1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #if defined(CONFIG_EDAC) 42 #include <linux/edac.h> 43 #endif 44 45 #include <asm/stacktrace.h> 46 #include <asm/processor.h> 47 #include <asm/debugreg.h> 48 #include <linux/atomic.h> 49 #include <asm/text-patching.h> 50 #include <asm/ftrace.h> 51 #include <asm/traps.h> 52 #include <asm/desc.h> 53 #include <asm/fpu/internal.h> 54 #include <asm/cpu_entry_area.h> 55 #include <asm/mce.h> 56 #include <asm/fixmap.h> 57 #include <asm/mach_traps.h> 58 #include <asm/alternative.h> 59 #include <asm/fpu/xstate.h> 60 #include <asm/trace/mpx.h> 61 #include <asm/mpx.h> 62 #include <asm/vm86.h> 63 #include <asm/umip.h> 64 65 #ifdef CONFIG_X86_64 66 #include <asm/x86_init.h> 67 #include <asm/pgalloc.h> 68 #include <asm/proto.h> 69 #else 70 #include <asm/processor-flags.h> 71 #include <asm/setup.h> 72 #include <asm/proto.h> 73 #endif 74 75 DECLARE_BITMAP(system_vectors, NR_VECTORS); 76 77 static inline void cond_local_irq_enable(struct pt_regs *regs) 78 { 79 if (regs->flags & X86_EFLAGS_IF) 80 local_irq_enable(); 81 } 82 83 static inline void cond_local_irq_disable(struct pt_regs *regs) 84 { 85 if (regs->flags & X86_EFLAGS_IF) 86 local_irq_disable(); 87 } 88 89 /* 90 * In IST context, we explicitly disable preemption. This serves two 91 * purposes: it makes it much less likely that we would accidentally 92 * schedule in IST context and it will force a warning if we somehow 93 * manage to schedule by accident. 94 */ 95 void ist_enter(struct pt_regs *regs) 96 { 97 if (user_mode(regs)) { 98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 99 } else { 100 /* 101 * We might have interrupted pretty much anything. In 102 * fact, if we're a machine check, we can even interrupt 103 * NMI processing. We don't want in_nmi() to return true, 104 * but we need to notify RCU. 105 */ 106 rcu_nmi_enter(); 107 } 108 109 preempt_disable(); 110 111 /* This code is a bit fragile. Test it. */ 112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 113 } 114 115 void ist_exit(struct pt_regs *regs) 116 { 117 preempt_enable_no_resched(); 118 119 if (!user_mode(regs)) 120 rcu_nmi_exit(); 121 } 122 123 /** 124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 125 * @regs: regs passed to the IST exception handler 126 * 127 * IST exception handlers normally cannot schedule. As a special 128 * exception, if the exception interrupted userspace code (i.e. 129 * user_mode(regs) would return true) and the exception was not 130 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 131 * begins a non-atomic section within an ist_enter()/ist_exit() region. 132 * Callers are responsible for enabling interrupts themselves inside 133 * the non-atomic section, and callers must call ist_end_non_atomic() 134 * before ist_exit(). 135 */ 136 void ist_begin_non_atomic(struct pt_regs *regs) 137 { 138 BUG_ON(!user_mode(regs)); 139 140 /* 141 * Sanity check: we need to be on the normal thread stack. This 142 * will catch asm bugs and any attempt to use ist_preempt_enable 143 * from double_fault. 144 */ 145 BUG_ON(!on_thread_stack()); 146 147 preempt_enable_no_resched(); 148 } 149 150 /** 151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 152 * 153 * Ends a non-atomic section started with ist_begin_non_atomic(). 154 */ 155 void ist_end_non_atomic(void) 156 { 157 preempt_disable(); 158 } 159 160 int is_valid_bugaddr(unsigned long addr) 161 { 162 unsigned short ud; 163 164 if (addr < TASK_SIZE_MAX) 165 return 0; 166 167 if (probe_kernel_address((unsigned short *)addr, ud)) 168 return 0; 169 170 return ud == INSN_UD0 || ud == INSN_UD2; 171 } 172 173 int fixup_bug(struct pt_regs *regs, int trapnr) 174 { 175 if (trapnr != X86_TRAP_UD) 176 return 0; 177 178 switch (report_bug(regs->ip, regs)) { 179 case BUG_TRAP_TYPE_NONE: 180 case BUG_TRAP_TYPE_BUG: 181 break; 182 183 case BUG_TRAP_TYPE_WARN: 184 regs->ip += LEN_UD2; 185 return 1; 186 } 187 188 return 0; 189 } 190 191 static nokprobe_inline int 192 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 193 struct pt_regs *regs, long error_code) 194 { 195 if (v8086_mode(regs)) { 196 /* 197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 198 * On nmi (interrupt 2), do_trap should not be called. 199 */ 200 if (trapnr < X86_TRAP_UD) { 201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 202 error_code, trapnr)) 203 return 0; 204 } 205 } else if (!user_mode(regs)) { 206 if (fixup_exception(regs, trapnr, error_code, 0)) 207 return 0; 208 209 tsk->thread.error_code = error_code; 210 tsk->thread.trap_nr = trapnr; 211 die(str, regs, error_code); 212 } 213 214 /* 215 * We want error_code and trap_nr set for userspace faults and 216 * kernelspace faults which result in die(), but not 217 * kernelspace faults which are fixed up. die() gives the 218 * process no chance to handle the signal and notice the 219 * kernel fault information, so that won't result in polluting 220 * the information about previously queued, but not yet 221 * delivered, faults. See also do_general_protection below. 