xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 74ce1896)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
44 
45 #include <asm/kmemcheck.h>
46 #include <asm/stacktrace.h>
47 #include <asm/processor.h>
48 #include <asm/debugreg.h>
49 #include <linux/atomic.h>
50 #include <asm/text-patching.h>
51 #include <asm/ftrace.h>
52 #include <asm/traps.h>
53 #include <asm/desc.h>
54 #include <asm/fpu/internal.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
63 
64 #ifdef CONFIG_X86_64
65 #include <asm/x86_init.h>
66 #include <asm/pgalloc.h>
67 #include <asm/proto.h>
68 #else
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
72 #endif
73 
74 DECLARE_BITMAP(used_vectors, NR_VECTORS);
75 
76 static inline void cond_local_irq_enable(struct pt_regs *regs)
77 {
78 	if (regs->flags & X86_EFLAGS_IF)
79 		local_irq_enable();
80 }
81 
82 static inline void cond_local_irq_disable(struct pt_regs *regs)
83 {
84 	if (regs->flags & X86_EFLAGS_IF)
85 		local_irq_disable();
86 }
87 
88 /*
89  * In IST context, we explicitly disable preemption.  This serves two
90  * purposes: it makes it much less likely that we would accidentally
91  * schedule in IST context and it will force a warning if we somehow
92  * manage to schedule by accident.
93  */
94 void ist_enter(struct pt_regs *regs)
95 {
96 	if (user_mode(regs)) {
97 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
98 	} else {
99 		/*
100 		 * We might have interrupted pretty much anything.  In
101 		 * fact, if we're a machine check, we can even interrupt
102 		 * NMI processing.  We don't want in_nmi() to return true,
103 		 * but we need to notify RCU.
104 		 */
105 		rcu_nmi_enter();
106 	}
107 
108 	preempt_disable();
109 
110 	/* This code is a bit fragile.  Test it. */
111 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
112 }
113 
114 void ist_exit(struct pt_regs *regs)
115 {
116 	preempt_enable_no_resched();
117 
118 	if (!user_mode(regs))
119 		rcu_nmi_exit();
120 }
121 
122 /**
123  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
124  * @regs:	regs passed to the IST exception handler
125  *
126  * IST exception handlers normally cannot schedule.  As a special
127  * exception, if the exception interrupted userspace code (i.e.
128  * user_mode(regs) would return true) and the exception was not
129  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
130  * begins a non-atomic section within an ist_enter()/ist_exit() region.
131  * Callers are responsible for enabling interrupts themselves inside
132  * the non-atomic section, and callers must call ist_end_non_atomic()
133  * before ist_exit().
134  */
135 void ist_begin_non_atomic(struct pt_regs *regs)
136 {
137 	BUG_ON(!user_mode(regs));
138 
139 	/*
140 	 * Sanity check: we need to be on the normal thread stack.  This
141 	 * will catch asm bugs and any attempt to use ist_preempt_enable
142 	 * from double_fault.
143 	 */
144 	BUG_ON((unsigned long)(current_top_of_stack() -
145 			       current_stack_pointer()) >= THREAD_SIZE);
146 
147 	preempt_enable_no_resched();
148 }
149 
150 /**
151  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152  *
153  * Ends a non-atomic section started with ist_begin_non_atomic().
154  */
155 void ist_end_non_atomic(void)
156 {
157 	preempt_disable();
158 }
159 
160 int is_valid_bugaddr(unsigned long addr)
161 {
162 	unsigned short ud;
163 
164 	if (addr < TASK_SIZE_MAX)
165 		return 0;
166 
167 	if (probe_kernel_address((unsigned short *)addr, ud))
168 		return 0;
169 
170 	return ud == INSN_UD0 || ud == INSN_UD2;
171 }
172 
173 int fixup_bug(struct pt_regs *regs, int trapnr)
174 {
175 	if (trapnr != X86_TRAP_UD)
176 		return 0;
177 
178 	switch (report_bug(regs->ip, regs)) {
179 	case BUG_TRAP_TYPE_NONE:
180 	case BUG_TRAP_TYPE_BUG:
181 		break;
182 
183 	case BUG_TRAP_TYPE_WARN:
184 		regs->ip += LEN_UD0;
185 		return 1;
186 	}
187 
188 	return 0;
189 }
190 
191 static nokprobe_inline int
192 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
193 		  struct pt_regs *regs,	long error_code)
194 {
195 	if (v8086_mode(regs)) {
196 		/*
197 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198 		 * On nmi (interrupt 2), do_trap should not be called.
