xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 76ce0265)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <asm/stacktrace.h>
41 #include <asm/processor.h>
42 #include <asm/debugreg.h>
43 #include <linux/atomic.h>
44 #include <asm/text-patching.h>
45 #include <asm/ftrace.h>
46 #include <asm/traps.h>
47 #include <asm/desc.h>
48 #include <asm/fpu/internal.h>
49 #include <asm/cpu_entry_area.h>
50 #include <asm/mce.h>
51 #include <asm/fixmap.h>
52 #include <asm/mach_traps.h>
53 #include <asm/alternative.h>
54 #include <asm/fpu/xstate.h>
55 #include <asm/vm86.h>
56 #include <asm/umip.h>
57 #include <asm/insn.h>
58 #include <asm/insn-eval.h>
59 
60 #ifdef CONFIG_X86_64
61 #include <asm/x86_init.h>
62 #include <asm/pgalloc.h>
63 #include <asm/proto.h>
64 #else
65 #include <asm/processor-flags.h>
66 #include <asm/setup.h>
67 #include <asm/proto.h>
68 #endif
69 
70 DECLARE_BITMAP(system_vectors, NR_VECTORS);
71 
72 static inline void cond_local_irq_enable(struct pt_regs *regs)
73 {
74 	if (regs->flags & X86_EFLAGS_IF)
75 		local_irq_enable();
76 }
77 
78 static inline void cond_local_irq_disable(struct pt_regs *regs)
79 {
80 	if (regs->flags & X86_EFLAGS_IF)
81 		local_irq_disable();
82 }
83 
84 /*
85  * In IST context, we explicitly disable preemption.  This serves two
86  * purposes: it makes it much less likely that we would accidentally
87  * schedule in IST context and it will force a warning if we somehow
88  * manage to schedule by accident.
89  */
90 void ist_enter(struct pt_regs *regs)
91 {
92 	if (user_mode(regs)) {
93 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
94 	} else {
95 		/*
96 		 * We might have interrupted pretty much anything.  In
97 		 * fact, if we're a machine check, we can even interrupt
98 		 * NMI processing.  We don't want in_nmi() to return true,
99 		 * but we need to notify RCU.
100 		 */
101 		rcu_nmi_enter();
102 	}
103 
104 	preempt_disable();
105 
106 	/* This code is a bit fragile.  Test it. */
107 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
108 }
109 NOKPROBE_SYMBOL(ist_enter);
110 
111 void ist_exit(struct pt_regs *regs)
112 {
113 	preempt_enable_no_resched();
114 
115 	if (!user_mode(regs))
116 		rcu_nmi_exit();
117 }
118 
119 /**
120  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
121  * @regs:	regs passed to the IST exception handler
122  *
123  * IST exception handlers normally cannot schedule.  As a special
124  * exception, if the exception interrupted userspace code (i.e.
125  * user_mode(regs) would return true) and the exception was not
126  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
127  * begins a non-atomic section within an ist_enter()/ist_exit() region.
128  * Callers are responsible for enabling interrupts themselves inside
129  * the non-atomic section, and callers must call ist_end_non_atomic()
130  * before ist_exit().
131  */
132 void ist_begin_non_atomic(struct pt_regs *regs)
133 {
134 	BUG_ON(!user_mode(regs));
135 
136 	/*
137 	 * Sanity check: we need to be on the normal thread stack.  This
138 	 * will catch asm bugs and any attempt to use ist_preempt_enable
139 	 * from double_fault.
140 	 */
141 	BUG_ON(!on_thread_stack());
142 
143 	preempt_enable_no_resched();
144 }
145 
146 /**
147  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
148  *
149  * Ends a non-atomic section started with ist_begin_non_atomic().
