1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #if defined(CONFIG_EDAC) 42 #include <linux/edac.h> 43 #endif 44 45 #include <asm/kmemcheck.h> 46 #include <asm/stacktrace.h> 47 #include <asm/processor.h> 48 #include <asm/debugreg.h> 49 #include <linux/atomic.h> 50 #include <asm/text-patching.h> 51 #include <asm/ftrace.h> 52 #include <asm/traps.h> 53 #include <asm/desc.h> 54 #include <asm/fpu/internal.h> 55 #include <asm/mce.h> 56 #include <asm/fixmap.h> 57 #include <asm/mach_traps.h> 58 #include <asm/alternative.h> 59 #include <asm/fpu/xstate.h> 60 #include <asm/trace/mpx.h> 61 #include <asm/mpx.h> 62 #include <asm/vm86.h> 63 64 #ifdef CONFIG_X86_64 65 #include <asm/x86_init.h> 66 #include <asm/pgalloc.h> 67 #include <asm/proto.h> 68 #else 69 #include <asm/processor-flags.h> 70 #include <asm/setup.h> 71 #include <asm/proto.h> 72 #endif 73 74 DECLARE_BITMAP(used_vectors, NR_VECTORS); 75 76 static inline void cond_local_irq_enable(struct pt_regs *regs) 77 { 78 if (regs->flags & X86_EFLAGS_IF) 79 local_irq_enable(); 80 } 81 82 static inline void cond_local_irq_disable(struct pt_regs *regs) 83 { 84 if (regs->flags & X86_EFLAGS_IF) 85 local_irq_disable(); 86 } 87 88 /* 89 * In IST context, we explicitly disable preemption. This serves two 90 * purposes: it makes it much less likely that we would accidentally 91 * schedule in IST context and it will force a warning if we somehow 92 * manage to schedule by accident. 93 */ 94 void ist_enter(struct pt_regs *regs) 95 { 96 if (user_mode(regs)) { 97 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 98 } else { 99 /* 100 * We might have interrupted pretty much anything. In 101 * fact, if we're a machine check, we can even interrupt 102 * NMI processing. We don't want in_nmi() to return true, 103 * but we need to notify RCU. 104 */ 105 rcu_nmi_enter(); 106 } 107 108 preempt_disable(); 109 110 /* This code is a bit fragile. Test it. */ 111 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 112 } 113 114 void ist_exit(struct pt_regs *regs) 115 { 116 preempt_enable_no_resched(); 117 118 if (!user_mode(regs)) 119 rcu_nmi_exit(); 120 } 121 122 /** 123 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 124 * @regs: regs passed to the IST exception handler 125 * 126 * IST exception handlers normally cannot schedule. As a special 127 * exception, if the exception interrupted userspace code (i.e. 128 * user_mode(regs) would return true) and the exception was not 129 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 130 * begins a non-atomic section within an ist_enter()/ist_exit() region. 131 * Callers are responsible for enabling interrupts themselves inside 132 * the non-atomic section, and callers must call ist_end_non_atomic() 133 * before ist_exit(). 134 */ 135 void ist_begin_non_atomic(struct pt_regs *regs) 136 { 137 BUG_ON(!user_mode(regs)); 138 139 /* 140 * Sanity check: we need to be on the normal thread stack. This 141 * will catch asm bugs and any attempt to use ist_preempt_enable 142 * from double_fault. 143 */ 144 BUG_ON((unsigned long)(current_top_of_stack() - 145 current_stack_pointer) >= THREAD_SIZE); 146 147 preempt_enable_no_resched(); 148 } 149 150 /** 151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 152 * 153 * Ends a non-atomic section started with ist_begin_non_atomic(). 154 */ 155 void ist_end_non_atomic(void) 156 { 157 preempt_disable(); 158 } 159 160 int is_valid_bugaddr(unsigned long addr) 161 { 162 unsigned short ud; 163 164 if (addr < TASK_SIZE_MAX) 165 return 0; 166 167 if (probe_kernel_address((unsigned short *)addr, ud)) 168 return 0; 169 170 return ud == INSN_UD0 || ud == INSN_UD2; 171 } 172 173 int fixup_bug(struct pt_regs *regs, int trapnr) 174 { 175 if (trapnr != X86_TRAP_UD) 176 return 0; 177 178 switch (report_bug(regs->ip, regs)) { 179 case BUG_TRAP_TYPE_NONE: 180 case BUG_TRAP_TYPE_BUG: 181 break; 182 183 case BUG_TRAP_TYPE_WARN: 184 regs->ip += LEN_UD0; 185 return 1; 186 } 187 188 return 0; 189 } 190 191 static nokprobe_inline int 192 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, 193 struct pt_regs *regs, long error_code) 194 { 195 if (v8086_mode(regs)) { 196 /* 197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 198 * On nmi (interrupt 2), do_trap should not be called. 