in-kernel
775  * watchpoint trap can only occur in code which is reading/writing
776  * from user space. Such code must not hold kernel locks (since it
777  * can equally take a page fault), therefore it is safe to call
778  * force_sig_info even though that claims and releases locks.
779  *
780  * Code in ./signal.c ensures that the debug control register
781  * is restored before we deliver any signal, and therefore that
782  * user code runs with the correct debug control register even though
783  * we clear it here.
784  *
785  * Being careful here means that we don't have to be as careful in a
786  * lot of more complicated places (task switching can be a bit lazy
787  * about restoring all the debug state, and ptrace doesn't have to
788  * find every occurrence of the TF bit that could be saved away even
789  * by user code)
790  *
791  * May run on IST stack.
792  */
793 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
794 {
795 	struct task_struct *tsk = current;
796 	bool user_icebp;
797 	int si_code;
798 
799 	/*
800 	 * The SDM says "The processor clears the BTF flag when it
801 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
802 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
803 	 */
804 	clear_thread_flag(TIF_BLOCKSTEP);
805 
806 	/*
807 	 * If DR6 is zero, no point in trying to handle it. The kernel is
808 	 * not using INT1.
809 	 */
810 	if (!user && !dr6)
811 		return;
812 
813 	/*
814 	 * If dr6 has no reason to give us about the origin of this trap,
815 	 * then it's very likely the result of an icebp/int01 trap.
816 	 * User wants a sigtrap for that.
817 	 */
818 	user_icebp = user && !dr6;
819 
820 	/* Store the virtualized DR6 value */
821 	tsk->thread.debugreg6 = dr6;
822 
823 #ifdef CONFIG_KPROBES
824 	if (kprobe_debug_handler(regs)) {
825 		return;
826 	}
827 #endif
828 
829 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
830 		       SIGTRAP) == NOTIFY_STOP) {
831 		return;
832 	}
833 
834 	/* It's safe to allow irq's after DR6 has been saved */
835 	cond_local_irq_enable(regs);
836 
837 	if (v8086_mode(regs)) {
838 		handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
839 				 X86_TRAP_DB);
840 		goto out;
841 	}
842 
843 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
844 		/*
845 		 * Historical junk that used to handle SYSENTER single-stepping.
846 		 * This should be unreachable now.  If we survive for a while
847 		 * without anyone hitting this warning, we'll turn this into
848 		 * an oops.
849 		 */
850 		tsk->thread.debugreg6 &= ~DR_STEP;
851 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
852 		regs->flags &= ~X86_EFLAGS_TF;
853 	}
854 
855 	si_code = get_si_code(tsk->thread.debugreg6);
856 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
857 		send_sigtrap(regs, 0, si_code);
858 
859 out:
860 	cond_local_irq_disable(regs);
861 }
862 
863 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
864 					     unsigned long dr6)
865 {
866 	bool irq_state = idtentry_enter_nmi(regs);
867 	instrumentation_begin();
868 
869 	/*
870 	 * If something gets miswired and we end up here for a user mode
871 	 * #DB, we will malfunction.
872 	 */
873 	WARN_ON_ONCE(user_mode(regs));
874 
875 	/*
876 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
877 	 * watchpoint at the same time then that will still be handled.
878 	 */
879 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
880 		dr6 &= ~DR_STEP;
881 
882 	handle_debug(regs, dr6, false);
883 
884 	instrumentation_end();
885 	idtentry_exit_nmi(regs, irq_state);
886 }
887 
888 static __always_inline void exc_debug_user(struct pt_regs *regs,
889 					   unsigned long dr6)
890 {
891 	/*
892 	 * If something gets miswired and we end up here for a kernel mode
893 	 * #DB, we will malfunction.