150  */
151 void ist_end_non_atomic(void)
152 {
153 	preempt_disable();
154 }
155 
156 int is_valid_bugaddr(unsigned long addr)
157 {
158 	unsigned short ud;
159 
160 	if (addr < TASK_SIZE_MAX)
161 		return 0;
162 
163 	if (probe_kernel_address((unsigned short *)addr, ud))
164 		return 0;
165 
166 	return ud == INSN_UD0 || ud == INSN_UD2;
167 }
168 
169 int fixup_bug(struct pt_regs *regs, int trapnr)
170 {
171 	if (trapnr != X86_TRAP_UD)
172 		return 0;
173 
174 	switch (report_bug(regs->ip, regs)) {
175 	case BUG_TRAP_TYPE_NONE:
176 	case BUG_TRAP_TYPE_BUG:
177 		break;
178 
179 	case BUG_TRAP_TYPE_WARN:
180 		regs->ip += LEN_UD2;
181 		return 1;
182 	}
183 
184 	return 0;
185 }
186 
187 static nokprobe_inline int
188 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
189 		  struct pt_regs *regs,	long error_code)
190 {
191 	if (v8086_mode(regs)) {
192 		/*
193 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
194 		 * On nmi (interrupt 2), do_trap should not be called.
195 		 */
196 		if (trapnr < X86_TRAP_UD) {
197 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
198 						error_code, trapnr))
199 				return 0;
200 		}
201 	} else if (!user_mode(regs)) {
202 		if (fixup_exception(regs, trapnr, error_code, 0))
203 			return 0;
204 
205 		tsk->thread.error_code = error_code;
206 		tsk->thread.trap_nr = trapnr;
207 		die(str, regs, error_code);
208 	}
209 
210 	/*
211 	 * We want error_code and trap_nr set for userspace faults and
212 	 * kernelspace faults which result in die(), but not
213 	 * kernelspace faults which are fixed up.  die() gives the
214 	 * process no chance to handle the signal and notice the
215 	 * kernel fault information, so that won't result in polluting
216 	 * the information about previously queued, but not yet
217 	 * delivered, faults.  See also do_general_protection below.
218 	 */
219 	tsk->thread.error_code = error_code;
220 	tsk->thread.trap_nr = trapnr;
221 
222 	return -1;
223 }
224 
225 static void show_signal(struct task_struct *tsk, int signr,
226 			const char *type, const char *desc,
227 			struct pt_regs *regs, long error_code)
228 {
229 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
230 	    printk_ratelimit()) {
231 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
232 			tsk->comm, task_pid_nr(tsk), type, desc,
233 			regs->ip, regs->sp, error_code);
234 		print_vma_addr(KERN_CONT " in ", regs->ip);
235 		pr_cont("\n");
236 	}
237 }
238 
239 static void
240 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
241 	long error_code, int sicode, void __user *addr)
242 {
243 	struct task_struct *tsk = current;
244 
245 
246 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
247 		return;
248 
249 	show_signal(tsk, signr, "trap ", str, regs, error_code);
250 
251 	if (!sicode)
252 		force_sig(signr);
253 	else
254 		force_sig_fault(signr, sicode, addr);
255 }
256 NOKPROBE_SYMBOL(do_trap);
257 
258 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
259 	unsigned long trapnr, int signr, int sicode, void __user *addr)
260 {
261 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
262 
263 	/*
264 	 * WARN*()s end up here; fix them up before we call the
265 	 * notifier chain.
266 	 */
267 	if (!user_mode(regs) && fixup_bug(regs, trapnr))
268 		return;
269 
270 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
271 			NOTIFY_STOP) {
272 		cond_local_irq_enable(regs);
273 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
274 	}
275 }
276 
277 #define IP ((void __user *)uprobe_get_trap_addr(regs))
278 #define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
279 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
280 {									   \
281 	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
282 }
283 
284 DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
285 DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
286 DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
287 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
288 DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
289 DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
290 DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
291 DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
292 #undef IP
293 
294 #ifdef CONFIG_VMAP_STACK
295 __visible void __noreturn handle_stack_overflow(const char *message,
296 						struct pt_regs *regs,
297 						unsigned long fault_address)
298 {
299 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
300 		 (void *)fault_address, current->stack,
301 		 (char *)current->stack + THREAD_SIZE - 1);
302 	die(message, regs, 0);
303 
304 	/* Be absolutely certain we don't return. */
305 	panic("%s", message);
306 }
307 #endif
308 
309 #if defined(CONFIG_X86_64) || defined(CONFIG_DOUBLEFAULT)
310 /*
311  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
312  *
313  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
314  * SDM's warnings about double faults being unrecoverable, returning works as
315  * expected.  Presumably what the SDM actually means is that the CPU may get
316  * the register state wrong on entry, so returning could be a bad idea.
