xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 83268fa6)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
44 
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
64 
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
69 #else
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
73 #endif
74 
75 DECLARE_BITMAP(system_vectors, NR_VECTORS);
76 
77 static inline void cond_local_irq_enable(struct pt_regs *regs)
78 {
79 	if (regs->flags & X86_EFLAGS_IF)
80 		local_irq_enable();
81 }
82 
83 static inline void cond_local_irq_disable(struct pt_regs *regs)
84 {
85 	if (regs->flags & X86_EFLAGS_IF)
86 		local_irq_disable();
87 }
88 
89 /*
90  * In IST context, we explicitly disable preemption.  This serves two
91  * purposes: it makes it much less likely that we would accidentally
92  * schedule in IST context and it will force a warning if we somehow
93  * manage to schedule by accident.
94  */
95 void ist_enter(struct pt_regs *regs)
96 {
97 	if (user_mode(regs)) {
98 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
99 	} else {
100 		/*
101 		 * We might have interrupted pretty much anything.  In
102 		 * fact, if we're a machine check, we can even interrupt
103 		 * NMI processing.  We don't want in_nmi() to return true,
104 		 * but we need to notify RCU.
105 		 */
106 		rcu_nmi_enter();
107 	}
108 
109 	preempt_disable();
110 
111 	/* This code is a bit fragile.  Test it. */
112 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113 }
114 
115 void ist_exit(struct pt_regs *regs)
116 {
117 	preempt_enable_no_resched();
118 
119 	if (!user_mode(regs))
120 		rcu_nmi_exit();
121 }
122 
123 /**
124  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125  * @regs:	regs passed to the IST exception handler
126  *
127  * IST exception handlers normally cannot schedule.  As a special
128  * exception, if the exception interrupted userspace code (i.e.
129  * user_mode(regs) would return true) and the exception was not
130  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
131  * begins a non-atomic section within an ist_enter()/ist_exit() region.
132  * Callers are responsible for enabling interrupts themselves inside
133  * the non-atomic section, and callers must call ist_end_non_atomic()
134  * before ist_exit().
135  */
136 void ist_begin_non_atomic(struct pt_regs *regs)
137 {
138 	BUG_ON(!user_mode(regs));
139 
140 	/*
141 	 * Sanity check: we need to be on the normal thread stack.  This
142 	 * will catch asm bugs and any attempt to use ist_preempt_enable
143 	 * from double_fault.
144 	 */
145 	BUG_ON(!on_thread_stack());
146 
147 	preempt_enable_no_resched();
148 }
149 
150 /**
151  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152  *
153  * Ends a non-atomic section started with ist_begin_non_atomic().
154  */
155 void ist_end_non_atomic(void)
156 {
157 	preempt_disable();
158 }
159 
160 int is_valid_bugaddr(unsigned long addr)
161 {
162 	unsigned short ud;
163 
164 	if (addr < TASK_SIZE_MAX)
165 		return 0;
166 
167 	if (probe_kernel_address((unsigned short *)addr, ud))
168 		return 0;
169 
170 	return ud == INSN_UD0 || ud == INSN_UD2;
171 }
172 
173 int fixup_bug(struct pt_regs *regs, int trapnr)
174 {
175 	if (trapnr != X86_TRAP_UD)
176 		return 0;
177 
178 	switch (report_bug(regs->ip, regs)) {
179 	case BUG_TRAP_TYPE_NONE:
180 	case BUG_TRAP_TYPE_BUG:
181 		break;
182 
183 	case BUG_TRAP_TYPE_WARN:
184 		regs->ip += LEN_UD2;
185 		return 1;
186 	}
187 
188 	return 0;
189 }
190 
191 static nokprobe_inline int
192 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
193 		  struct pt_regs *regs,	long error_code)
194 {
195 	if (v8086_mode(regs)) {
196 		/*
197 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198 		 * On nmi (interrupt 2), do_trap should not be called.