199 		 */
200 		if (trapnr < X86_TRAP_UD) {
201 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202 						error_code, trapnr))
203 				return 0;
204 		}
205 		return -1;
206 	}
207 
208 	if (!user_mode(regs)) {
209 		if (fixup_exception(regs, trapnr))
210 			return 0;
211 
212 		if (fixup_bug(regs, trapnr))
213 			return 0;
214 
215 		tsk->thread.error_code = error_code;
216 		tsk->thread.trap_nr = trapnr;
217 		die(str, regs, error_code);
218 	}
219 
220 	return -1;
221 }
222 
223 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
224 				siginfo_t *info)
225 {
226 	unsigned long siaddr;
227 	int sicode;
228 
229 	switch (trapnr) {
230 	default:
231 		return SEND_SIG_PRIV;
232 
233 	case X86_TRAP_DE:
234 		sicode = FPE_INTDIV;
235 		siaddr = uprobe_get_trap_addr(regs);
236 		break;
237 	case X86_TRAP_UD:
238 		sicode = ILL_ILLOPN;
239 		siaddr = uprobe_get_trap_addr(regs);
240 		break;
241 	case X86_TRAP_AC:
242 		sicode = BUS_ADRALN;
243 		siaddr = 0;
244 		break;
245 	}
246 
247 	info->si_signo = signr;
248 	info->si_errno = 0;
249 	info->si_code = sicode;
250 	info->si_addr = (void __user *)siaddr;
251 	return info;
252 }
253 
254 static void
255 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
256 	long error_code, siginfo_t *info)
257 {
258 	struct task_struct *tsk = current;
259 
260 
261 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
262 		return;
263 	/*
264 	 * We want error_code and trap_nr set for userspace faults and
265 	 * kernelspace faults which result in die(), but not
266 	 * kernelspace faults which are fixed up.  die() gives the
267 	 * process no chance to handle the signal and notice the
268 	 * kernel fault information, so that won't result in polluting
269 	 * the information about previously queued, but not yet
270 	 * delivered, faults.  See also do_general_protection below.
271 	 */
272 	tsk->thread.error_code = error_code;
273 	tsk->thread.trap_nr = trapnr;
274 
275 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
276 	    printk_ratelimit()) {
277 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
278 			tsk->comm, tsk->pid, str,
279 			regs->ip, regs->sp, error_code);
280 		print_vma_addr(KERN_CONT " in ", regs->ip);
281 		pr_cont("\n");
282 	}
283 
284 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
285 }
286 NOKPROBE_SYMBOL(do_trap);
287 
288 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
289 			  unsigned long trapnr, int signr)
290 {
291 	siginfo_t info;
292 
293 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
294 
295 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
296 			NOTIFY_STOP) {
297 		cond_local_irq_enable(regs);
298 		do_trap(trapnr, signr, str, regs, error_code,
299 			fill_trap_info(regs, signr, trapnr, &info));
300 	}
301 }
302 
303 #define DO_ERROR(trapnr, signr, str, name)				\
304 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
305 {									\
306 	do_error_trap(regs, error_code, str, trapnr, signr);		\
307 }
308 
309 DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
310 DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
311 DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
312 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
313 DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
314 DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
315 DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
316 DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
317 
318 #ifdef CONFIG_VMAP_STACK
319 __visible void __noreturn handle_stack_overflow(const char *message,
320 						struct pt_regs *regs,
321 						unsigned long fault_address)
322 {
323 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
324 		 (void *)fault_address, current->stack,
325 		 (char *)current->stack + THREAD_SIZE - 1);
326 	die(message, regs, 0);
327 
328 	/* Be absolutely certain we don't return. */
329 	panic(message);
330 }
331 #endif
332 
333 #ifdef CONFIG_X86_64
334 /* Runs on IST stack */
335 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
336 {
337 	static const char str[] = "double fault";
338 	struct task_struct *tsk = current;
339 #ifdef CONFIG_VMAP_STACK
340 	unsigned long cr2;
341 #endif
342 
343 #ifdef CONFIG_X86_ESPFIX64
344 	extern unsigned char native_irq_return_iret[];
345 
346 	/*
347 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
348 	 * end up promoting it to a doublefault.  In that case, modify
349 	 * the stack to make it look like we just entered the #GP
350 	 * handler from user space, similar to bad_iret.
