xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 7490ca1e)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/kgdb.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/ptrace.h>
22 #include <linux/string.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/timer.h>
28 #include <linux/init.h>
29 #include <linux/bug.h>
30 #include <linux/nmi.h>
31 #include <linux/mm.h>
32 #include <linux/smp.h>
33 #include <linux/io.h>
34 
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
39 
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
43 
44 #if defined(CONFIG_EDAC)
45 #include <linux/edac.h>
46 #endif
47 
48 #include <asm/kmemcheck.h>
49 #include <asm/stacktrace.h>
50 #include <asm/processor.h>
51 #include <asm/debugreg.h>
52 #include <linux/atomic.h>
53 #include <asm/system.h>
54 #include <asm/traps.h>
55 #include <asm/desc.h>
56 #include <asm/i387.h>
57 #include <asm/mce.h>
58 
59 #include <asm/mach_traps.h>
60 
61 #ifdef CONFIG_X86_64
62 #include <asm/x86_init.h>
63 #include <asm/pgalloc.h>
64 #include <asm/proto.h>
65 #else
66 #include <asm/processor-flags.h>
67 #include <asm/setup.h>
68 
69 asmlinkage int system_call(void);
70 
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq;
73 
74 /*
75  * The IDT has to be page-aligned to simplify the Pentium
76  * F0 0F bug workaround.
77  */
78 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
79 #endif
80 
81 DECLARE_BITMAP(used_vectors, NR_VECTORS);
82 EXPORT_SYMBOL_GPL(used_vectors);
83 
84 static inline void conditional_sti(struct pt_regs *regs)
85 {
86 	if (regs->flags & X86_EFLAGS_IF)
87 		local_irq_enable();
88 }
89 
90 static inline void preempt_conditional_sti(struct pt_regs *regs)
91 {
92 	inc_preempt_count();
93 	if (regs->flags & X86_EFLAGS_IF)
94 		local_irq_enable();
95 }
96 
97 static inline void conditional_cli(struct pt_regs *regs)
98 {
99 	if (regs->flags & X86_EFLAGS_IF)
100 		local_irq_disable();
101 }
102 
103 static inline void preempt_conditional_cli(struct pt_regs *regs)
104 {
105 	if (regs->flags & X86_EFLAGS_IF)
106 		local_irq_disable();
107 	dec_preempt_count();
108 }
109 
110 static void __kprobes
111 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
112 	long error_code, siginfo_t *info)
113 {
114 	struct task_struct *tsk = current;
115 
116 #ifdef CONFIG_X86_32
117 	if (regs->flags & X86_VM_MASK) {
118 		/*
119 		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
120 		 * On nmi (interrupt 2), do_trap should not be called.
121 		 */
122 		if (trapnr < 6)
123 			goto vm86_trap;
124 		goto trap_signal;
125 	}
126 #endif
127 
128 	if (!user_mode(regs))
129 		goto kernel_trap;
130 
131 #ifdef CONFIG_X86_32
132 trap_signal:
133 #endif
134 	/*
135 	 * We want error_code and trap_no set for userspace faults and
136 	 * kernelspace faults which result in die(), but not
137 	 * kernelspace faults which are fixed up.  die() gives the
138 	 * process no chance to handle the signal and notice the
139 	 * kernel fault information, so that won't result in polluting
140 	 * the information about previously queued, but not yet
141 	 * delivered, faults.  See also do_general_protection below.
