1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #if defined(CONFIG_EDAC) 42 #include <linux/edac.h> 43 #endif 44 45 #include <asm/stacktrace.h> 46 #include <asm/processor.h> 47 #include <asm/debugreg.h> 48 #include <linux/atomic.h> 49 #include <asm/text-patching.h> 50 #include <asm/ftrace.h> 51 #include <asm/traps.h> 52 #include <asm/desc.h> 53 #include <asm/fpu/internal.h> 54 #include <asm/cpu_entry_area.h> 55 #include <asm/mce.h> 56 #include <asm/fixmap.h> 57 #include <asm/mach_traps.h> 58 #include <asm/alternative.h> 59 #include <asm/fpu/xstate.h> 60 #include <asm/trace/mpx.h> 61 #include <asm/mpx.h> 62 #include <asm/vm86.h> 63 #include <asm/umip.h> 64 65 #ifdef CONFIG_X86_64 66 #include <asm/x86_init.h> 67 #include <asm/pgalloc.h> 68 #include <asm/proto.h> 69 #else 70 #include <asm/processor-flags.h> 71 #include <asm/setup.h> 72 #include <asm/proto.h> 73 #endif 74 75 DECLARE_BITMAP(system_vectors, NR_VECTORS); 76 77 static inline void cond_local_irq_enable(struct pt_regs *regs) 78 { 79 if (regs->flags & X86_EFLAGS_IF) 80 local_irq_enable(); 81 } 82 83 static inline void cond_local_irq_disable(struct pt_regs *regs) 84 { 85 if (regs->flags & X86_EFLAGS_IF) 86 local_irq_disable(); 87 } 88 89 /* 90 * In IST context, we explicitly disable preemption. This serves two 91 * purposes: it makes it much less likely that we would accidentally 92 * schedule in IST context and it will force a warning if we somehow 93 * manage to schedule by accident. 94 */ 95 void ist_enter(struct pt_regs *regs) 96 { 97 if (user_mode(regs)) { 98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 99 } else { 100 /* 101 * We might have interrupted pretty much anything. In 102 * fact, if we're a machine check, we can even interrupt 103 * NMI processing. We don't want in_nmi() to return true, 104 * but we need to notify RCU. 105 */ 106 rcu_nmi_enter(); 107 } 108 109 preempt_disable(); 110 111 /* This code is a bit fragile. Test it. */ 112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 113 } 114 NOKPROBE_SYMBOL(ist_enter); 115 116 void ist_exit(struct pt_regs *regs) 117 { 118 preempt_enable_no_resched(); 119 120 if (!user_mode(regs)) 121 rcu_nmi_exit(); 122 } 123 124 /** 125 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 126 * @regs: regs passed to the IST exception handler 127 * 128 * IST exception handlers normally cannot schedule. As a special 129 * exception, if the exception interrupted userspace code (i.e. 130 * user_mode(regs) would return true) and the exception was not 131 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 132 * begins a non-atomic section within an ist_enter()/ist_exit() region. 133 * Callers are responsible for enabling interrupts themselves inside 134 * the non-atomic section, and callers must call ist_end_non_atomic() 135 * before ist_exit(). 136 */ 137 void ist_begin_non_atomic(struct pt_regs *regs) 138 { 139 BUG_ON(!user_mode(regs)); 140 141 /* 142 * Sanity check: we need to be on the normal thread stack. This 143 * will catch asm bugs and any attempt to use ist_preempt_enable 144 * from double_fault. 145 */ 146 BUG_ON(!on_thread_stack()); 147 148 preempt_enable_no_resched(); 149 } 150 151 /** 152 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 153 * 154 * Ends a non-atomic section started with ist_begin_non_atomic(). 155 */ 156 void ist_end_non_atomic(void) 157 { 158 preempt_disable(); 159 } 160 161 int is_valid_bugaddr(unsigned long addr) 162 { 163 unsigned short ud; 164 165 if (addr < TASK_SIZE_MAX) 166 return 0; 167 168 if (probe_kernel_address((unsigned short *)addr, ud)) 169 return 0; 170 171 return ud == INSN_UD0 || ud == INSN_UD2; 172 } 173 174 int fixup_bug(struct pt_regs *regs, int trapnr) 175 { 176 if (trapnr != X86_TRAP_UD) 177 return 0; 178 179 switch (report_bug(regs->ip, regs)) { 180 case BUG_TRAP_TYPE_NONE: 181 case BUG_TRAP_TYPE_BUG: 182 break; 183 184 case BUG_TRAP_TYPE_WARN: 185 regs->ip += LEN_UD2; 186 return 1; 187 } 188 189 return 0; 190 } 191 192 static nokprobe_inline int 193 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 194 struct pt_regs *regs, long error_code) 195 { 196 if (v8086_mode(regs)) { 197 /* 198 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 199 * On nmi (interrupt 2), do_trap should not be called. 