199 */ 200 if (trapnr < X86_TRAP_UD) { 201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 202 error_code, trapnr)) 203 return 0; 204 } 205 return -1; 206 } 207 208 if (!user_mode(regs)) { 209 if (fixup_exception(regs, trapnr)) 210 return 0; 211 212 if (fixup_bug(regs, trapnr)) 213 return 0; 214 215 tsk->thread.error_code = error_code; 216 tsk->thread.trap_nr = trapnr; 217 die(str, regs, error_code); 218 } 219 220 return -1; 221 } 222 223 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, 224 siginfo_t *info) 225 { 226 unsigned long siaddr; 227 int sicode; 228 229 switch (trapnr) { 230 default: 231 return SEND_SIG_PRIV; 232 233 case X86_TRAP_DE: 234 sicode = FPE_INTDIV; 235 siaddr = uprobe_get_trap_addr(regs); 236 break; 237 case X86_TRAP_UD: 238 sicode = ILL_ILLOPN; 239 siaddr = uprobe_get_trap_addr(regs); 240 break; 241 case X86_TRAP_AC: 242 sicode = BUS_ADRALN; 243 siaddr = 0; 244 break; 245 } 246 247 info->si_signo = signr; 248 info->si_errno = 0; 249 info->si_code = sicode; 250 info->si_addr = (void __user *)siaddr; 251 return info; 252 } 253 254 static void 255 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 256 long error_code, siginfo_t *info) 257 { 258 struct task_struct *tsk = current; 259 260 261 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 262 return; 263 /* 264 * We want error_code and trap_nr set for userspace faults and 265 * kernelspace faults which result in die(), but not 266 * kernelspace faults which are fixed up. die() gives the 267 * process no chance to handle the signal and notice the 268 * kernel fault information, so that won't result in polluting 269 * the information about previously queued, but not yet 270 * delivered, faults. See also do_general_protection below. 271 */ 272 tsk->thread.error_code = error_code; 273 tsk->thread.trap_nr = trapnr; 274 275 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 276 printk_ratelimit()) { 277 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", 278 tsk->comm, tsk->pid, str, 279 regs->ip, regs->sp, error_code); 280 print_vma_addr(KERN_CONT " in ", regs->ip); 281 pr_cont("\n"); 282 } 283 284 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); 285 } 286 NOKPROBE_SYMBOL(do_trap); 287 288 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 289 unsigned long trapnr, int signr) 290 { 291 siginfo_t info; 292 293 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 294 295 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 296 NOTIFY_STOP) { 297 cond_local_irq_enable(regs); 298 do_trap(trapnr, signr, str, regs, error_code, 299 fill_trap_info(regs, signr, trapnr, &info)); 300 } 301 } 302 303 #define DO_ERROR(trapnr, signr, str, name) \ 304 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 305 { \ 306 do_error_trap(regs, error_code, str, trapnr, signr); \ 307 } 308 309 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) 310 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) 311 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) 312 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) 313 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) 314 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) 315 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) 316 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) 317 318 #ifdef CONFIG_VMAP_STACK 319 __visible void __noreturn handle_stack_overflow(const char *message, 320 struct pt_regs *regs, 321 unsigned long fault_address) 322 { 323 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 324 (void *)fault_address, current->stack, 325 (char *)current->stack + THREAD_SIZE - 1); 326 die(message, regs, 0); 327 328 /* Be absolutely certain we don't return. */ 329 panic(message); 330 } 331 #endif 332 333 #ifdef CONFIG_X86_64 334 /* Runs on IST stack */ 335 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 336 { 337 static const char str[] = "double fault"; 338 struct task_struct *tsk = current; 339 #ifdef CONFIG_VMAP_STACK 340 unsigned long cr2; 341 #endif 342 343 #ifdef CONFIG_X86_ESPFIX64 344 extern unsigned char native_irq_return_iret[]; 345 346 /* 347 * If IRET takes a non-IST fault on the espfix64 stack, then we 348 * end up promoting it to a doublefault. In that case, modify 349 * the stack to make it look like we just entered the #GP 350 * handler from user space, similar to bad_iret. 351 * 352 * No need for ist_enter here because we don't use RCU. 353 */ 354 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY && 355 regs->cs == __KERNEL_CS && 356 regs->ip == (unsigned long)native_irq_return_iret) 357 { 358 struct pt_regs *normal_regs = task_pt_regs(current); 359 360 /* Fake a #GP(0) from userspace. */ 361 memmove(&normal_regs->ip, (void *)regs->sp, 5*8); 362 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */ 363 regs->ip = (unsigned long)general_protection; 364 regs->sp = (unsigned long)&normal_regs->orig_ax; 365 366 return; 367 } 368 #endif 369 370 ist_enter(regs); 371 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 372 373 tsk->thread.error_code = error_code; 374 tsk->thread.trap_nr = X86_TRAP_DF; 375 376 #ifdef CONFIG_VMAP_STACK 377 /* 378 * If we overflow the stack into a guard page, the CPU will fail 379 * to deliver #PF and will send #DF instead. Similarly, if we 380 * take any non-IST exception while too close to the bottom of 381 * the stack, the processor will get a page fault while 382 * delivering the exception and will generate a double fault. 