142 	 */
143 	tsk->thread.error_code = error_code;
144 	tsk->thread.trap_no = trapnr;
145 
146 #ifdef CONFIG_X86_64
147 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
148 	    printk_ratelimit()) {
149 		printk(KERN_INFO
150 		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
151 		       tsk->comm, tsk->pid, str,
152 		       regs->ip, regs->sp, error_code);
153 		print_vma_addr(" in ", regs->ip);
154 		printk("\n");
155 	}
156 #endif
157 
158 	if (info)
159 		force_sig_info(signr, info, tsk);
160 	else
161 		force_sig(signr, tsk);
162 	return;
163 
164 kernel_trap:
165 	if (!fixup_exception(regs)) {
166 		tsk->thread.error_code = error_code;
167 		tsk->thread.trap_no = trapnr;
168 		die(str, regs, error_code);
169 	}
170 	return;
171 
172 #ifdef CONFIG_X86_32
173 vm86_trap:
174 	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
175 						error_code, trapnr))
176 		goto trap_signal;
177 	return;
178 #endif
179 }
180 
181 #define DO_ERROR(trapnr, signr, str, name)				\
182 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
183 {									\
184 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
185 							== NOTIFY_STOP)	\
186 		return;							\
187 	conditional_sti(regs);						\
188 	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
189 }
190 
191 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
192 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
193 {									\
194 	siginfo_t info;							\
195 	info.si_signo = signr;						\
196 	info.si_errno = 0;						\
197 	info.si_code = sicode;						\
198 	info.si_addr = (void __user *)siaddr;				\
199 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
200 							== NOTIFY_STOP)	\
201 		return;							\
202 	conditional_sti(regs);						\
203 	do_trap(trapnr, signr, str, regs, error_code, &info);		\
204 }
205 
206 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
207 DO_ERROR(4, SIGSEGV, "overflow", overflow)
208 DO_ERROR(5, SIGSEGV, "bounds", bounds)
209 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
210 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
211 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
212 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
213 #ifdef CONFIG_X86_32
214 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
215 #endif
216 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
217 
218 #ifdef CONFIG_X86_64
219 /* Runs on IST stack */
220 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
221 {
222 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
223 			12, SIGBUS) == NOTIFY_STOP)
224 		return;
225 	preempt_conditional_sti(regs);
226 	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
227 	preempt_conditional_cli(regs);
228 }
229 
230 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
231 {
232 	static const char str[] = "double fault";
233 	struct task_struct *tsk = current;
234 
235 	/* Return not checked because double check cannot be ignored */
236 	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
237 
238 	tsk->thread.error_code = error_code;
239 	tsk->thread.trap_no = 8;
240 
241 	/*
242 	 * This is always a kernel trap and never fixable (and thus must
243 	 * never return).
244 	 */
245 	for (;;)
246 		die(str, regs, error_code);
247 }
248 #endif
249 
250 dotraplinkage void __kprobes
251 do_general_protection(struct pt_regs *regs, long error_code)
252 {
253 	struct task_struct *tsk;
254 
255 	conditional_sti(regs);
256 
257 #ifdef CONFIG_X86_32
258 	if (regs->flags & X86_VM_MASK)
259 		goto gp_in_vm86;
260 #endif
261 
262 	tsk = current;
263 	if (!user_mode(regs))
264 		goto gp_in_kernel;
265 
266 	tsk->thread.error_code = error_code;
267 	tsk->thread.trap_no = 13;
268 
269 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
270 			printk_ratelimit()) {
271 		printk(KERN_INFO
272 			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
273 			tsk->comm, task_pid_nr(tsk),
274 			regs->ip, regs->sp, error_code);
275 		print_vma_addr(" in ", regs->ip);
276 		printk("\n");
277 	}
278 
279 	force_sig(SIGSEGV, tsk);
280 	return;
281 
282 #ifdef CONFIG_X86_32
283 gp_in_vm86:
284 	local_irq_enable();
285 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
286 	return;
287 #endif
288 
289 gp_in_kernel:
290 	if (fixup_exception(regs))
291 		return;
292 
293 	tsk->thread.error_code = error_code;
294 	tsk->thread.trap_no = 13;
295 	if (notify_die(DIE_GPF, "general protection fault", regs,
296 				error_code, 13, SIGSEGV) == NOTIFY_STOP)
297 		return;
298 	die("general protection fault", regs, error_code);
299 }
300 
301 /* May run on IST stack. */
302 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
303 {
304 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
305 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
306 			== NOTIFY_STOP)
307 		return;
308 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
309 
310 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
311 			== NOTIFY_STOP)
312 		return;
313 
314 	/*
315 	 * Let others (NMI) know that the debug stack is in use
316 	 * as we may switch to the interrupt stack.