351 	 *
352 	 * No need for ist_enter here because we don't use RCU.
353 	 */
354 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
355 		regs->cs == __KERNEL_CS &&
356 		regs->ip == (unsigned long)native_irq_return_iret)
357 	{
358 		struct pt_regs *normal_regs = task_pt_regs(current);
359 
360 		/* Fake a #GP(0) from userspace. */
361 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
362 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
363 		regs->ip = (unsigned long)general_protection;
364 		regs->sp = (unsigned long)&normal_regs->orig_ax;
365 
366 		return;
367 	}
368 #endif
369 
370 	ist_enter(regs);
371 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
372 
373 	tsk->thread.error_code = error_code;
374 	tsk->thread.trap_nr = X86_TRAP_DF;
375 
376 #ifdef CONFIG_VMAP_STACK
377 	/*
378 	 * If we overflow the stack into a guard page, the CPU will fail
379 	 * to deliver #PF and will send #DF instead.  Similarly, if we
380 	 * take any non-IST exception while too close to the bottom of
381 	 * the stack, the processor will get a page fault while
382 	 * delivering the exception and will generate a double fault.
383 	 *
384 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
385 	 * Page-Fault Exception (#PF):
386 	 *
387 	 *   Processors update CR2 whenever a page fault is detected. If a
388 	 *   second page fault occurs while an earlier page fault is being
389 	 *   deliv- ered, the faulting linear address of the second fault will
390 	 *   overwrite the contents of CR2 (replacing the previous
391 	 *   address). These updates to CR2 occur even if the page fault
392 	 *   results in a double fault or occurs during the delivery of a
393 	 *   double fault.
394 	 *
395 	 * The logic below has a small possibility of incorrectly diagnosing
396 	 * some errors as stack overflows.  For example, if the IDT or GDT
397 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
398 	 * causing #GP and we hit this condition while CR2 coincidentally
399 	 * points to the stack guard page, we'll think we overflowed the
400 	 * stack.  Given that we're going to panic one way or another
401 	 * if this happens, this isn't necessarily worth fixing.
402 	 *
403 	 * If necessary, we could improve the test by only diagnosing
404 	 * a stack overflow if the saved RSP points within 47 bytes of
405 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
406 	 * take an exception, the stack is already aligned and there
407 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
408 	 * possible error code, so a stack overflow would *not* double
409 	 * fault.  With any less space left, exception delivery could
410 	 * fail, and, as a practical matter, we've overflowed the
411 	 * stack even if the actual trigger for the double fault was
412 	 * something else.
413 	 */
414 	cr2 = read_cr2();
415 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
417 #endif
418 
419 #ifdef CONFIG_DOUBLEFAULT
420 	df_debug(regs, error_code);
421 #endif
422 	/*
423 	 * This is always a kernel trap and never fixable (and thus must
424 	 * never return).