383 * 384 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 385 * Page-Fault Exception (#PF): 386 * 387 * Processors update CR2 whenever a page fault is detected. If a 388 * second page fault occurs while an earlier page fault is being 389 * deliv- ered, the faulting linear address of the second fault will 390 * overwrite the contents of CR2 (replacing the previous 391 * address). These updates to CR2 occur even if the page fault 392 * results in a double fault or occurs during the delivery of a 393 * double fault. 394 * 395 * The logic below has a small possibility of incorrectly diagnosing 396 * some errors as stack overflows. For example, if the IDT or GDT 397 * gets corrupted such that #GP delivery fails due to a bad descriptor 398 * causing #GP and we hit this condition while CR2 coincidentally 399 * points to the stack guard page, we'll think we overflowed the 400 * stack. Given that we're going to panic one way or another 401 * if this happens, this isn't necessarily worth fixing. 402 * 403 * If necessary, we could improve the test by only diagnosing 404 * a stack overflow if the saved RSP points within 47 bytes of 405 * the bottom of the stack: if RSP == tsk_stack + 48 and we 406 * take an exception, the stack is already aligned and there 407 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 408 * possible error code, so a stack overflow would *not* double 409 * fault. With any less space left, exception delivery could 410 * fail, and, as a practical matter, we've overflowed the 411 * stack even if the actual trigger for the double fault was 412 * something else. 413 */ 414 cr2 = read_cr2(); 415 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 416 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 417 #endif 418 419 #ifdef CONFIG_DOUBLEFAULT 420 df_debug(regs, error_code); 421 #endif 422 /* 423 * This is always a kernel trap and never fixable (and thus must 424 * never return). 425 */ 426 for (;;) 427 die(str, regs, error_code); 428 } 429 #endif 430 431 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 432 { 433 const struct mpx_bndcsr *bndcsr; 434 siginfo_t *info; 435 436 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 437 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 438 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 439 return; 440 cond_local_irq_enable(regs); 441 442 if (!user_mode(regs)) 443 die("bounds", regs, error_code); 444 445 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 446 /* The exception is not from Intel MPX */ 447 goto exit_trap; 448 } 449 450 /* 451 * We need to look at BNDSTATUS to resolve this exception. 452 * A NULL here might mean that it is in its 'init state', 453 * which is all zeros which indicates MPX was not 454 * responsible for the exception. 455 */ 456 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 457 if (!bndcsr) 458 goto exit_trap; 459 460 trace_bounds_exception_mpx(bndcsr); 461 /* 462 * The error code field of the BNDSTATUS register communicates status 463 * information of a bound range exception #BR or operation involving 464 * bound directory. 465 */ 466 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 467 case 2: /* Bound directory has invalid entry. */ 468 if (mpx_handle_bd_fault()) 469 goto exit_trap; 470 break; /* Success, it was handled */ 471 case 1: /* Bound violation. */ 472 info = mpx_generate_siginfo(regs); 473 if (IS_ERR(info)) { 474 /* 475 * We failed to decode the MPX instruction. Act as if 476 * the exception was not caused by MPX. 477 */ 478 goto exit_trap; 479 } 480 /* 481 * Success, we decoded the instruction and retrieved 482 * an 'info' containing the address being accessed 483 * which caused the exception. This information 484 * allows and application to possibly handle the 485 * #BR exception itself. 