317 	 */
318 	debug_stack_usage_inc();
319 	preempt_conditional_sti(regs);
320 	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
321 	preempt_conditional_cli(regs);
322 	debug_stack_usage_dec();
323 }
324 
325 #ifdef CONFIG_X86_64
326 /*
327  * Help handler running on IST stack to switch back to user stack
328  * for scheduling or signal handling. The actual stack switch is done in
329  * entry.S
330  */
331 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
332 {
333 	struct pt_regs *regs = eregs;
334 	/* Did already sync */
335 	if (eregs == (struct pt_regs *)eregs->sp)
336 		;
337 	/* Exception from user space */
338 	else if (user_mode(eregs))
339 		regs = task_pt_regs(current);
340 	/*
341 	 * Exception from kernel and interrupts are enabled. Move to
342 	 * kernel process stack.
343 	 */
344 	else if (eregs->flags & X86_EFLAGS_IF)
345 		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
346 	if (eregs != regs)
347 		*regs = *eregs;
348 	return regs;
349 }
350 #endif
351 
352 /*
353  * Our handling of the processor debug registers is non-trivial.
354  * We do not clear them on entry and exit from the kernel. Therefore
355  * it is possible to get a watchpoint trap here from inside the kernel.
356  * However, the code in ./ptrace.c has ensured that the user can
357  * only set watchpoints on userspace addresses. Therefore the in-kernel
358  * watchpoint trap can only occur in code which is reading/writing
359  * from user space. Such code must not hold kernel locks (since it
360  * can equally take a page fault), therefore it is safe to call
361  * force_sig_info even though that claims and releases locks.
362  *
363  * Code in ./signal.c ensures that the debug control register
364  * is restored before we deliver any signal, and therefore that
365  * user code runs with the correct debug control register even though
366  * we clear it here.
367  *
368  * Being careful here means that we don't have to be as careful in a
369  * lot of more complicated places (task switching can be a bit lazy
370  * about restoring all the debug state, and ptrace doesn't have to
371  * find every occurrence of the TF bit that could be saved away even
372  * by user code)
373  *
374  * May run on IST stack.
375  */
376 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
377 {
378 	struct task_struct *tsk = current;
379 	int user_icebp = 0;
380 	unsigned long dr6;
381 	int si_code;
382 
383 	get_debugreg(dr6, 6);
384 
385 	/* Filter out all the reserved bits which are preset to 1 */
386 	dr6 &= ~DR6_RESERVED;
387 
388 	/*
389 	 * If dr6 has no reason to give us about the origin of this trap,
390 	 * then it's very likely the result of an icebp/int01 trap.
391 	 * User wants a sigtrap for that.
392 	 */
393 	if (!dr6 && user_mode(regs))
394 		user_icebp = 1;
395 
396 	/* Catch kmemcheck conditions first of all! */
397 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
398 		return;
399 
400 	/* DR6 may or may not be cleared by the CPU */
401 	set_debugreg(0, 6);
402 
403 	/*
404 	 * The processor cleared BTF, so don't mark that we need it set.
405 	 */
406 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
407 
408 	/* Store the virtualized DR6 value */
409 	tsk->thread.debugreg6 = dr6;
410 
411 	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
412 							SIGTRAP) == NOTIFY_STOP)
413 		return;
414 
415 	/*
416 	 * Let others (NMI) know that the debug stack is in use
417 	 * as we may switch to the interrupt stack.
418 	 */
419 	debug_stack_usage_inc();
420 
421 	/* It's safe to allow irq's after DR6 has been saved */
422 	preempt_conditional_sti(regs);
423 
424 	if (regs->flags & X86_VM_MASK) {
425 		handle_vm86_trap((struct kernel_vm86_regs *) regs,
426 				error_code, 1);
427 		preempt_conditional_cli(regs);
428 		debug_stack_usage_dec();
429 		return;
430 	}
431 
432 	/*
433 	 * Single-stepping through system calls: ignore any exceptions in
434 	 * kernel space, but re-enable TF when returning to user mode.
435 	 *
436 	 * We already checked v86 mode above, so we can check for kernel mode
437 	 * by just checking the CPL of CS.