425 	 */
426 	for (;;)
427 		die(str, regs, error_code);
428 }
429 #endif
430 
431 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
432 {
433 	const struct mpx_bndcsr *bndcsr;
434 	siginfo_t *info;
435 
436 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
437 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
438 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
439 		return;
440 	cond_local_irq_enable(regs);
441 
442 	if (!user_mode(regs))
443 		die("bounds", regs, error_code);
444 
445 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
446 		/* The exception is not from Intel MPX */
447 		goto exit_trap;
448 	}
449 
450 	/*
451 	 * We need to look at BNDSTATUS to resolve this exception.
452 	 * A NULL here might mean that it is in its 'init state',
453 	 * which is all zeros which indicates MPX was not
454 	 * responsible for the exception.
455 	 */
456 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
457 	if (!bndcsr)
458 		goto exit_trap;
459 
460 	trace_bounds_exception_mpx(bndcsr);
461 	/*
462 	 * The error code field of the BNDSTATUS register communicates status
463 	 * information of a bound range exception #BR or operation involving
464 	 * bound directory.
465 	 */
466 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
467 	case 2:	/* Bound directory has invalid entry. */
468 		if (mpx_handle_bd_fault())
469 			goto exit_trap;
470 		break; /* Success, it was handled */
471 	case 1: /* Bound violation. */
472 		info = mpx_generate_siginfo(regs);
473 		if (IS_ERR(info)) {
474 			/*
475 			 * We failed to decode the MPX instruction.  Act as if
476 			 * the exception was not caused by MPX.
477 			 */
478 			goto exit_trap;
479 		}
480 		/*
481 		 * Success, we decoded the instruction and retrieved
482 		 * an 'info' containing the address being accessed
483 		 * which caused the exception.  This information
484 		 * allows and application to possibly handle the
485 		 * #BR exception itself.
486 		 */
487 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
488 		kfree(info);
489 		break;
490 	case 0: /* No exception caused by Intel MPX operations. */
491 		goto exit_trap;
492 	default:
493 		die("bounds", regs, error_code);
494 	}
495 
496 	return;
497 
498 exit_trap:
499 	/*
500 	 * This path out is for all the cases where we could not
501 	 * handle the exception in some way (like allocating a
502 	 * table or telling userspace about it.  We will also end
503 	 * up here if the kernel has MPX turned off at compile
504 	 * time..
505 	 */
506 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
507 }
508 
509 dotraplinkage void
510 do_general_protection(struct pt_regs *regs, long error_code)
511 {
512 	struct task_struct *tsk;
513 
514 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
515 	cond_local_irq_enable(regs);
516 
517 	if (v8086_mode(regs)) {
518 		local_irq_enable();
519 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
520 		return;
521 	}
522 
523 	tsk = current;
524 	if (!user_mode(regs)) {
525 		if (fixup_exception(regs, X86_TRAP_GP))
526 			return;
527 
528 		tsk->thread.error_code = error_code;
529 		tsk->thread.trap_nr = X86_TRAP_GP;
530 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
531 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
532 			die("general protection fault", regs, error_code);
533 		return;
534 	}
535 
536 	tsk->thread.error_code = error_code;
537 	tsk->thread.trap_nr = X86_TRAP_GP;
538 
539 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
540 			printk_ratelimit()) {
541 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
542 			tsk->comm, task_pid_nr(tsk),
543 			regs->ip, regs->sp, error_code);
544 		print_vma_addr(KERN_CONT " in ", regs->ip);
545 		pr_cont("\n");
546 	}
547 
548 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
549 }
550 NOKPROBE_SYMBOL(do_general_protection);
551 
552 /* May run on IST stack. */
553 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
554 {
555 #ifdef CONFIG_DYNAMIC_FTRACE
556 	/*
557 	 * ftrace must be first, everything else may cause a recursive crash.