317  *
318  * Various CPU engineers have promised that double faults due to an IRET fault
319  * while the stack is read-only are, in fact, recoverable.
320  *
321  * On x86_32, this is entered through a task gate, and regs are synthesized
322  * from the TSS.  Returning is, in principle, okay, but changes to regs will
323  * be lost.  If, for some reason, we need to return to a context with modified
324  * regs, the shim code could be adjusted to synchronize the registers.
325  */
326 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
327 {
328 	static const char str[] = "double fault";
329 	struct task_struct *tsk = current;
330 
331 #ifdef CONFIG_X86_ESPFIX64
332 	extern unsigned char native_irq_return_iret[];
333 
334 	/*
335 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
336 	 * end up promoting it to a doublefault.  In that case, take
337 	 * advantage of the fact that we're not using the normal (TSS.sp0)
338 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
339 	 * and then modify our own IRET frame so that, when we return,
340 	 * we land directly at the #GP(0) vector with the stack already
341 	 * set up according to its expectations.
342 	 *
343 	 * The net result is that our #GP handler will think that we
344 	 * entered from usermode with the bad user context.
345 	 *
346 	 * No need for ist_enter here because we don't use RCU.
347 	 */
348 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
349 		regs->cs == __KERNEL_CS &&
350 		regs->ip == (unsigned long)native_irq_return_iret)
351 	{
352 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
353 
354 		/*
355 		 * regs->sp points to the failing IRET frame on the
356 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
357 		 * in gpregs->ss through gpregs->ip.
358 		 *
359 		 */
360 		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
361 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
362 
363 		/*
364 		 * Adjust our frame so that we return straight to the #GP
365 		 * vector with the expected RSP value.  This is safe because
366 		 * we won't enable interupts or schedule before we invoke
367 		 * general_protection, so nothing will clobber the stack
368 		 * frame we just set up.
369 		 *
370 		 * We will enter general_protection with kernel GSBASE,
371 		 * which is what the stub expects, given that the faulting
372 		 * RIP will be the IRET instruction.
373 		 */
374 		regs->ip = (unsigned long)general_protection;
375 		regs->sp = (unsigned long)&gpregs->orig_ax;
376 
377 		return;
378 	}
379 #endif
380 
381 	ist_enter(regs);
382 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
383 
384 	tsk->thread.error_code = error_code;
385 	tsk->thread.trap_nr = X86_TRAP_DF;
386 
387 #ifdef CONFIG_VMAP_STACK
388 	/*
389 	 * If we overflow the stack into a guard page, the CPU will fail
390 	 * to deliver #PF and will send #DF instead.  Similarly, if we
391 	 * take any non-IST exception while too close to the bottom of
392 	 * the stack, the processor will get a page fault while
393 	 * delivering the exception and will generate a double fault.
394 	 *
395 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
396 	 * Page-Fault Exception (#PF):
397 	 *
398 	 *   Processors update CR2 whenever a page fault is detected. If a
399 	 *   second page fault occurs while an earlier page fault is being
400 	 *   delivered, the faulting linear address of the second fault will
401 	 *   overwrite the contents of CR2 (replacing the previous
402 	 *   address). These updates to CR2 occur even if the page fault
403 	 *   results in a double fault or occurs during the delivery of a
404 	 *   double fault.