222 */ 223 tsk->thread.error_code = error_code; 224 tsk->thread.trap_nr = trapnr; 225 226 return -1; 227 } 228 229 static void show_signal(struct task_struct *tsk, int signr, 230 const char *type, const char *desc, 231 struct pt_regs *regs, long error_code) 232 { 233 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 234 printk_ratelimit()) { 235 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 236 tsk->comm, task_pid_nr(tsk), type, desc, 237 regs->ip, regs->sp, error_code); 238 print_vma_addr(KERN_CONT " in ", regs->ip); 239 pr_cont("\n"); 240 } 241 } 242 243 static void 244 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 245 long error_code, int sicode, void __user *addr) 246 { 247 struct task_struct *tsk = current; 248 249 250 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 251 return; 252 253 show_signal(tsk, signr, "trap ", str, regs, error_code); 254 255 if (!sicode) 256 force_sig(signr, tsk); 257 else 258 force_sig_fault(signr, sicode, addr, tsk); 259 } 260 NOKPROBE_SYMBOL(do_trap); 261 262 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 263 unsigned long trapnr, int signr, int sicode, void __user *addr) 264 { 265 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 266 267 /* 268 * WARN*()s end up here; fix them up before we call the 269 * notifier chain. 270 */ 271 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 272 return; 273 274 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 275 NOTIFY_STOP) { 276 cond_local_irq_enable(regs); 277 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 278 } 279 } 280 281 #define IP ((void __user *)uprobe_get_trap_addr(regs)) 282 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ 283 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 284 { \ 285 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ 286 } 287 288 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) 289 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) 290 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) 291 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) 292 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) 293 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) 294 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) 295 DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check) 296 #undef IP 297 298 #ifdef CONFIG_VMAP_STACK 299 __visible void __noreturn handle_stack_overflow(const char *message, 300 struct pt_regs *regs, 301 unsigned long fault_address) 302 { 303 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 304 (void *)fault_address, current->stack, 305 (char *)current->stack + THREAD_SIZE - 1); 306 die(message, regs, 0); 307 308 /* Be absolutely certain we don't return. */ 309 panic("%s", message); 310 } 311 #endif 312 313 #ifdef CONFIG_X86_64 314 /* Runs on IST stack */ 315 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 316 { 317 static const char str[] = "double fault"; 318 struct task_struct *tsk = current; 319 #ifdef CONFIG_VMAP_STACK 320 unsigned long cr2; 321 #endif 322 323 #ifdef CONFIG_X86_ESPFIX64 324 extern unsigned char native_irq_return_iret[]; 325 326 /* 327 * If IRET takes a non-IST fault on the espfix64 stack, then we 328 * end up promoting it to a doublefault. In that case, take 329 * advantage of the fact that we're not using the normal (TSS.sp0) 330 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 331 * and then modify our own IRET frame so that, when we return, 332 * we land directly at the #GP(0) vector with the stack already 333 * set up according to its expectations. 334 * 335 * The net result is that our #GP handler will think that we 336 * entered from usermode with the bad user context. 337 * 338 * No need for ist_enter here because we don't use RCU. 339 */ 340 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 341 regs->cs == __KERNEL_CS && 342 regs->ip == (unsigned long)native_irq_return_iret) 343 { 344 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 345 346 /* 347 * regs->sp points to the failing IRET frame on the 348 * ESPFIX64 stack. Copy it to the entry stack. This fills 349 * in gpregs->ss through gpregs->ip. 350 * 351 */ 352 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 353 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 354 355 /* 356 * Adjust our frame so that we return straight to the #GP 357 * vector with the expected RSP value. This is safe because 358 * we won't enable interupts or schedule before we invoke 359 * general_protection, so nothing will clobber the stack 360 * frame we just set up. 361 * 362 * We will enter general_protection with kernel GSBASE, 363 * which is what the stub expects, given that the faulting 364 * RIP will be the IRET instruction. 