558 	 * See note by declaration of modifying_ftrace_code in ftrace.c
559 	 */
560 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
561 	    ftrace_int3_handler(regs))
562 		return;
563 #endif
564 	if (poke_int3_handler(regs))
565 		return;
566 
567 	ist_enter(regs);
568 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
569 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
570 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
571 				SIGTRAP) == NOTIFY_STOP)
572 		goto exit;
573 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
574 
575 #ifdef CONFIG_KPROBES
576 	if (kprobe_int3_handler(regs))
577 		goto exit;
578 #endif
579 
580 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
581 			SIGTRAP) == NOTIFY_STOP)
582 		goto exit;
583 
584 	/*
585 	 * Let others (NMI) know that the debug stack is in use
586 	 * as we may switch to the interrupt stack.
587 	 */
588 	debug_stack_usage_inc();
589 	cond_local_irq_enable(regs);
590 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
591 	cond_local_irq_disable(regs);
592 	debug_stack_usage_dec();
593 exit:
594 	ist_exit(regs);
595 }
596 NOKPROBE_SYMBOL(do_int3);
597 
598 #ifdef CONFIG_X86_64
599 /*
600  * Help handler running on IST stack to switch off the IST stack if the
601  * interrupted code was in user mode. The actual stack switch is done in
602  * entry_64.S
603  */
604 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
605 {
606 	struct pt_regs *regs = task_pt_regs(current);
607 	*regs = *eregs;
608 	return regs;
609 }
610 NOKPROBE_SYMBOL(sync_regs);
611 
612 struct bad_iret_stack {
613 	void *error_entry_ret;
614 	struct pt_regs regs;
615 };
616 
617 asmlinkage __visible notrace
618 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
619 {
620 	/*
621 	 * This is called from entry_64.S early in handling a fault
622 	 * caused by a bad iret to user mode.  To handle the fault
623 	 * correctly, we want move our stack frame to task_pt_regs
624 	 * and we want to pretend that the exception came from the
625 	 * iret target.
626 	 */
627 	struct bad_iret_stack *new_stack =
628 		container_of(task_pt_regs(current),
629 			     struct bad_iret_stack, regs);
630 
631 	/* Copy the IRET target to the new stack. */
632 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
633 
634 	/* Copy the remainder of the stack from the current stack. */
635 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
636 
637 	BUG_ON(!user_mode(&new_stack->regs));
638 	return new_stack;
639 }
640 NOKPROBE_SYMBOL(fixup_bad_iret);
641 #endif
642 
643 static bool is_sysenter_singlestep(struct pt_regs *regs)
644 {
645 	/*
646 	 * We don't try for precision here.  If we're anywhere in the region of
647 	 * code that can be single-stepped in the SYSENTER entry path, then
648 	 * assume that this is a useless single-step trap due to SYSENTER
649 	 * being invoked with TF set.  (We don't know in advance exactly
650 	 * which instructions will be hit because BTF could plausibly
651 	 * be set.)
652 	 */
653 #ifdef CONFIG_X86_32
654 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
655 		(unsigned long)__end_SYSENTER_singlestep_region -
656 		(unsigned long)__begin_SYSENTER_singlestep_region;
657 #elif defined(CONFIG_IA32_EMULATION)
658 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
659 		(unsigned long)__end_entry_SYSENTER_compat -
660 		(unsigned long)entry_SYSENTER_compat;
661 #else
662 	return false;
663 #endif
664 }
665 
666 /*
667  * Our handling of the processor debug registers is non-trivial.
668  * We do not clear them on entry and exit from the kernel. Therefore
669  * it is possible to get a watchpoint trap here from inside the kernel.
670  * However, the code in ./ptrace.c has ensured that the user can
671  * only set watchpoints on userspace addresses. Therefore the in-kernel
672  * watchpoint trap can only occur in code which is reading/writing
673  * from user space. Such code must not hold kernel locks (since it
674  * can equally take a page fault), therefore it is safe to call
675  * force_sig_info even though that claims and releases locks.
676  *
677  * Code in ./signal.c ensures that the debug control register
678  * is restored before we deliver any signal, and therefore that
679  * user code runs with the correct debug control register even though
680  * we clear it here.