405 	 *
406 	 * The logic below has a small possibility of incorrectly diagnosing
407 	 * some errors as stack overflows.  For example, if the IDT or GDT
408 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
409 	 * causing #GP and we hit this condition while CR2 coincidentally
410 	 * points to the stack guard page, we'll think we overflowed the
411 	 * stack.  Given that we're going to panic one way or another
412 	 * if this happens, this isn't necessarily worth fixing.
413 	 *
414 	 * If necessary, we could improve the test by only diagnosing
415 	 * a stack overflow if the saved RSP points within 47 bytes of
416 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
417 	 * take an exception, the stack is already aligned and there
418 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
419 	 * possible error code, so a stack overflow would *not* double
420 	 * fault.  With any less space left, exception delivery could
421 	 * fail, and, as a practical matter, we've overflowed the
422 	 * stack even if the actual trigger for the double fault was
423 	 * something else.
424 	 */
425 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
426 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
427 #endif
428 
429 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
430 	die("double fault", regs, error_code);
431 	panic("Machine halted.");
432 }
433 #endif
434 
435 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
436 {
437 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
438 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
439 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
440 		return;
441 	cond_local_irq_enable(regs);
442 
443 	if (!user_mode(regs))
444 		die("bounds", regs, error_code);
445 
446 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
447 }
448 
449 enum kernel_gp_hint {
450 	GP_NO_HINT,
451 	GP_NON_CANONICAL,
452 	GP_CANONICAL
453 };
454 
455 /*
456  * When an uncaught #GP occurs, try to determine the memory address accessed by
457  * the instruction and return that address to the caller. Also, try to figure
458  * out whether any part of the access to that address was non-canonical.
459  */
460 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
461 						 unsigned long *addr)
462 {
463 	u8 insn_buf[MAX_INSN_SIZE];
464 	struct insn insn;
465 
466 	if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE))
467 		return GP_NO_HINT;
468 
469 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
470 	insn_get_modrm(&insn);
471 	insn_get_sib(&insn);
472 
473 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
474 	if (*addr == -1UL)
475 		return GP_NO_HINT;
476 
477 #ifdef CONFIG_X86_64
478 	/*
479 	 * Check that:
480 	 *  - the operand is not in the kernel half
481 	 *  - the last byte of the operand is not in the user canonical half
482 	 */
483 	if (*addr < ~__VIRTUAL_MASK &&
484 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
485 		return GP_NON_CANONICAL;
486 #endif
487 
488 	return GP_CANONICAL;
489 }
490 
491 #define GPFSTR "general protection fault"
492 
493 dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code)
494 {
495 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
496 	enum kernel_gp_hint hint = GP_NO_HINT;
497 	struct task_struct *tsk;
498 	unsigned long gp_addr;
499 	int ret;
500 
501 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
502 	cond_local_irq_enable(regs);
503 
504 	if (static_cpu_has(X86_FEATURE_UMIP)) {
505 		if (user_mode(regs) && fixup_umip_exception(regs))
506 			return;
507 	}
508 
509 	if (v8086_mode(regs)) {
510 		local_irq_enable();
511 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
512 		return;
513 	}
514 
515 	tsk = current;
516 
517 	if (user_mode(regs)) {
518 		tsk->thread.error_code = error_code;
519 		tsk->thread.trap_nr = X86_TRAP_GP;
520 
521 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
522 		force_sig(SIGSEGV);
523 
524 		return;
525 	}
526 
527 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
528 		return;
529 
530 	tsk->thread.error_code = error_code;
531 	tsk->thread.trap_nr = X86_TRAP_GP;
532 
533 	/*
534 	 * To be potentially processing a kprobe fault and to trust the result
535 	 * from kprobe_running(), we have to be non-preemptible.
536 	 */
537 	if (!preemptible() &&
538 	    kprobe_running() &&
539 	    kprobe_fault_handler(regs, X86_TRAP_GP))
540 		return;
541 
542 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
543 	if (ret == NOTIFY_STOP)
544 		return;
545 
546 	if (error_code)
547 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
548 	else
549 		hint = get_kernel_gp_address(regs, &gp_addr);
550 
551 	if (hint != GP_NO_HINT)
552 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
553 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
554 						    : "maybe for address",
555 			 gp_addr);
556 
557 	/*
558 	 * KASAN is interested only in the non-canonical case, clear it
559 	 * otherwise.