199 		 */
200 		if (trapnr < X86_TRAP_UD) {
201 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202 						error_code, trapnr))
203 				return 0;
204 		}
205 	} else if (!user_mode(regs)) {
206 		if (fixup_exception(regs, trapnr, error_code, 0))
207 			return 0;
208 
209 		tsk->thread.error_code = error_code;
210 		tsk->thread.trap_nr = trapnr;
211 		die(str, regs, error_code);
212 	}
213 
214 	/*
215 	 * We want error_code and trap_nr set for userspace faults and
216 	 * kernelspace faults which result in die(), but not
217 	 * kernelspace faults which are fixed up.  die() gives the
218 	 * process no chance to handle the signal and notice the
219 	 * kernel fault information, so that won't result in polluting
220 	 * the information about previously queued, but not yet
221 	 * delivered, faults.  See also do_general_protection below.
222 	 */
223 	tsk->thread.error_code = error_code;
224 	tsk->thread.trap_nr = trapnr;
225 
226 	return -1;
227 }
228 
229 static void show_signal(struct task_struct *tsk, int signr,
230 			const char *type, const char *desc,
231 			struct pt_regs *regs, long error_code)
232 {
233 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
234 	    printk_ratelimit()) {
235 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
236 			tsk->comm, task_pid_nr(tsk), type, desc,
237 			regs->ip, regs->sp, error_code);
238 		print_vma_addr(KERN_CONT " in ", regs->ip);
239 		pr_cont("\n");
240 	}
241 }
242 
243 static void
244 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
245 	long error_code, int sicode, void __user *addr)
246 {
247 	struct task_struct *tsk = current;
248 
249 
250 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
251 		return;
252 
253 	show_signal(tsk, signr, "trap ", str, regs, error_code);
254 
255 	if (!sicode)
256 		force_sig(signr, tsk);
257 	else
258 		force_sig_fault(signr, sicode, addr, tsk);
259 }
260 NOKPROBE_SYMBOL(do_trap);
261 
262 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
263 	unsigned long trapnr, int signr, int sicode, void __user *addr)
264 {
265 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
266 
267 	/*
268 	 * WARN*()s end up here; fix them up before we call the
269 	 * notifier chain.
270 	 */
271 	if (!user_mode(regs) && fixup_bug(regs, trapnr))
272 		return;
273 
274 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
275 			NOTIFY_STOP) {
276 		cond_local_irq_enable(regs);
277 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
278 	}
279 }
280 
281 #define IP ((void __user *)uprobe_get_trap_addr(regs))
282 #define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
283 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
284 {									   \
285 	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
286 }
287 
288 DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
289 DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
290 DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
291 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
292 DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
293 DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
294 DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
295 DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
296 #undef IP
297 
298 #ifdef CONFIG_VMAP_STACK
299 __visible void __noreturn handle_stack_overflow(const char *message,
300 						struct pt_regs *regs,
301 						unsigned long fault_address)
302 {
303 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
304 		 (void *)fault_address, current->stack,
305 		 (char *)current->stack + THREAD_SIZE - 1);
306 	die(message, regs, 0);
307 
308 	/* Be absolutely certain we don't return. */
309 	panic("%s", message);
310 }
311 #endif
312 
313 #ifdef CONFIG_X86_64
314 /* Runs on IST stack */
315 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
316 {
317 	static const char str[] = "double fault";
318 	struct task_struct *tsk = current;
319 #ifdef CONFIG_VMAP_STACK
320 	unsigned long cr2;
321 #endif
322 
323 #ifdef CONFIG_X86_ESPFIX64
324 	extern unsigned char native_irq_return_iret[];
325 
326 	/*
327 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
328 	 * end up promoting it to a doublefault.  In that case, take
329 	 * advantage of the fact that we're not using the normal (TSS.sp0)
330 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
331 	 * and then modify our own IRET frame so that, when we return,
332 	 * we land directly at the #GP(0) vector with the stack already
333 	 * set up according to its expectations.