681  *
682  * Being careful here means that we don't have to be as careful in a
683  * lot of more complicated places (task switching can be a bit lazy
684  * about restoring all the debug state, and ptrace doesn't have to
685  * find every occurrence of the TF bit that could be saved away even
686  * by user code)
687  *
688  * May run on IST stack.
689  */
690 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
691 {
692 	struct task_struct *tsk = current;
693 	int user_icebp = 0;
694 	unsigned long dr6;
695 	int si_code;
696 
697 	ist_enter(regs);
698 
699 	get_debugreg(dr6, 6);
700 	/*
701 	 * The Intel SDM says:
702 	 *
703 	 *   Certain debug exceptions may clear bits 0-3. The remaining
704 	 *   contents of the DR6 register are never cleared by the
705 	 *   processor. To avoid confusion in identifying debug
706 	 *   exceptions, debug handlers should clear the register before
707 	 *   returning to the interrupted task.
708 	 *
709 	 * Keep it simple: clear DR6 immediately.
710 	 */
711 	set_debugreg(0, 6);
712 
713 	/* Filter out all the reserved bits which are preset to 1 */
714 	dr6 &= ~DR6_RESERVED;
715 
716 	/*
717 	 * The SDM says "The processor clears the BTF flag when it
718 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
719 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
720 	 */
721 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
722 
723 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
724 		     is_sysenter_singlestep(regs))) {
725 		dr6 &= ~DR_STEP;
726 		if (!dr6)
727 			goto exit;
728 		/*
729 		 * else we might have gotten a single-step trap and hit a
730 		 * watchpoint at the same time, in which case we should fall
731 		 * through and handle the watchpoint.
732 		 */
733 	}
734 
735 	/*
736 	 * If dr6 has no reason to give us about the origin of this trap,
737 	 * then it's very likely the result of an icebp/int01 trap.
738 	 * User wants a sigtrap for that.
739 	 */
740 	if (!dr6 && user_mode(regs))
741 		user_icebp = 1;
742 
743 	/* Catch kmemcheck conditions! */
744 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
745 		goto exit;
746 
747 	/* Store the virtualized DR6 value */
748 	tsk->thread.debugreg6 = dr6;
749 
750 #ifdef CONFIG_KPROBES
751 	if (kprobe_debug_handler(regs))
752 		goto exit;
753 #endif
754 
755 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
756 							SIGTRAP) == NOTIFY_STOP)
757 		goto exit;
758 
759 	/*
760 	 * Let others (NMI) know that the debug stack is in use
761 	 * as we may switch to the interrupt stack.
762 	 */
763 	debug_stack_usage_inc();
764 
765 	/* It's safe to allow irq's after DR6 has been saved */
766 	cond_local_irq_enable(regs);
767 
768 	if (v8086_mode(regs)) {
769 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
770 					X86_TRAP_DB);
771 		cond_local_irq_disable(regs);
772 		debug_stack_usage_dec();
773 		goto exit;
774 	}
775 
776 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
777 		/*
778 		 * Historical junk that used to handle SYSENTER single-stepping.
779 		 * This should be unreachable now.  If we survive for a while
780 		 * without anyone hitting this warning, we'll turn this into
781 		 * an oops.
782 		 */
783 		tsk->thread.debugreg6 &= ~DR_STEP;
784 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
785 		regs->flags &= ~X86_EFLAGS_TF;
786 	}
787 	si_code = get_si_code(tsk->thread.debugreg6);
788 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
789 		send_sigtrap(tsk, regs, error_code, si_code);
790 	cond_local_irq_disable(regs);
791 	debug_stack_usage_dec();
792 
793 exit:
794 #if defined(CONFIG_X86_32)
795 	/*
796 	 * This is the most likely code path that involves non-trivial use
797 	 * of the SYSENTER stack.  Check that we haven't overrun it.