560 	 */
561 	if (hint != GP_NON_CANONICAL)
562 		gp_addr = 0;
563 
564 	die_addr(desc, regs, error_code, gp_addr);
565 
566 }
567 NOKPROBE_SYMBOL(do_general_protection);
568 
569 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
570 {
571 	if (poke_int3_handler(regs))
572 		return;
573 
574 	/*
575 	 * Use ist_enter despite the fact that we don't use an IST stack.
576 	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
577 	 * mode or even during context tracking state changes.
578 	 *
579 	 * This means that we can't schedule.  That's okay.
580 	 */
581 	ist_enter(regs);
582 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
583 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
584 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
585 				SIGTRAP) == NOTIFY_STOP)
586 		goto exit;
587 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
588 
589 #ifdef CONFIG_KPROBES
590 	if (kprobe_int3_handler(regs))
591 		goto exit;
592 #endif
593 
594 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
595 			SIGTRAP) == NOTIFY_STOP)
596 		goto exit;
597 
598 	cond_local_irq_enable(regs);
599 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
600 	cond_local_irq_disable(regs);
601 
602 exit:
603 	ist_exit(regs);
604 }
605 NOKPROBE_SYMBOL(do_int3);
606 
607 #ifdef CONFIG_X86_64
608 /*
609  * Help handler running on a per-cpu (IST or entry trampoline) stack
610  * to switch to the normal thread stack if the interrupted code was in
611  * user mode. The actual stack switch is done in entry_64.S
612  */
613 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
614 {
615 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
616 	if (regs != eregs)
617 		*regs = *eregs;
618 	return regs;
619 }
620 NOKPROBE_SYMBOL(sync_regs);
621 
622 struct bad_iret_stack {
623 	void *error_entry_ret;
624 	struct pt_regs regs;
625 };
626 
627 asmlinkage __visible notrace
628 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
629 {
630 	/*
631 	 * This is called from entry_64.S early in handling a fault
632 	 * caused by a bad iret to user mode.  To handle the fault
633 	 * correctly, we want to move our stack frame to where it would
634 	 * be had we entered directly on the entry stack (rather than
635 	 * just below the IRET frame) and we want to pretend that the
636 	 * exception came from the IRET target.
637 	 */
638 	struct bad_iret_stack *new_stack =
639 		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
640 
641 	/* Copy the IRET target to the new stack. */
642 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
643 
644 	/* Copy the remainder of the stack from the current stack. */
645 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
646 
647 	BUG_ON(!user_mode(&new_stack->regs));
648 	return new_stack;
649 }
650 NOKPROBE_SYMBOL(fixup_bad_iret);
651 #endif
652 
653 static bool is_sysenter_singlestep(struct pt_regs *regs)
654 {
655 	/*
656 	 * We don't try for precision here.  If we're anywhere in the region of
657 	 * code that can be single-stepped in the SYSENTER entry path, then
658 	 * assume that this is a useless single-step trap due to SYSENTER
659 	 * being invoked with TF set.  (We don't know in advance exactly
660 	 * which instructions will be hit because BTF could plausibly
661 	 * be set.)
662 	 */
663 #ifdef CONFIG_X86_32
664 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
665 		(unsigned long)__end_SYSENTER_singlestep_region -
666 		(unsigned long)__begin_SYSENTER_singlestep_region;
667 #elif defined(CONFIG_IA32_EMULATION)
668 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
669 		(unsigned long)__end_entry_SYSENTER_compat -
670 		(unsigned long)entry_SYSENTER_compat;
671 #else
672 	return false;
673 #endif
674 }
675 
676 /*
677  * Our handling of the processor debug registers is non-trivial.
678  * We do not clear them on entry and exit from the kernel. Therefore
679  * it is possible to get a watchpoint trap here from inside the kernel.