334 	 *
335 	 * The net result is that our #GP handler will think that we
336 	 * entered from usermode with the bad user context.
337 	 *
338 	 * No need for ist_enter here because we don't use RCU.
339 	 */
340 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
341 		regs->cs == __KERNEL_CS &&
342 		regs->ip == (unsigned long)native_irq_return_iret)
343 	{
344 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
345 
346 		/*
347 		 * regs->sp points to the failing IRET frame on the
348 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
349 		 * in gpregs->ss through gpregs->ip.
350 		 *
351 		 */
352 		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
353 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
354 
355 		/*
356 		 * Adjust our frame so that we return straight to the #GP
357 		 * vector with the expected RSP value.  This is safe because
358 		 * we won't enable interupts or schedule before we invoke
359 		 * general_protection, so nothing will clobber the stack
360 		 * frame we just set up.
361 		 *
362 		 * We will enter general_protection with kernel GSBASE,
363 		 * which is what the stub expects, given that the faulting
364 		 * RIP will be the IRET instruction.
365 		 */
366 		regs->ip = (unsigned long)general_protection;
367 		regs->sp = (unsigned long)&gpregs->orig_ax;
368 
369 		return;
370 	}
371 #endif
372 
373 	ist_enter(regs);
374 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
375 
376 	tsk->thread.error_code = error_code;
377 	tsk->thread.trap_nr = X86_TRAP_DF;
378 
379 #ifdef CONFIG_VMAP_STACK
380 	/*
381 	 * If we overflow the stack into a guard page, the CPU will fail
382 	 * to deliver #PF and will send #DF instead.  Similarly, if we
383 	 * take any non-IST exception while too close to the bottom of
384 	 * the stack, the processor will get a page fault while
385 	 * delivering the exception and will generate a double fault.
386 	 *
387 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
388 	 * Page-Fault Exception (#PF):
389 	 *
390 	 *   Processors update CR2 whenever a page fault is detected. If a
391 	 *   second page fault occurs while an earlier page fault is being
392 	 *   delivered, the faulting linear address of the second fault will
393 	 *   overwrite the contents of CR2 (replacing the previous
394 	 *   address). These updates to CR2 occur even if the page fault
395 	 *   results in a double fault or occurs during the delivery of a
396 	 *   double fault.
397 	 *
398 	 * The logic below has a small possibility of incorrectly diagnosing
399 	 * some errors as stack overflows.  For example, if the IDT or GDT
400 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
401 	 * causing #GP and we hit this condition while CR2 coincidentally
402 	 * points to the stack guard page, we'll think we overflowed the
403 	 * stack.  Given that we're going to panic one way or another
404 	 * if this happens, this isn't necessarily worth fixing.
405 	 *
406 	 * If necessary, we could improve the test by only diagnosing
407 	 * a stack overflow if the saved RSP points within 47 bytes of
408 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
409 	 * take an exception, the stack is already aligned and there
410 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
411 	 * possible error code, so a stack overflow would *not* double
412 	 * fault.  With any less space left, exception delivery could
413 	 * fail, and, as a practical matter, we've overflowed the
414 	 * stack even if the actual trigger for the double fault was
415 	 * something else.
416 	 */
417 	cr2 = read_cr2();
418 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
419 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
420 #endif
421 
422 #ifdef CONFIG_DOUBLEFAULT
423 	df_debug(regs, error_code);
424 #endif
425 	/*
426 	 * This is always a kernel trap and never fixable (and thus must
427 	 * never return).
428 	 */
429 	for (;;)
430 		die(str, regs, error_code);
431 }
432 #endif
433 
434 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
435 {
436 	const struct mpx_bndcsr *bndcsr;
437 
438 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
439 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
440 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
441 		return;
442 	cond_local_irq_enable(regs);
443 
444 	if (!user_mode(regs))
445 		die("bounds", regs, error_code);
446 
447 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
448 		/* The exception is not from Intel MPX */
449 		goto exit_trap;
450 	}
451 
452 	/*
453 	 * We need to look at BNDSTATUS to resolve this exception.