438 	 */
439 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
440 		tsk->thread.debugreg6 &= ~DR_STEP;
441 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
442 		regs->flags &= ~X86_EFLAGS_TF;
443 	}
444 	si_code = get_si_code(tsk->thread.debugreg6);
445 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
446 		send_sigtrap(tsk, regs, error_code, si_code);
447 	preempt_conditional_cli(regs);
448 	debug_stack_usage_dec();
449 
450 	return;
451 }
452 
453 /*
454  * Note that we play around with the 'TS' bit in an attempt to get
455  * the correct behaviour even in the presence of the asynchronous
456  * IRQ13 behaviour
457  */
458 void math_error(struct pt_regs *regs, int error_code, int trapnr)
459 {
460 	struct task_struct *task = current;
461 	siginfo_t info;
462 	unsigned short err;
463 	char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
464 
465 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
466 		return;
467 	conditional_sti(regs);
468 
469 	if (!user_mode_vm(regs))
470 	{
471 		if (!fixup_exception(regs)) {
472 			task->thread.error_code = error_code;
473 			task->thread.trap_no = trapnr;
474 			die(str, regs, error_code);
475 		}
476 		return;
477 	}
478 
479 	/*
480 	 * Save the info for the exception handler and clear the error.
481 	 */
482 	save_init_fpu(task);
483 	task->thread.trap_no = trapnr;
484 	task->thread.error_code = error_code;
485 	info.si_signo = SIGFPE;
486 	info.si_errno = 0;
487 	info.si_addr = (void __user *)regs->ip;
488 	if (trapnr == 16) {
489 		unsigned short cwd, swd;
490 		/*
491 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
492 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
493 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
494 		 * fault bit.  We should only be taking one exception at a time,
495 		 * so if this combination doesn't produce any single exception,
496 		 * then we have a bad program that isn't synchronizing its FPU usage
497 		 * and it will suffer the consequences since we won't be able to
498 		 * fully reproduce the context of the exception
499 		 */
500 		cwd = get_fpu_cwd(task);
501 		swd = get_fpu_swd(task);
502 
503 		err = swd & ~cwd;
504 	} else {
505 		/*
506 		 * The SIMD FPU exceptions are handled a little differently, as there
507 		 * is only a single status/control register.  Thus, to determine which
508 		 * unmasked exception was caught we must mask the exception mask bits
509 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
510 		 */
511 		unsigned short mxcsr = get_fpu_mxcsr(task);
512 		err = ~(mxcsr >> 7) & mxcsr;
513 	}
514 
515 	if (err & 0x001) {	/* Invalid op */
516 		/*
517 		 * swd & 0x240 == 0x040: Stack Underflow
518 		 * swd & 0x240 == 0x240: Stack Overflow
519 		 * User must clear the SF bit (0x40) if set
520 		 */
521 		info.si_code = FPE_FLTINV;
522 	} else if (err & 0x004) { /* Divide by Zero */
523 		info.si_code = FPE_FLTDIV;
524 	} else if (err & 0x008) { /* Overflow */
525 		info.si_code = FPE_FLTOVF;
526 	} else if (err & 0x012) { /* Denormal, Underflow */
527 		info.si_code = FPE_FLTUND;
528 	} else if (err & 0x020) { /* Precision */
529 		info.si_code = FPE_FLTRES;
530 	} else {
531 		/*
532 		 * If we're using IRQ 13, or supposedly even some trap 16
533 		 * implementations, it's possible we get a spurious trap...
534 		 */
535 		return;		/* Spurious trap, no error */
536 	}
537 	force_sig_info(SIGFPE, &info, task);
538 }
539 
540 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
541 {
542 #ifdef CONFIG_X86_32
543 	ignore_fpu_irq = 1;
544 #endif
545 
546 	math_error(regs, error_code, 16);
547 }
548 
549 dotraplinkage void
550 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
551 {
552 	math_error(regs, error_code, 19);
553 }
554 
555 dotraplinkage void
556 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
557 {
558 	conditional_sti(regs);
559 #if 0
560 	/* No need to warn about this any longer. */
561 	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
562 #endif
563 }
564 
565 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
566 {
567 }
568 
569 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
570 {
571 }
572 
573 /*
574  * 'math_state_restore()' saves the current math information in the
575  * old math state array, and gets the new ones from the current task
576  *
577  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
578  * Don't touch unless you *really* know how it works.
579  *
580  * Must be called with kernel preemption disabled (eg with local
581  * local interrupts as in the case of do_device_not_available).