680  * However, the code in ./ptrace.c has ensured that the user can
681  * only set watchpoints on userspace addresses. Therefore the in-kernel
682  * watchpoint trap can only occur in code which is reading/writing
683  * from user space. Such code must not hold kernel locks (since it
684  * can equally take a page fault), therefore it is safe to call
685  * force_sig_info even though that claims and releases locks.
686  *
687  * Code in ./signal.c ensures that the debug control register
688  * is restored before we deliver any signal, and therefore that
689  * user code runs with the correct debug control register even though
690  * we clear it here.
691  *
692  * Being careful here means that we don't have to be as careful in a
693  * lot of more complicated places (task switching can be a bit lazy
694  * about restoring all the debug state, and ptrace doesn't have to
695  * find every occurrence of the TF bit that could be saved away even
696  * by user code)
697  *
698  * May run on IST stack.
699  */
700 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
701 {
702 	struct task_struct *tsk = current;
703 	int user_icebp = 0;
704 	unsigned long dr6;
705 	int si_code;
706 
707 	ist_enter(regs);
708 
709 	get_debugreg(dr6, 6);
710 	/*
711 	 * The Intel SDM says:
712 	 *
713 	 *   Certain debug exceptions may clear bits 0-3. The remaining
714 	 *   contents of the DR6 register are never cleared by the
715 	 *   processor. To avoid confusion in identifying debug
716 	 *   exceptions, debug handlers should clear the register before
717 	 *   returning to the interrupted task.
718 	 *
719 	 * Keep it simple: clear DR6 immediately.
720 	 */
721 	set_debugreg(0, 6);
722 
723 	/* Filter out all the reserved bits which are preset to 1 */
724 	dr6 &= ~DR6_RESERVED;
725 
726 	/*
727 	 * The SDM says "The processor clears the BTF flag when it
728 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
729 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
730 	 */
731 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
732 
733 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
734 		     is_sysenter_singlestep(regs))) {
735 		dr6 &= ~DR_STEP;
736 		if (!dr6)
737 			goto exit;
738 		/*
739 		 * else we might have gotten a single-step trap and hit a
740 		 * watchpoint at the same time, in which case we should fall
741 		 * through and handle the watchpoint.
742 		 */
743 	}
744 
745 	/*
746 	 * If dr6 has no reason to give us about the origin of this trap,
747 	 * then it's very likely the result of an icebp/int01 trap.
748 	 * User wants a sigtrap for that.
749 	 */
750 	if (!dr6 && user_mode(regs))
751 		user_icebp = 1;
752 
753 	/* Store the virtualized DR6 value */
754 	tsk->thread.debugreg6 = dr6;
755 
756 #ifdef CONFIG_KPROBES
757 	if (kprobe_debug_handler(regs))
758 		goto exit;
759 #endif
760 
761 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
762 							SIGTRAP) == NOTIFY_STOP)
763 		goto exit;
764 
765 	/*
766 	 * Let others (NMI) know that the debug stack is in use
767 	 * as we may switch to the interrupt stack.
768 	 */
769 	debug_stack_usage_inc();
770 
771 	/* It's safe to allow irq's after DR6 has been saved */
772 	cond_local_irq_enable(regs);
773 
774 	if (v8086_mode(regs)) {
775 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
776 					X86_TRAP_DB);
777 		cond_local_irq_disable(regs);
778 		debug_stack_usage_dec();
779 		goto exit;
780 	}
781 
782 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
783 		/*
784 		 * Historical junk that used to handle SYSENTER single-stepping.
785 		 * This should be unreachable now.  If we survive for a while
786 		 * without anyone hitting this warning, we'll turn this into
787 		 * an oops.