365 */ 366 regs->ip = (unsigned long)general_protection; 367 regs->sp = (unsigned long)&gpregs->orig_ax; 368 369 return; 370 } 371 #endif 372 373 ist_enter(regs); 374 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 375 376 tsk->thread.error_code = error_code; 377 tsk->thread.trap_nr = X86_TRAP_DF; 378 379 #ifdef CONFIG_VMAP_STACK 380 /* 381 * If we overflow the stack into a guard page, the CPU will fail 382 * to deliver #PF and will send #DF instead. Similarly, if we 383 * take any non-IST exception while too close to the bottom of 384 * the stack, the processor will get a page fault while 385 * delivering the exception and will generate a double fault. 386 * 387 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 388 * Page-Fault Exception (#PF): 389 * 390 * Processors update CR2 whenever a page fault is detected. If a 391 * second page fault occurs while an earlier page fault is being 392 * delivered, the faulting linear address of the second fault will 393 * overwrite the contents of CR2 (replacing the previous 394 * address). These updates to CR2 occur even if the page fault 395 * results in a double fault or occurs during the delivery of a 396 * double fault. 397 * 398 * The logic below has a small possibility of incorrectly diagnosing 399 * some errors as stack overflows. For example, if the IDT or GDT 400 * gets corrupted such that #GP delivery fails due to a bad descriptor 401 * causing #GP and we hit this condition while CR2 coincidentally 402 * points to the stack guard page, we'll think we overflowed the 403 * stack. Given that we're going to panic one way or another 404 * if this happens, this isn't necessarily worth fixing. 405 * 406 * If necessary, we could improve the test by only diagnosing 407 * a stack overflow if the saved RSP points within 47 bytes of 408 * the bottom of the stack: if RSP == tsk_stack + 48 and we 409 * take an exception, the stack is already aligned and there 410 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 411 * possible error code, so a stack overflow would *not* double 412 * fault. With any less space left, exception delivery could 413 * fail, and, as a practical matter, we've overflowed the 414 * stack even if the actual trigger for the double fault was 415 * something else. 416 */ 417 cr2 = read_cr2(); 418 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 419 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 420 #endif 421 422 #ifdef CONFIG_DOUBLEFAULT 423 df_debug(regs, error_code); 424 #endif 425 /* 426 * This is always a kernel trap and never fixable (and thus must 427 * never return). 428 */ 429 for (;;) 430 die(str, regs, error_code); 431 } 432 #endif 433 434 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 435 { 436 const struct mpx_bndcsr *bndcsr; 437 438 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 439 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 440 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 441 return; 442 cond_local_irq_enable(regs); 443 444 if (!user_mode(regs)) 445 die("bounds", regs, error_code); 446 447 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 448 /* The exception is not from Intel MPX */ 449 goto exit_trap; 450 } 451 452 /* 453 * We need to look at BNDSTATUS to resolve this exception. 454 * A NULL here might mean that it is in its 'init state', 455 * which is all zeros which indicates MPX was not 456 * responsible for the exception. 457 */ 458 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 459 if (!bndcsr) 460 goto exit_trap; 461 462 trace_bounds_exception_mpx(bndcsr); 463 /* 464 * The error code field of the BNDSTATUS register communicates status 465 * information of a bound range exception #BR or operation involving 466 * bound directory. 467 */ 468 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 469 case 2: /* Bound directory has invalid entry. */ 470 if (mpx_handle_bd_fault()) 471 goto exit_trap; 472 break; /* Success, it was handled */ 473 case 1: /* Bound violation. */ 474 { 475 struct task_struct *tsk = current; 476 struct mpx_fault_info mpx; 477 478 if (mpx_fault_info(&mpx, regs)) { 479 /* 480 * We failed to decode the MPX instruction. Act as if 481 * the exception was not caused by MPX. 482 */ 483 goto exit_trap; 484 } 485 /* 486 * Success, we decoded the instruction and retrieved 487 * an 'mpx' containing the address being accessed 488 * which caused the exception. This information 489 * allows and application to possibly handle the 490 * #BR exception itself. 