894 	 */
895 	WARN_ON_ONCE(!user_mode(regs));
896 
897 	irqentry_enter_from_user_mode(regs);
898 	instrumentation_begin();
899 
900 	handle_debug(regs, dr6, true);
901 
902 	instrumentation_end();
903 	irqentry_exit_to_user_mode(regs);
904 }
905 
906 #ifdef CONFIG_X86_64
907 /* IST stack entry */
908 DEFINE_IDTENTRY_DEBUG(exc_debug)
909 {
910 	unsigned long dr6, dr7;
911 
912 	debug_enter(&dr6, &dr7);
913 	exc_debug_kernel(regs, dr6);
914 	debug_exit(dr7);
915 }
916 
917 /* User entry, runs on regular task stack */
918 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
919 {
920 	unsigned long dr6, dr7;
921 
922 	debug_enter(&dr6, &dr7);
923 	exc_debug_user(regs, dr6);
924 	debug_exit(dr7);
925 }
926 #else
927 /* 32 bit does not have separate entry points. */
928 DEFINE_IDTENTRY_RAW(exc_debug)
929 {
930 	unsigned long dr6, dr7;
931 
932 	debug_enter(&dr6, &dr7);
933 
934 	if (user_mode(regs))
935 		exc_debug_user(regs, dr6);
936 	else
937 		exc_debug_kernel(regs, dr6);
938 
939 	debug_exit(dr7);
940 }
941 #endif
942 
943 /*
944  * Note that we play around with the 'TS' bit in an attempt to get
945  * the correct behaviour even in the presence of the asynchronous
946  * IRQ13 behaviour
947  */
948 static void math_error(struct pt_regs *regs, int trapnr)
949 {
950 	struct task_struct *task = current;
951 	struct fpu *fpu = &task->thread.fpu;
952 	int si_code;
953 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
954 						"simd exception";
955 
956 	cond_local_irq_enable(regs);
957 
958 	if (!user_mode(regs)) {
959 		if (fixup_exception(regs, trapnr, 0, 0))
960 			goto exit;
961 
962 		task->thread.error_code = 0;
963 		task->thread.trap_nr = trapnr;
964 
965 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
966 			       SIGFPE) != NOTIFY_STOP)
967 			die(str, regs, 0);
968 		goto exit;
969 	}
970 
971 	/*
972 	 * Save the info for the exception handler and clear the error.
973 	 */
974 	fpu__save(fpu);
975 
976 	task->thread.trap_nr	= trapnr;
977 	task->thread.error_code = 0;
978 
979 	si_code = fpu__exception_code(fpu, trapnr);
980 	/* Retry when we get spurious exceptions: */
981 	if (!si_code)
982 		goto exit;
983 
984 	force_sig_fault(SIGFPE, si_code,
985 			(void __user *)uprobe_get_trap_addr(regs));
986 exit:
987 	cond_local_irq_disable(regs);
988 }
989 
990 DEFINE_IDTENTRY(exc_coprocessor_error)
991 {
992 	math_error(regs, X86_TRAP_MF);
993 }
994 
995 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
996 {
997 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
998 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
999 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1000 			__exc_general_protection(regs, 0);
1001 			return;
1002 		}
1003 	}
1004 	math_error(regs, X86_TRAP_XF);
1005 }
1006 
1007 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1008 {
1009 	/*
1010 	 * This addresses a Pentium Pro Erratum:
1011 	 *
1012 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1013 	 * Virtual Wire mode implemented through the local APIC, an
1014 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1015 	 * generated by the local APIC (Int 15).  This vector may be
1016 	 * generated upon receipt of a spurious interrupt (an interrupt
1017 	 * which is removed before the system receives the INTA sequence)
1018 	 * instead of the programmed 8259 spurious interrupt vector.
1019 	 *
1020 	 * IMPLICATION: The spurious interrupt vector programmed in the
1021 	 * 8259 is normally handled by an operating system's spurious
1022 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1023 	 * operating systems, which would crash if this erratum occurred.
1024 	 *
1025 	 * In theory this could be limited to 32bit, but the handler is not
1026 	 * hurting and who knows which other CPUs suffer from this.
1027 	 */
1028 }
1029 
1030 DEFINE_IDTENTRY(exc_device_not_available)
1031 {
1032 	unsigned long cr0 = read_cr0();
1033 
1034 #ifdef CONFIG_MATH_EMULATION
1035 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1036 		struct math_emu_info info = { };
1037 
1038 		cond_local_irq_enable(regs);
1039 
1040 		info.regs = regs;
1041 		math_emulate(&info);
1042 
1043 		cond_local_irq_disable(regs);
1044 		return;
1045 	}
1046 #endif
1047 
1048 	/* This should not happen. */
1049 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1050 		/* Try to fix it up and carry on. */
1051 		write_cr0(cr0 & ~X86_CR0_TS);
1052 	} else {
1053 		/*
1054 		 * Something terrible happened, and we're better off trying
1055 		 * to kill the task than getting stuck in a never-ending
1056 		 * loop of #NM faults.
1057 		 */
1058 		die("unexpected #NM exception", regs, 0);
1059 	}
1060 }
1061 
1062 #ifdef CONFIG_X86_32
1063 DEFINE_IDTENTRY_SW(iret_error)
1064 {
1065 	local_irq_enable();
1066 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1067 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1068 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1069 			ILL_BADSTK, (void __user *)NULL);
1070 	}
1071 	local_irq_disable();
1072 }
1073 #endif
1074 
1075 void __init trap_init(void)
1076 {
1077 	/* Init cpu_entry_area before IST entries are set up */
1078 	setup_cpu_entry_areas();
1079 
1080 	idt_setup_traps();
1081 
1082 	/*
1083 	 * Should be a barrier for any external CPU state:
1084 	 */
1085 	cpu_init();
1086 
1087 	idt_setup_ist_traps();
1088 }
1089