486 */ 487 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); 488 kfree(info); 489 break; 490 case 0: /* No exception caused by Intel MPX operations. */ 491 goto exit_trap; 492 default: 493 die("bounds", regs, error_code); 494 } 495 496 return; 497 498 exit_trap: 499 /* 500 * This path out is for all the cases where we could not 501 * handle the exception in some way (like allocating a 502 * table or telling userspace about it. We will also end 503 * up here if the kernel has MPX turned off at compile 504 * time.. 505 */ 506 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); 507 } 508 509 dotraplinkage void 510 do_general_protection(struct pt_regs *regs, long error_code) 511 { 512 struct task_struct *tsk; 513 514 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 515 cond_local_irq_enable(regs); 516 517 if (v8086_mode(regs)) { 518 local_irq_enable(); 519 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 520 return; 521 } 522 523 tsk = current; 524 if (!user_mode(regs)) { 525 if (fixup_exception(regs, X86_TRAP_GP)) 526 return; 527 528 tsk->thread.error_code = error_code; 529 tsk->thread.trap_nr = X86_TRAP_GP; 530 if (notify_die(DIE_GPF, "general protection fault", regs, error_code, 531 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 532 die("general protection fault", regs, error_code); 533 return; 534 } 535 536 tsk->thread.error_code = error_code; 537 tsk->thread.trap_nr = X86_TRAP_GP; 538 539 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 540 printk_ratelimit()) { 541 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", 542 tsk->comm, task_pid_nr(tsk), 543 regs->ip, regs->sp, error_code); 544 print_vma_addr(KERN_CONT " in ", regs->ip); 545 pr_cont("\n"); 546 } 547 548 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); 549 } 550 NOKPROBE_SYMBOL(do_general_protection); 551 552 /* May run on IST stack. */ 553 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 554 { 555 #ifdef CONFIG_DYNAMIC_FTRACE 556 /* 557 * ftrace must be first, everything else may cause a recursive crash. 558 * See note by declaration of modifying_ftrace_code in ftrace.c 559 */ 560 if (unlikely(atomic_read(&modifying_ftrace_code)) && 561 ftrace_int3_handler(regs)) 562 return; 563 #endif 564 if (poke_int3_handler(regs)) 565 return; 566 567 ist_enter(regs); 568 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 569 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 570 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 571 SIGTRAP) == NOTIFY_STOP) 572 goto exit; 573 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 574 575 #ifdef CONFIG_KPROBES 576 if (kprobe_int3_handler(regs)) 577 goto exit; 578 #endif 579 580 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 581 SIGTRAP) == NOTIFY_STOP) 582 goto exit; 583 584 /* 585 * Let others (NMI) know that the debug stack is in use 586 * as we may switch to the interrupt stack. 587 */ 588 debug_stack_usage_inc(); 589 cond_local_irq_enable(regs); 590 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); 591 cond_local_irq_disable(regs); 592 debug_stack_usage_dec(); 593 exit: 594 ist_exit(regs); 595 } 596 NOKPROBE_SYMBOL(do_int3); 597 598 #ifdef CONFIG_X86_64 599 /* 600 * Help handler running on IST stack to switch off the IST stack if the 601 * interrupted code was in user mode. The actual stack switch is done in 602 * entry_64.S 603 */ 604 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 605 { 606 struct pt_regs *regs = task_pt_regs(current); 607 *regs = *eregs; 608 return regs; 609 } 610 NOKPROBE_SYMBOL(sync_regs); 611 612 struct bad_iret_stack { 613 void *error_entry_ret; 614 struct pt_regs regs; 615 }; 616 617 asmlinkage __visible notrace 618 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 619 { 620 /* 621 * This is called from entry_64.S early in handling a fault 622 * caused by a bad iret to user mode. To handle the fault 623 * correctly, we want move our stack frame to task_pt_regs 624 * and we want to pretend that the exception came from the 625 * iret target. 626 */ 627 struct bad_iret_stack *new_stack = 628 container_of(task_pt_regs(current), 629 struct bad_iret_stack, regs); 630 631 /* Copy the IRET target to the new stack. */ 632 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 633 634 /* Copy the remainder of the stack from the current stack. */ 635 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 636 637 BUG_ON(!user_mode(&new_stack->regs)); 638 return new_stack; 639 } 640 NOKPROBE_SYMBOL(fixup_bad_iret); 641 #endif 642 643 static bool is_sysenter_singlestep(struct pt_regs *regs) 644 { 645 /* 646 * We don't try for precision here. If we're anywhere in the region of 647 * code that can be single-stepped in the SYSENTER entry path, then 