491 */ 492 if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs, 493 error_code)) 494 break; 495 496 show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code); 497 498 force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper); 499 break; 500 } 501 case 0: /* No exception caused by Intel MPX operations. */ 502 goto exit_trap; 503 default: 504 die("bounds", regs, error_code); 505 } 506 507 return; 508 509 exit_trap: 510 /* 511 * This path out is for all the cases where we could not 512 * handle the exception in some way (like allocating a 513 * table or telling userspace about it. We will also end 514 * up here if the kernel has MPX turned off at compile 515 * time.. 516 */ 517 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); 518 } 519 520 dotraplinkage void 521 do_general_protection(struct pt_regs *regs, long error_code) 522 { 523 const char *desc = "general protection fault"; 524 struct task_struct *tsk; 525 526 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 527 cond_local_irq_enable(regs); 528 529 if (static_cpu_has(X86_FEATURE_UMIP)) { 530 if (user_mode(regs) && fixup_umip_exception(regs)) 531 return; 532 } 533 534 if (v8086_mode(regs)) { 535 local_irq_enable(); 536 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 537 return; 538 } 539 540 tsk = current; 541 if (!user_mode(regs)) { 542 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 543 return; 544 545 tsk->thread.error_code = error_code; 546 tsk->thread.trap_nr = X86_TRAP_GP; 547 548 /* 549 * To be potentially processing a kprobe fault and to 550 * trust the result from kprobe_running(), we have to 551 * be non-preemptible. 552 */ 553 if (!preemptible() && kprobe_running() && 554 kprobe_fault_handler(regs, X86_TRAP_GP)) 555 return; 556 557 if (notify_die(DIE_GPF, desc, regs, error_code, 558 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 559 die(desc, regs, error_code); 560 return; 561 } 562 563 tsk->thread.error_code = error_code; 564 tsk->thread.trap_nr = X86_TRAP_GP; 565 566 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 567 568 force_sig(SIGSEGV, tsk); 569 } 570 NOKPROBE_SYMBOL(do_general_protection); 571 572 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 573 { 574 #ifdef CONFIG_DYNAMIC_FTRACE 575 /* 576 * ftrace must be first, everything else may cause a recursive crash. 577 * See note by declaration of modifying_ftrace_code in ftrace.c 578 */ 579 if (unlikely(atomic_read(&modifying_ftrace_code)) && 580 ftrace_int3_handler(regs)) 581 return; 582 #endif 583 if (poke_int3_handler(regs)) 584 return; 585 586 /* 587 * Use ist_enter despite the fact that we don't use an IST stack. 588 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel 589 * mode or even during context tracking state changes. 590 * 591 * This means that we can't schedule. That's okay. 592 */ 593 ist_enter(regs); 594 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 595 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 596 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 597 SIGTRAP) == NOTIFY_STOP) 598 goto exit; 599 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 600 601 #ifdef CONFIG_KPROBES 602 if (kprobe_int3_handler(regs)) 603 goto exit; 604 #endif 605 606 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 607 SIGTRAP) == NOTIFY_STOP) 608 goto exit; 609 610 cond_local_irq_enable(regs); 611 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); 612 cond_local_irq_disable(regs); 613 614 exit: 615 ist_exit(regs); 616 } 617 NOKPROBE_SYMBOL(do_int3); 618 619 #ifdef CONFIG_X86_64 620 /* 621 * Help handler running on a per-cpu (IST or entry trampoline) stack 622 * to switch to the normal thread stack if the interrupted code was in 623 * user mode. The actual stack switch is done in entry_64.S 624 */ 625 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 626 { 627 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 628 if (regs != eregs) 629 *regs = *eregs; 630 return regs; 631 } 632 NOKPROBE_SYMBOL(sync_regs); 633 634 struct bad_iret_stack { 635 void *error_entry_ret; 636 struct pt_regs regs; 637 }; 638 639 asmlinkage __visible notrace 640 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 641 { 642 /* 643 * This is called from entry_64.S early in handling a fault 644 * caused by a bad iret to user mode. To handle the fault 645 * correctly, we want to move our stack frame to where it would 646 * be had we entered directly on the entry stack (rather than 647 * just below the IRET frame) and we want to pretend that the 648 * exception came from the IRET target. 