200 */ 201 if (trapnr < X86_TRAP_UD) { 202 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 203 error_code, trapnr)) 204 return 0; 205 } 206 } else if (!user_mode(regs)) { 207 if (fixup_exception(regs, trapnr, error_code, 0)) 208 return 0; 209 210 tsk->thread.error_code = error_code; 211 tsk->thread.trap_nr = trapnr; 212 die(str, regs, error_code); 213 } 214 215 /* 216 * We want error_code and trap_nr set for userspace faults and 217 * kernelspace faults which result in die(), but not 218 * kernelspace faults which are fixed up. die() gives the 219 * process no chance to handle the signal and notice the 220 * kernel fault information, so that won't result in polluting 221 * the information about previously queued, but not yet 222 * delivered, faults. See also do_general_protection below. 223 */ 224 tsk->thread.error_code = error_code; 225 tsk->thread.trap_nr = trapnr; 226 227 return -1; 228 } 229 230 static void show_signal(struct task_struct *tsk, int signr, 231 const char *type, const char *desc, 232 struct pt_regs *regs, long error_code) 233 { 234 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 235 printk_ratelimit()) { 236 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 237 tsk->comm, task_pid_nr(tsk), type, desc, 238 regs->ip, regs->sp, error_code); 239 print_vma_addr(KERN_CONT " in ", regs->ip); 240 pr_cont("\n"); 241 } 242 } 243 244 static void 245 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 246 long error_code, int sicode, void __user *addr) 247 { 248 struct task_struct *tsk = current; 249 250 251 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 252 return; 253 254 show_signal(tsk, signr, "trap ", str, regs, error_code); 255 256 if (!sicode) 257 force_sig(signr); 258 else 259 force_sig_fault(signr, sicode, addr); 260 } 261 NOKPROBE_SYMBOL(do_trap); 262 263 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 264 unsigned long trapnr, int signr, int sicode, void __user *addr) 265 { 266 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 267 268 /* 269 * WARN*()s end up here; fix them up before we call the 270 * notifier chain. 271 */ 272 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 273 return; 274 275 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 276 NOTIFY_STOP) { 277 cond_local_irq_enable(regs); 278 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 279 } 280 } 281 282 #define IP ((void __user *)uprobe_get_trap_addr(regs)) 283 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ 284 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 285 { \ 286 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ 287 } 288 289 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) 290 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) 291 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) 292 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) 293 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) 294 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) 295 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) 296 DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check) 297 #undef IP 298 299 #ifdef CONFIG_VMAP_STACK 300 __visible void __noreturn handle_stack_overflow(const char *message, 301 struct pt_regs *regs, 302 unsigned long fault_address) 303 { 304 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 305 (void *)fault_address, current->stack, 306 (char *)current->stack + THREAD_SIZE - 1); 307 die(message, regs, 0); 308 309 /* Be absolutely certain we don't return. */ 310 panic("%s", message); 311 } 312 #endif 313 314 #ifdef CONFIG_X86_64 315 /* Runs on IST stack */ 316 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 317 { 318 static const char str[] = "double fault"; 319 struct task_struct *tsk = current; 320 #ifdef CONFIG_VMAP_STACK 321 unsigned long cr2; 322 #endif 323 324 #ifdef CONFIG_X86_ESPFIX64 325 extern unsigned char native_irq_return_iret[]; 326 327 /* 328 * If IRET takes a non-IST fault on the espfix64 stack, then we 329 * end up promoting it to a doublefault. In that case, take 330 * advantage of the fact that we're not using the normal (TSS.sp0) 331 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 332 * and then modify our own IRET frame so that, when we return, 333 * we land directly at the #GP(0) vector with the stack already 334 * set up according to its expectations. 335 * 336 * The net result is that our #GP handler will think that we 337 * entered from usermode with the bad user context. 