454 	 * A NULL here might mean that it is in its 'init state',
455 	 * which is all zeros which indicates MPX was not
456 	 * responsible for the exception.
457 	 */
458 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
459 	if (!bndcsr)
460 		goto exit_trap;
461 
462 	trace_bounds_exception_mpx(bndcsr);
463 	/*
464 	 * The error code field of the BNDSTATUS register communicates status
465 	 * information of a bound range exception #BR or operation involving
466 	 * bound directory.
467 	 */
468 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
469 	case 2:	/* Bound directory has invalid entry. */
470 		if (mpx_handle_bd_fault())
471 			goto exit_trap;
472 		break; /* Success, it was handled */
473 	case 1: /* Bound violation. */
474 	{
475 		struct task_struct *tsk = current;
476 		struct mpx_fault_info mpx;
477 
478 		if (mpx_fault_info(&mpx, regs)) {
479 			/*
480 			 * We failed to decode the MPX instruction.  Act as if
481 			 * the exception was not caused by MPX.
482 			 */
483 			goto exit_trap;
484 		}
485 		/*
486 		 * Success, we decoded the instruction and retrieved
487 		 * an 'mpx' containing the address being accessed
488 		 * which caused the exception.  This information
489 		 * allows and application to possibly handle the
490 		 * #BR exception itself.
491 		 */
492 		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
493 				       error_code))
494 			break;
495 
496 		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
497 
498 		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
499 		break;
500 	}
501 	case 0: /* No exception caused by Intel MPX operations. */
502 		goto exit_trap;
503 	default:
504 		die("bounds", regs, error_code);
505 	}
506 
507 	return;
508 
509 exit_trap:
510 	/*
511 	 * This path out is for all the cases where we could not
512 	 * handle the exception in some way (like allocating a
513 	 * table or telling userspace about it.  We will also end
514 	 * up here if the kernel has MPX turned off at compile
515 	 * time..
516 	 */
517 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
518 }
519 
520 dotraplinkage void
521 do_general_protection(struct pt_regs *regs, long error_code)
522 {
523 	const char *desc = "general protection fault";
524 	struct task_struct *tsk;
525 
526 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
527 	cond_local_irq_enable(regs);
528 
529 	if (static_cpu_has(X86_FEATURE_UMIP)) {
530 		if (user_mode(regs) && fixup_umip_exception(regs))
531 			return;
532 	}
533 
534 	if (v8086_mode(regs)) {
535 		local_irq_enable();
536 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
537 		return;
538 	}
539 
540 	tsk = current;
541 	if (!user_mode(regs)) {
542 		if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
543 			return;
544 
545 		tsk->thread.error_code = error_code;
546 		tsk->thread.trap_nr = X86_TRAP_GP;
547 
548 		/*
549 		 * To be potentially processing a kprobe fault and to
550 		 * trust the result from kprobe_running(), we have to
551 		 * be non-preemptible.
552 		 */
553 		if (!preemptible() && kprobe_running() &&
554 		    kprobe_fault_handler(regs, X86_TRAP_GP))
555 			return;
556 
557 		if (notify_die(DIE_GPF, desc, regs, error_code,
558 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
559 			die(desc, regs, error_code);
560 		return;
561 	}
562 
563 	tsk->thread.error_code = error_code;
564 	tsk->thread.trap_nr = X86_TRAP_GP;
565 
566 	show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
567 
568 	force_sig(SIGSEGV, tsk);
569 }
570 NOKPROBE_SYMBOL(do_general_protection);
571 
572 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
573 {
574 #ifdef CONFIG_DYNAMIC_FTRACE
575 	/*
576 	 * ftrace must be first, everything else may cause a recursive crash.