649 */ 650 struct bad_iret_stack *new_stack = 651 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 652 653 /* Copy the IRET target to the new stack. */ 654 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 655 656 /* Copy the remainder of the stack from the current stack. */ 657 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 658 659 BUG_ON(!user_mode(&new_stack->regs)); 660 return new_stack; 661 } 662 NOKPROBE_SYMBOL(fixup_bad_iret); 663 #endif 664 665 static bool is_sysenter_singlestep(struct pt_regs *regs) 666 { 667 /* 668 * We don't try for precision here. If we're anywhere in the region of 669 * code that can be single-stepped in the SYSENTER entry path, then 670 * assume that this is a useless single-step trap due to SYSENTER 671 * being invoked with TF set. (We don't know in advance exactly 672 * which instructions will be hit because BTF could plausibly 673 * be set.) 674 */ 675 #ifdef CONFIG_X86_32 676 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 677 (unsigned long)__end_SYSENTER_singlestep_region - 678 (unsigned long)__begin_SYSENTER_singlestep_region; 679 #elif defined(CONFIG_IA32_EMULATION) 680 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 681 (unsigned long)__end_entry_SYSENTER_compat - 682 (unsigned long)entry_SYSENTER_compat; 683 #else 684 return false; 685 #endif 686 } 687 688 /* 689 * Our handling of the processor debug registers is non-trivial. 690 * We do not clear them on entry and exit from the kernel. Therefore 691 * it is possible to get a watchpoint trap here from inside the kernel. 692 * However, the code in ./ptrace.c has ensured that the user can 693 * only set watchpoints on userspace addresses. Therefore the in-kernel 694 * watchpoint trap can only occur in code which is reading/writing 695 * from user space. Such code must not hold kernel locks (since it 696 * can equally take a page fault), therefore it is safe to call 697 * force_sig_info even though that claims and releases locks. 698 * 699 * Code in ./signal.c ensures that the debug control register 700 * is restored before we deliver any signal, and therefore that 701 * user code runs with the correct debug control register even though 702 * we clear it here. 703 * 704 * Being careful here means that we don't have to be as careful in a 705 * lot of more complicated places (task switching can be a bit lazy 706 * about restoring all the debug state, and ptrace doesn't have to 707 * find every occurrence of the TF bit that could be saved away even 708 * by user code) 709 * 710 * May run on IST stack. 711 */ 712 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 713 { 714 struct task_struct *tsk = current; 715 int user_icebp = 0; 716 unsigned long dr6; 717 int si_code; 718 719 ist_enter(regs); 720 721 get_debugreg(dr6, 6); 722 /* 723 * The Intel SDM says: 724 * 725 * Certain debug exceptions may clear bits 0-3. The remaining 726 * contents of the DR6 register are never cleared by the 727 * processor. To avoid confusion in identifying debug 728 * exceptions, debug handlers should clear the register before 729 * returning to the interrupted task. 730 * 731 * Keep it simple: clear DR6 immediately. 732 */ 733 set_debugreg(0, 6); 734 735 /* Filter out all the reserved bits which are preset to 1 */ 736 dr6 &= ~DR6_RESERVED; 737 738 /* 739 * The SDM says "The processor clears the BTF flag when it 740 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 741 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 742 */ 743 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 744 745 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 746 is_sysenter_singlestep(regs))) { 747 dr6 &= ~DR_STEP; 748 if (!dr6) 749 goto exit; 750 /* 751 * else we might have gotten a single-step trap and hit a 752 * watchpoint at the same time, in which case we should fall 753 * through and handle the watchpoint. 754 */ 755 } 756 757 /* 758 * If dr6 has no reason to give us about the origin of this trap, 759 * then it's very likely the result of an icebp/int01 trap. 760 * User wants a sigtrap for that. 761 */ 762 if (!dr6 && user_mode(regs)) 763 user_icebp = 1; 764 765 /* Store the virtualized DR6 value */ 766 tsk->thread.debugreg6 = dr6; 767 768 #ifdef CONFIG_KPROBES 769 if (kprobe_debug_handler(regs)) 770 goto exit; 771 #endif 772 773 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 774 SIGTRAP) == NOTIFY_STOP) 775 goto exit; 776 777 /* 778 * Let others (NMI) know that the debug stack is in use 779 * as we may switch to the interrupt stack. 