798 	 */
799 	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
800 	     "Overran or corrupted SYSENTER stack\n");
801 #endif
802 	ist_exit(regs);
803 }
804 NOKPROBE_SYMBOL(do_debug);
805 
806 /*
807  * Note that we play around with the 'TS' bit in an attempt to get
808  * the correct behaviour even in the presence of the asynchronous
809  * IRQ13 behaviour
810  */
811 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
812 {
813 	struct task_struct *task = current;
814 	struct fpu *fpu = &task->thread.fpu;
815 	siginfo_t info;
816 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
817 						"simd exception";
818 
819 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
820 		return;
821 	cond_local_irq_enable(regs);
822 
823 	if (!user_mode(regs)) {
824 		if (!fixup_exception(regs, trapnr)) {
825 			task->thread.error_code = error_code;
826 			task->thread.trap_nr = trapnr;
827 			die(str, regs, error_code);
828 		}
829 		return;
830 	}
831 
832 	/*
833 	 * Save the info for the exception handler and clear the error.
834 	 */
835 	fpu__save(fpu);
836 
837 	task->thread.trap_nr	= trapnr;
838 	task->thread.error_code = error_code;
839 	info.si_signo		= SIGFPE;
840 	info.si_errno		= 0;
841 	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
842 
843 	info.si_code = fpu__exception_code(fpu, trapnr);
844 
845 	/* Retry when we get spurious exceptions: */
846 	if (!info.si_code)
847 		return;
848 
849 	force_sig_info(SIGFPE, &info, task);
850 }
851 
852 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
853 {
854 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
855 	math_error(regs, error_code, X86_TRAP_MF);
856 }
857 
858 dotraplinkage void
859 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
860 {
861 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
862 	math_error(regs, error_code, X86_TRAP_XF);
863 }
864 
865 dotraplinkage void
866 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
867 {
868 	cond_local_irq_enable(regs);
869 }
870 
871 dotraplinkage void
872 do_device_not_available(struct pt_regs *regs, long error_code)
873 {
874 	unsigned long cr0;
875 
876 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
877 
878 #ifdef CONFIG_MATH_EMULATION
879 	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
880 		struct math_emu_info info = { };
881 
882 		cond_local_irq_enable(regs);
883 
884 		info.regs = regs;
885 		math_emulate(&info);
886 		return;
887 	}
888 #endif
889 
890 	/* This should not happen. */
891 	cr0 = read_cr0();
892 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
893 		/* Try to fix it up and carry on. */
894 		write_cr0(cr0 & ~X86_CR0_TS);
895 	} else {
896 		/*
897 		 * Something terrible happened, and we're better off trying
898 		 * to kill the task than getting stuck in a never-ending
899 		 * loop of #NM faults.
900 		 */
901 		die("unexpected #NM exception", regs, error_code);
902 	}
903 }
904 NOKPROBE_SYMBOL(do_device_not_available);
905 
906 #ifdef CONFIG_X86_32
907 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
908 {
909 	siginfo_t info;
910 
911 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
912 	local_irq_enable();
913 
914 	info.si_signo = SIGILL;
915 	info.si_errno = 0;
916 	info.si_code = ILL_BADSTK;
917 	info.si_addr = NULL;
918 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
919 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
920 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
921 			&info);
922 	}
923 }
924 #endif
925 
926 void __init trap_init(void)
927 {
928 	idt_setup_traps();
929 
930 	/*
931 	 * Set the IDT descriptor to a fixed read-only location, so that the
932 	 * "sidt" instruction will not leak the location of the kernel, and
933 	 * to defend the IDT against arbitrary memory write vulnerabilities.
934 	 * It will be reloaded in cpu_init() */
935 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
936 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
937 
938 	/*
939 	 * Should be a barrier for any external CPU state:
940 	 */
941 	cpu_init();
942 
943 	idt_setup_ist_traps();
944 
945 	x86_init.irqs.trap_init();
946 
947 	idt_setup_debugidt_traps();
948 }
949