577 	 * See note by declaration of modifying_ftrace_code in ftrace.c
578 	 */
579 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
580 	    ftrace_int3_handler(regs))
581 		return;
582 #endif
583 	if (poke_int3_handler(regs))
584 		return;
585 
586 	/*
587 	 * Use ist_enter despite the fact that we don't use an IST stack.
588 	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
589 	 * mode or even during context tracking state changes.
590 	 *
591 	 * This means that we can't schedule.  That's okay.
592 	 */
593 	ist_enter(regs);
594 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
595 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
596 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
597 				SIGTRAP) == NOTIFY_STOP)
598 		goto exit;
599 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
600 
601 #ifdef CONFIG_KPROBES
602 	if (kprobe_int3_handler(regs))
603 		goto exit;
604 #endif
605 
606 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
607 			SIGTRAP) == NOTIFY_STOP)
608 		goto exit;
609 
610 	cond_local_irq_enable(regs);
611 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
612 	cond_local_irq_disable(regs);
613 
614 exit:
615 	ist_exit(regs);
616 }
617 NOKPROBE_SYMBOL(do_int3);
618 
619 #ifdef CONFIG_X86_64
620 /*
621  * Help handler running on a per-cpu (IST or entry trampoline) stack
622  * to switch to the normal thread stack if the interrupted code was in
623  * user mode. The actual stack switch is done in entry_64.S
624  */
625 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
626 {
627 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
628 	if (regs != eregs)
629 		*regs = *eregs;
630 	return regs;
631 }
632 NOKPROBE_SYMBOL(sync_regs);
633 
634 struct bad_iret_stack {
635 	void *error_entry_ret;
636 	struct pt_regs regs;
637 };
638 
639 asmlinkage __visible notrace
640 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
641 {
642 	/*
643 	 * This is called from entry_64.S early in handling a fault
644 	 * caused by a bad iret to user mode.  To handle the fault
645 	 * correctly, we want to move our stack frame to where it would
646 	 * be had we entered directly on the entry stack (rather than
647 	 * just below the IRET frame) and we want to pretend that the
648 	 * exception came from the IRET target.
649 	 */
650 	struct bad_iret_stack *new_stack =
651 		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
652 
653 	/* Copy the IRET target to the new stack. */
654 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
655 
656 	/* Copy the remainder of the stack from the current stack. */
657 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
658 
659 	BUG_ON(!user_mode(&new_stack->regs));
660 	return new_stack;
661 }
662 NOKPROBE_SYMBOL(fixup_bad_iret);
663 #endif
664 
665 static bool is_sysenter_singlestep(struct pt_regs *regs)
666 {
667 	/*
668 	 * We don't try for precision here.  If we're anywhere in the region of
669 	 * code that can be single-stepped in the SYSENTER entry path, then
670 	 * assume that this is a useless single-step trap due to SYSENTER
671 	 * being invoked with TF set.  (We don't know in advance exactly
672 	 * which instructions will be hit because BTF could plausibly
673 	 * be set.)
674 	 */
675 #ifdef CONFIG_X86_32
676 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
677 		(unsigned long)__end_SYSENTER_singlestep_region -
678 		(unsigned long)__begin_SYSENTER_singlestep_region;
679 #elif defined(CONFIG_IA32_EMULATION)
680 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
681 		(unsigned long)__end_entry_SYSENTER_compat -
682 		(unsigned long)entry_SYSENTER_compat;
683 #else
684 	return false;
685 #endif
686 }
687 
688 /*
689  * Our handling of the processor debug registers is non-trivial.
690  * We do not clear them on entry and exit from the kernel. Therefore
691  * it is possible to get a watchpoint trap here from inside the kernel.
692  * However, the code in ./ptrace.c has ensured that the user can
693  * only set watchpoints on userspace addresses. Therefore the in-kernel
694  * watchpoint trap can only occur in code which is reading/writing
695  * from user space. Such code must not hold kernel locks (since it
696  * can equally take a page fault), therefore it is safe to call
697  * force_sig_info even though that claims and releases locks.