648 * assume that this is a useless single-step trap due to SYSENTER 649 * being invoked with TF set. (We don't know in advance exactly 650 * which instructions will be hit because BTF could plausibly 651 * be set.) 652 */ 653 #ifdef CONFIG_X86_32 654 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 655 (unsigned long)__end_SYSENTER_singlestep_region - 656 (unsigned long)__begin_SYSENTER_singlestep_region; 657 #elif defined(CONFIG_IA32_EMULATION) 658 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 659 (unsigned long)__end_entry_SYSENTER_compat - 660 (unsigned long)entry_SYSENTER_compat; 661 #else 662 return false; 663 #endif 664 } 665 666 /* 667 * Our handling of the processor debug registers is non-trivial. 668 * We do not clear them on entry and exit from the kernel. Therefore 669 * it is possible to get a watchpoint trap here from inside the kernel. 670 * However, the code in ./ptrace.c has ensured that the user can 671 * only set watchpoints on userspace addresses. Therefore the in-kernel 672 * watchpoint trap can only occur in code which is reading/writing 673 * from user space. Such code must not hold kernel locks (since it 674 * can equally take a page fault), therefore it is safe to call 675 * force_sig_info even though that claims and releases locks. 676 * 677 * Code in ./signal.c ensures that the debug control register 678 * is restored before we deliver any signal, and therefore that 679 * user code runs with the correct debug control register even though 680 * we clear it here. 681 * 682 * Being careful here means that we don't have to be as careful in a 683 * lot of more complicated places (task switching can be a bit lazy 684 * about restoring all the debug state, and ptrace doesn't have to 685 * find every occurrence of the TF bit that could be saved away even 686 * by user code) 687 * 688 * May run on IST stack. 689 */ 690 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 691 { 692 struct task_struct *tsk = current; 693 int user_icebp = 0; 694 unsigned long dr6; 695 int si_code; 696 697 ist_enter(regs); 698 699 get_debugreg(dr6, 6); 700 /* 701 * The Intel SDM says: 702 * 703 * Certain debug exceptions may clear bits 0-3. The remaining 704 * contents of the DR6 register are never cleared by the 705 * processor. To avoid confusion in identifying debug 706 * exceptions, debug handlers should clear the register before 707 * returning to the interrupted task. 708 * 709 * Keep it simple: clear DR6 immediately. 710 */ 711 set_debugreg(0, 6); 712 713 /* Filter out all the reserved bits which are preset to 1 */ 714 dr6 &= ~DR6_RESERVED; 715 716 /* 717 * The SDM says "The processor clears the BTF flag when it 718 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 719 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 720 */ 721 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 722 723 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 724 is_sysenter_singlestep(regs))) { 725 dr6 &= ~DR_STEP; 726 if (!dr6) 727 goto exit; 728 /* 729 * else we might have gotten a single-step trap and hit a 730 * watchpoint at the same time, in which case we should fall 731 * through and handle the watchpoint. 732 */ 733 } 734 735 /* 736 * If dr6 has no reason to give us about the origin of this trap, 737 * then it's very likely the result of an icebp/int01 trap. 738 * User wants a sigtrap for that. 739 */ 740 if (!dr6 && user_mode(regs)) 741 user_icebp = 1; 742 743 /* Catch kmemcheck conditions! */ 744 if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) 745 goto exit; 746 747 /* Store the virtualized DR6 value */ 748 tsk->thread.debugreg6 = dr6; 749 750 #ifdef CONFIG_KPROBES 751 if (kprobe_debug_handler(regs)) 752 goto exit; 753 #endif 754 755 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 756 SIGTRAP) == NOTIFY_STOP) 757 goto exit; 758 759 /* 760 * Let others (NMI) know that the debug stack is in use 761 * as we may switch to the interrupt stack. 762 */ 763 debug_stack_usage_inc(); 764 765 /* It's safe to allow irq's after DR6 has been saved */ 766 cond_local_irq_enable(regs); 767 768 if (v8086_mode(regs)) { 769 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 770 X86_TRAP_DB); 771 cond_local_irq_disable(regs); 772 debug_stack_usage_dec(); 773 goto exit; 774 } 775 776 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 777 /* 778 * Historical junk that used to handle SYSENTER single-stepping. 