582  */
583 void math_state_restore(void)
584 {
585 	struct task_struct *tsk = current;
586 
587 	if (!tsk_used_math(tsk)) {
588 		local_irq_enable();
589 		/*
590 		 * does a slab alloc which can sleep
591 		 */
592 		if (init_fpu(tsk)) {
593 			/*
594 			 * ran out of memory!
595 			 */
596 			do_group_exit(SIGKILL);
597 			return;
598 		}
599 		local_irq_disable();
600 	}
601 
602 	__thread_fpu_begin(tsk);
603 	/*
604 	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
605 	 */
606 	if (unlikely(restore_fpu_checking(tsk))) {
607 		__thread_fpu_end(tsk);
608 		force_sig(SIGSEGV, tsk);
609 		return;
610 	}
611 
612 	tsk->fpu_counter++;
613 }
614 EXPORT_SYMBOL_GPL(math_state_restore);
615 
616 dotraplinkage void __kprobes
617 do_device_not_available(struct pt_regs *regs, long error_code)
618 {
619 #ifdef CONFIG_MATH_EMULATION
620 	if (read_cr0() & X86_CR0_EM) {
621 		struct math_emu_info info = { };
622 
623 		conditional_sti(regs);
624 
625 		info.regs = regs;
626 		math_emulate(&info);
627 		return;
628 	}
629 #endif
630 	math_state_restore(); /* interrupts still off */
631 #ifdef CONFIG_X86_32
632 	conditional_sti(regs);
633 #endif
634 }
635 
636 #ifdef CONFIG_X86_32
637 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
638 {
639 	siginfo_t info;
640 	local_irq_enable();
641 
642 	info.si_signo = SIGILL;
643 	info.si_errno = 0;
644 	info.si_code = ILL_BADSTK;
645 	info.si_addr = NULL;
646 	if (notify_die(DIE_TRAP, "iret exception",
647 			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
648 		return;
649 	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
650 }
651 #endif
652 
653 /* Set of traps needed for early debugging. */
654 void __init early_trap_init(void)
655 {
656 	set_intr_gate_ist(1, &debug, DEBUG_STACK);
657 	/* int3 can be called from all */
658 	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
659 	set_intr_gate(14, &page_fault);
660 	load_idt(&idt_descr);
661 }
662 
663 void __init trap_init(void)
664 {
665 	int i;
666 
667 #ifdef CONFIG_EISA
668 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
669 
670 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
671 		EISA_bus = 1;
672 	early_iounmap(p, 4);
673 #endif
674 
675 	set_intr_gate(0, &divide_error);
676 	set_intr_gate_ist(2, &nmi, NMI_STACK);
677 	/* int4 can be called from all */
678 	set_system_intr_gate(4, &overflow);
679 	set_intr_gate(5, &bounds);
680 	set_intr_gate(6, &invalid_op);
681 	set_intr_gate(7, &device_not_available);
682 #ifdef CONFIG_X86_32
683 	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
684 #else
685 	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
686 #endif
687 	set_intr_gate(9, &coprocessor_segment_overrun);
688 	set_intr_gate(10, &invalid_TSS);
689 	set_intr_gate(11, &segment_not_present);
690 	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
691 	set_intr_gate(13, &general_protection);
692 	set_intr_gate(15, &spurious_interrupt_bug);
693 	set_intr_gate(16, &coprocessor_error);
694 	set_intr_gate(17, &alignment_check);
695 #ifdef CONFIG_X86_MCE
696 	set_intr_gate_ist(18, &machine_check, MCE_STACK);
697 #endif
698 	set_intr_gate(19, &simd_coprocessor_error);
699 
700 	/* Reserve all the builtin and the syscall vector: */
701 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
702 		set_bit(i, used_vectors);
703 
704 #ifdef CONFIG_IA32_EMULATION
705 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
706 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
707 #endif
708 
709 #ifdef CONFIG_X86_32
710 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
711 	set_bit(SYSCALL_VECTOR, used_vectors);
712 #endif
713 
714 	/*
715 	 * Should be a barrier for any external CPU state:
716 	 */
717 	cpu_init();
718 
719 	x86_init.irqs.trap_init();
720 
721 #ifdef CONFIG_X86_64
722 	memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16);
723 	set_nmi_gate(1, &debug);
724 	set_nmi_gate(3, &int3);
725 #endif
726 }
727