698  *
699  * Code in ./signal.c ensures that the debug control register
700  * is restored before we deliver any signal, and therefore that
701  * user code runs with the correct debug control register even though
702  * we clear it here.
703  *
704  * Being careful here means that we don't have to be as careful in a
705  * lot of more complicated places (task switching can be a bit lazy
706  * about restoring all the debug state, and ptrace doesn't have to
707  * find every occurrence of the TF bit that could be saved away even
708  * by user code)
709  *
710  * May run on IST stack.
711  */
712 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
713 {
714 	struct task_struct *tsk = current;
715 	int user_icebp = 0;
716 	unsigned long dr6;
717 	int si_code;
718 
719 	ist_enter(regs);
720 
721 	get_debugreg(dr6, 6);
722 	/*
723 	 * The Intel SDM says:
724 	 *
725 	 *   Certain debug exceptions may clear bits 0-3. The remaining
726 	 *   contents of the DR6 register are never cleared by the
727 	 *   processor. To avoid confusion in identifying debug
728 	 *   exceptions, debug handlers should clear the register before
729 	 *   returning to the interrupted task.
730 	 *
731 	 * Keep it simple: clear DR6 immediately.
732 	 */
733 	set_debugreg(0, 6);
734 
735 	/* Filter out all the reserved bits which are preset to 1 */
736 	dr6 &= ~DR6_RESERVED;
737 
738 	/*
739 	 * The SDM says "The processor clears the BTF flag when it
740 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
741 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
742 	 */
743 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
744 
745 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
746 		     is_sysenter_singlestep(regs))) {
747 		dr6 &= ~DR_STEP;
748 		if (!dr6)
749 			goto exit;
750 		/*
751 		 * else we might have gotten a single-step trap and hit a
752 		 * watchpoint at the same time, in which case we should fall
753 		 * through and handle the watchpoint.
754 		 */
755 	}
756 
757 	/*
758 	 * If dr6 has no reason to give us about the origin of this trap,
759 	 * then it's very likely the result of an icebp/int01 trap.
760 	 * User wants a sigtrap for that.
761 	 */
762 	if (!dr6 && user_mode(regs))
763 		user_icebp = 1;
764 
765 	/* Store the virtualized DR6 value */
766 	tsk->thread.debugreg6 = dr6;
767 
768 #ifdef CONFIG_KPROBES
769 	if (kprobe_debug_handler(regs))
770 		goto exit;
771 #endif
772 
773 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
774 							SIGTRAP) == NOTIFY_STOP)
775 		goto exit;
776 
777 	/*
778 	 * Let others (NMI) know that the debug stack is in use
779 	 * as we may switch to the interrupt stack.
780 	 */
781 	debug_stack_usage_inc();
782 
783 	/* It's safe to allow irq's after DR6 has been saved */
784 	cond_local_irq_enable(regs);
785 
786 	if (v8086_mode(regs)) {
787 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
788 					X86_TRAP_DB);
789 		cond_local_irq_disable(regs);
790 		debug_stack_usage_dec();
791 		goto exit;
792 	}
793 
794 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
795 		/*
796 		 * Historical junk that used to handle SYSENTER single-stepping.
797 		 * This should be unreachable now.  If we survive for a while
798 		 * without anyone hitting this warning, we'll turn this into
799 		 * an oops.