780 */ 781 debug_stack_usage_inc(); 782 783 /* It's safe to allow irq's after DR6 has been saved */ 784 cond_local_irq_enable(regs); 785 786 if (v8086_mode(regs)) { 787 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 788 X86_TRAP_DB); 789 cond_local_irq_disable(regs); 790 debug_stack_usage_dec(); 791 goto exit; 792 } 793 794 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 795 /* 796 * Historical junk that used to handle SYSENTER single-stepping. 797 * This should be unreachable now. If we survive for a while 798 * without anyone hitting this warning, we'll turn this into 799 * an oops. 800 */ 801 tsk->thread.debugreg6 &= ~DR_STEP; 802 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 803 regs->flags &= ~X86_EFLAGS_TF; 804 } 805 si_code = get_si_code(tsk->thread.debugreg6); 806 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 807 send_sigtrap(tsk, regs, error_code, si_code); 808 cond_local_irq_disable(regs); 809 debug_stack_usage_dec(); 810 811 exit: 812 ist_exit(regs); 813 } 814 NOKPROBE_SYMBOL(do_debug); 815 816 /* 817 * Note that we play around with the 'TS' bit in an attempt to get 818 * the correct behaviour even in the presence of the asynchronous 819 * IRQ13 behaviour 820 */ 821 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 822 { 823 struct task_struct *task = current; 824 struct fpu *fpu = &task->thread.fpu; 825 int si_code; 826 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 827 "simd exception"; 828 829 cond_local_irq_enable(regs); 830 831 if (!user_mode(regs)) { 832 if (fixup_exception(regs, trapnr, error_code, 0)) 833 return; 834 835 task->thread.error_code = error_code; 836 task->thread.trap_nr = trapnr; 837 838 if (notify_die(DIE_TRAP, str, regs, error_code, 839 trapnr, SIGFPE) != NOTIFY_STOP) 840 die(str, regs, error_code); 841 return; 842 } 843 844 /* 845 * Save the info for the exception handler and clear the error. 846 */ 847 fpu__save(fpu); 848 849 task->thread.trap_nr = trapnr; 850 task->thread.error_code = error_code; 851 852 si_code = fpu__exception_code(fpu, trapnr); 853 /* Retry when we get spurious exceptions: */ 854 if (!si_code) 855 return; 856 857 force_sig_fault(SIGFPE, si_code, 858 (void __user *)uprobe_get_trap_addr(regs), task); 859 } 860 861 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 862 { 863 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 864 math_error(regs, error_code, X86_TRAP_MF); 865 } 866 867 dotraplinkage void 868 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 869 { 870 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 871 math_error(regs, error_code, X86_TRAP_XF); 872 } 873 874 dotraplinkage void 875 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 876 { 877 cond_local_irq_enable(regs); 878 } 879 880 dotraplinkage void 881 do_device_not_available(struct pt_regs *regs, long error_code) 882 { 883 unsigned long cr0; 884 885 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 886 887 #ifdef CONFIG_MATH_EMULATION 888 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { 889 struct math_emu_info info = { }; 890 891 cond_local_irq_enable(regs); 892 893 info.regs = regs; 894 math_emulate(&info); 895 return; 896 } 897 #endif 898 899 /* This should not happen. */ 900 cr0 = read_cr0(); 901 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 902 /* Try to fix it up and carry on. */ 903 write_cr0(cr0 & ~X86_CR0_TS); 904 } else { 905 /* 906 * Something terrible happened, and we're better off trying 907 * to kill the task than getting stuck in a never-ending 908 * loop of #NM faults. 909 */ 910 die("unexpected #NM exception", regs, error_code); 911 } 912 } 913 NOKPROBE_SYMBOL(do_device_not_available); 914 915 #ifdef CONFIG_X86_32 916 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 917 { 918 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 919 local_irq_enable(); 920 921 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 922 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 923 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 924 ILL_BADSTK, (void __user *)NULL); 925 } 926 } 927 #endif 928 929 void __init trap_init(void) 930 { 931 /* Init cpu_entry_area before IST entries are set up */ 932 setup_cpu_entry_areas(); 933 934 idt_setup_traps(); 935 936 /* 937 * Set the IDT descriptor to a fixed read-only location, so that the 938 * "sidt" instruction will not leak the location of the kernel, and 939 * to defend the IDT against arbitrary memory write vulnerabilities. 940 * It will be reloaded in cpu_init() */ 941 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 942 PAGE_KERNEL_RO); 943 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 944 945 /* 946 * Should be a barrier for any external CPU state: 947 */ 948 cpu_init(); 949 950 idt_setup_ist_traps(); 951 952 x86_init.irqs.trap_init(); 953 954 idt_setup_debugidt_traps(); 955 } 956