788 		 */
789 		tsk->thread.debugreg6 &= ~DR_STEP;
790 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
791 		regs->flags &= ~X86_EFLAGS_TF;
792 	}
793 	si_code = get_si_code(tsk->thread.debugreg6);
794 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
795 		send_sigtrap(regs, error_code, si_code);
796 	cond_local_irq_disable(regs);
797 	debug_stack_usage_dec();
798 
799 exit:
800 	ist_exit(regs);
801 }
802 NOKPROBE_SYMBOL(do_debug);
803 
804 /*
805  * Note that we play around with the 'TS' bit in an attempt to get
806  * the correct behaviour even in the presence of the asynchronous
807  * IRQ13 behaviour
808  */
809 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
810 {
811 	struct task_struct *task = current;
812 	struct fpu *fpu = &task->thread.fpu;
813 	int si_code;
814 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
815 						"simd exception";
816 
817 	cond_local_irq_enable(regs);
818 
819 	if (!user_mode(regs)) {
820 		if (fixup_exception(regs, trapnr, error_code, 0))
821 			return;
822 
823 		task->thread.error_code = error_code;
824 		task->thread.trap_nr = trapnr;
825 
826 		if (notify_die(DIE_TRAP, str, regs, error_code,
827 					trapnr, SIGFPE) != NOTIFY_STOP)
828 			die(str, regs, error_code);
829 		return;
830 	}
831 
832 	/*
833 	 * Save the info for the exception handler and clear the error.
834 	 */
835 	fpu__save(fpu);
836 
837 	task->thread.trap_nr	= trapnr;
838 	task->thread.error_code = error_code;
839 
840 	si_code = fpu__exception_code(fpu, trapnr);
841 	/* Retry when we get spurious exceptions: */
842 	if (!si_code)
843 		return;
844 
845 	force_sig_fault(SIGFPE, si_code,
846 			(void __user *)uprobe_get_trap_addr(regs));
847 }
848 
849 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
850 {
851 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
852 	math_error(regs, error_code, X86_TRAP_MF);
853 }
854 
855 dotraplinkage void
856 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
857 {
858 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
859 	math_error(regs, error_code, X86_TRAP_XF);
860 }
861 
862 dotraplinkage void
863 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
864 {
865 	cond_local_irq_enable(regs);
866 }
867 
868 dotraplinkage void
869 do_device_not_available(struct pt_regs *regs, long error_code)
870 {
871 	unsigned long cr0 = read_cr0();
872 
873 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
874 
875 #ifdef CONFIG_MATH_EMULATION
876 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
877 		struct math_emu_info info = { };
878 
879 		cond_local_irq_enable(regs);
880 
881 		info.regs = regs;
882 		math_emulate(&info);
883 		return;
884 	}
885 #endif
886 
887 	/* This should not happen. */
888 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
889 		/* Try to fix it up and carry on. */
890 		write_cr0(cr0 & ~X86_CR0_TS);
891 	} else {
892 		/*
893 		 * Something terrible happened, and we're better off trying
894 		 * to kill the task than getting stuck in a never-ending
895 		 * loop of #NM faults.
896 		 */
897 		die("unexpected #NM exception", regs, error_code);
898 	}
899 }
900 NOKPROBE_SYMBOL(do_device_not_available);
901 
902 #ifdef CONFIG_X86_32
903 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
904 {
905 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
906 	local_irq_enable();
907 
908 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
909 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
910 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
911 			ILL_BADSTK, (void __user *)NULL);
912 	}
913 }
914 #endif
915 
916 void __init trap_init(void)
917 {
918 	/* Init cpu_entry_area before IST entries are set up */
919 	setup_cpu_entry_areas();
920 
921 	idt_setup_traps();
922 
923 	/*
924 	 * Set the IDT descriptor to a fixed read-only location, so that the
925 	 * "sidt" instruction will not leak the location of the kernel, and
926 	 * to defend the IDT against arbitrary memory write vulnerabilities.
927 	 * It will be reloaded in cpu_init() */
928 	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
929 		    PAGE_KERNEL_RO);
930 	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
931 
932 	/*
933 	 * Should be a barrier for any external CPU state:
934 	 */
935 	cpu_init();
936 
937 	idt_setup_ist_traps();
938 
939 	x86_init.irqs.trap_init();
940 
941 	idt_setup_debugidt_traps();
942 }
943