800 		 */
801 		tsk->thread.debugreg6 &= ~DR_STEP;
802 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
803 		regs->flags &= ~X86_EFLAGS_TF;
804 	}
805 	si_code = get_si_code(tsk->thread.debugreg6);
806 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
807 		send_sigtrap(tsk, regs, error_code, si_code);
808 	cond_local_irq_disable(regs);
809 	debug_stack_usage_dec();
810 
811 exit:
812 	ist_exit(regs);
813 }
814 NOKPROBE_SYMBOL(do_debug);
815 
816 /*
817  * Note that we play around with the 'TS' bit in an attempt to get
818  * the correct behaviour even in the presence of the asynchronous
819  * IRQ13 behaviour
820  */
821 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
822 {
823 	struct task_struct *task = current;
824 	struct fpu *fpu = &task->thread.fpu;
825 	int si_code;
826 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
827 						"simd exception";
828 
829 	cond_local_irq_enable(regs);
830 
831 	if (!user_mode(regs)) {
832 		if (fixup_exception(regs, trapnr, error_code, 0))
833 			return;
834 
835 		task->thread.error_code = error_code;
836 		task->thread.trap_nr = trapnr;
837 
838 		if (notify_die(DIE_TRAP, str, regs, error_code,
839 					trapnr, SIGFPE) != NOTIFY_STOP)
840 			die(str, regs, error_code);
841 		return;
842 	}
843 
844 	/*
845 	 * Save the info for the exception handler and clear the error.
846 	 */
847 	fpu__save(fpu);
848 
849 	task->thread.trap_nr	= trapnr;
850 	task->thread.error_code = error_code;
851 
852 	si_code = fpu__exception_code(fpu, trapnr);
853 	/* Retry when we get spurious exceptions: */
854 	if (!si_code)
855 		return;
856 
857 	force_sig_fault(SIGFPE, si_code,
858 			(void __user *)uprobe_get_trap_addr(regs), task);
859 }
860 
861 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
862 {
863 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
864 	math_error(regs, error_code, X86_TRAP_MF);
865 }
866 
867 dotraplinkage void
868 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
869 {
870 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
871 	math_error(regs, error_code, X86_TRAP_XF);
872 }
873 
874 dotraplinkage void
875 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
876 {
877 	cond_local_irq_enable(regs);
878 }
879 
880 dotraplinkage void
881 do_device_not_available(struct pt_regs *regs, long error_code)
882 {
883 	unsigned long cr0;
884 
885 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
886 
887 #ifdef CONFIG_MATH_EMULATION
888 	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
889 		struct math_emu_info info = { };
890 
891 		cond_local_irq_enable(regs);
892 
893 		info.regs = regs;
894 		math_emulate(&info);
895 		return;
896 	}
897 #endif
898 
899 	/* This should not happen. */
900 	cr0 = read_cr0();
901 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
902 		/* Try to fix it up and carry on. */
903 		write_cr0(cr0 & ~X86_CR0_TS);
904 	} else {
905 		/*
906 		 * Something terrible happened, and we're better off trying
907 		 * to kill the task than getting stuck in a never-ending
908 		 * loop of #NM faults.
909 		 */
910 		die("unexpected #NM exception", regs, error_code);
911 	}
912 }
913 NOKPROBE_SYMBOL(do_device_not_available);
914 
915 #ifdef CONFIG_X86_32
916 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
917 {
918 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
919 	local_irq_enable();
920 
921 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
922 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
923 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
924 			ILL_BADSTK, (void __user *)NULL);
925 	}
926 }
927 #endif
928 
929 void __init trap_init(void)
930 {
931 	/* Init cpu_entry_area before IST entries are set up */
932 	setup_cpu_entry_areas();
933 
934 	idt_setup_traps();
935 
936 	/*
937 	 * Set the IDT descriptor to a fixed read-only location, so that the
938 	 * "sidt" instruction will not leak the location of the kernel, and
939 	 * to defend the IDT against arbitrary memory write vulnerabilities.
940 	 * It will be reloaded in cpu_init() */
941 	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
942 		    PAGE_KERNEL_RO);
943 	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
944 
945 	/*
946 	 * Should be a barrier for any external CPU state:
947 	 */
948 	cpu_init();
949 
950 	idt_setup_ist_traps();
951 
952 	x86_init.irqs.trap_init();
953 
954 	idt_setup_debugidt_traps();
955 }
956