779 * This should be unreachable now. If we survive for a while 780 * without anyone hitting this warning, we'll turn this into 781 * an oops. 782 */ 783 tsk->thread.debugreg6 &= ~DR_STEP; 784 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 785 regs->flags &= ~X86_EFLAGS_TF; 786 } 787 si_code = get_si_code(tsk->thread.debugreg6); 788 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 789 send_sigtrap(tsk, regs, error_code, si_code); 790 cond_local_irq_disable(regs); 791 debug_stack_usage_dec(); 792 793 exit: 794 #if defined(CONFIG_X86_32) 795 /* 796 * This is the most likely code path that involves non-trivial use 797 * of the SYSENTER stack. Check that we haven't overrun it. 798 */ 799 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC, 800 "Overran or corrupted SYSENTER stack\n"); 801 #endif 802 ist_exit(regs); 803 } 804 NOKPROBE_SYMBOL(do_debug); 805 806 /* 807 * Note that we play around with the 'TS' bit in an attempt to get 808 * the correct behaviour even in the presence of the asynchronous 809 * IRQ13 behaviour 810 */ 811 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 812 { 813 struct task_struct *task = current; 814 struct fpu *fpu = &task->thread.fpu; 815 siginfo_t info; 816 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 817 "simd exception"; 818 819 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) 820 return; 821 cond_local_irq_enable(regs); 822 823 if (!user_mode(regs)) { 824 if (!fixup_exception(regs, trapnr)) { 825 task->thread.error_code = error_code; 826 task->thread.trap_nr = trapnr; 827 die(str, regs, error_code); 828 } 829 return; 830 } 831 832 /* 833 * Save the info for the exception handler and clear the error. 834 */ 835 fpu__save(fpu); 836 837 task->thread.trap_nr = trapnr; 838 task->thread.error_code = error_code; 839 info.si_signo = SIGFPE; 840 info.si_errno = 0; 841 info.si_addr = (void __user *)uprobe_get_trap_addr(regs); 842 843 info.si_code = fpu__exception_code(fpu, trapnr); 844 845 /* Retry when we get spurious exceptions: */ 846 if (!info.si_code) 847 return; 848 849 force_sig_info(SIGFPE, &info, task); 850 } 851 852 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 853 { 854 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 855 math_error(regs, error_code, X86_TRAP_MF); 856 } 857 858 dotraplinkage void 859 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 860 { 861 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 862 math_error(regs, error_code, X86_TRAP_XF); 863 } 864 865 dotraplinkage void 866 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 867 { 868 cond_local_irq_enable(regs); 869 } 870 871 dotraplinkage void 872 do_device_not_available(struct pt_regs *regs, long error_code) 873 { 874 unsigned long cr0; 875 876 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 877 878 #ifdef CONFIG_MATH_EMULATION 879 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { 880 struct math_emu_info info = { }; 881 882 cond_local_irq_enable(regs); 883 884 info.regs = regs; 885 math_emulate(&info); 886 return; 887 } 888 #endif 889 890 /* This should not happen. */ 891 cr0 = read_cr0(); 892 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 893 /* Try to fix it up and carry on. */ 894 write_cr0(cr0 & ~X86_CR0_TS); 895 } else { 896 /* 897 * Something terrible happened, and we're better off trying 898 * to kill the task than getting stuck in a never-ending 899 * loop of #NM faults. 900 */ 901 die("unexpected #NM exception", regs, error_code); 902 } 903 } 904 NOKPROBE_SYMBOL(do_device_not_available); 905 906 #ifdef CONFIG_X86_32 907 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 908 { 909 siginfo_t info; 910 911 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 912 local_irq_enable(); 913 914 info.si_signo = SIGILL; 915 info.si_errno = 0; 916 info.si_code = ILL_BADSTK; 917 info.si_addr = NULL; 918 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 919 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 920 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 921 &info); 922 } 923 } 924 #endif 925 926 void __init trap_init(void) 927 { 928 idt_setup_traps(); 929 930 /* 931 * Set the IDT descriptor to a fixed read-only location, so that the 932 * "sidt" instruction will not leak the location of the kernel, and 933 * to defend the IDT against arbitrary memory write vulnerabilities. 934 * It will be reloaded in cpu_init() */ 935 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO); 936 idt_descr.address = fix_to_virt(FIX_RO_IDT); 937 938 /* 939 * Should be a barrier for any external CPU state: 940 */ 941 cpu_init(); 942 943 idt_setup_ist_traps(); 944 945 x86_init.irqs.trap_init(); 946 947 idt_setup_debugidt_traps(); 948 } 949