338 * 339 * No need for ist_enter here because we don't use RCU. 340 */ 341 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 342 regs->cs == __KERNEL_CS && 343 regs->ip == (unsigned long)native_irq_return_iret) 344 { 345 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 346 347 /* 348 * regs->sp points to the failing IRET frame on the 349 * ESPFIX64 stack. Copy it to the entry stack. This fills 350 * in gpregs->ss through gpregs->ip. 351 * 352 */ 353 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 354 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 355 356 /* 357 * Adjust our frame so that we return straight to the #GP 358 * vector with the expected RSP value. This is safe because 359 * we won't enable interupts or schedule before we invoke 360 * general_protection, so nothing will clobber the stack 361 * frame we just set up. 362 * 363 * We will enter general_protection with kernel GSBASE, 364 * which is what the stub expects, given that the faulting 365 * RIP will be the IRET instruction. 366 */ 367 regs->ip = (unsigned long)general_protection; 368 regs->sp = (unsigned long)&gpregs->orig_ax; 369 370 return; 371 } 372 #endif 373 374 ist_enter(regs); 375 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 376 377 tsk->thread.error_code = error_code; 378 tsk->thread.trap_nr = X86_TRAP_DF; 379 380 #ifdef CONFIG_VMAP_STACK 381 /* 382 * If we overflow the stack into a guard page, the CPU will fail 383 * to deliver #PF and will send #DF instead. Similarly, if we 384 * take any non-IST exception while too close to the bottom of 385 * the stack, the processor will get a page fault while 386 * delivering the exception and will generate a double fault. 387 * 388 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 389 * Page-Fault Exception (#PF): 390 * 391 * Processors update CR2 whenever a page fault is detected. If a 392 * second page fault occurs while an earlier page fault is being 393 * delivered, the faulting linear address of the second fault will 394 * overwrite the contents of CR2 (replacing the previous 395 * address). These updates to CR2 occur even if the page fault 396 * results in a double fault or occurs during the delivery of a 397 * double fault. 398 * 399 * The logic below has a small possibility of incorrectly diagnosing 400 * some errors as stack overflows. For example, if the IDT or GDT 401 * gets corrupted such that #GP delivery fails due to a bad descriptor 402 * causing #GP and we hit this condition while CR2 coincidentally 403 * points to the stack guard page, we'll think we overflowed the 404 * stack. Given that we're going to panic one way or another 405 * if this happens, this isn't necessarily worth fixing. 406 * 407 * If necessary, we could improve the test by only diagnosing 408 * a stack overflow if the saved RSP points within 47 bytes of 409 * the bottom of the stack: if RSP == tsk_stack + 48 and we 410 * take an exception, the stack is already aligned and there 411 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 412 * possible error code, so a stack overflow would *not* double 413 * fault. With any less space left, exception delivery could 414 * fail, and, as a practical matter, we've overflowed the 415 * stack even if the actual trigger for the double fault was 416 * something else. 417 */ 418 cr2 = read_cr2(); 419 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 420 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 421 #endif 422 423 #ifdef CONFIG_DOUBLEFAULT 424 df_debug(regs, error_code); 425 #endif 426 /* 427 * This is always a kernel trap and never fixable (and thus must 428 * never return). 429 */ 430 for (;;) 431 die(str, regs, error_code); 432 } 433 #endif 434 435 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 436 { 437 const struct mpx_bndcsr *bndcsr; 438 439 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 440 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 441 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 442 return; 443 cond_local_irq_enable(regs); 444 445 if (!user_mode(regs)) 446 die("bounds", regs, error_code); 447 448 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 449 /* The exception is not from Intel MPX */ 450 goto exit_trap; 451 } 452 453 /* 454 * We need to look at BNDSTATUS to resolve this exception. 455 * A NULL here might mean that it is in its 'init state', 456 * which is all zeros which indicates MPX was not 457 * responsible for the exception. 458 */ 459 bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR); 460 if (!bndcsr) 461 goto exit_trap; 462 463 trace_bounds_exception_mpx(bndcsr); 464 /* 465 * The error code field of the BNDSTATUS register communicates status 466 * information of a bound range exception #BR or operation involving 467 * bound directory. 468 */ 469 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 470 case 2: /* Bound directory has invalid entry. */ 471 if (mpx_handle_bd_fault()) 472 goto exit_trap; 473 break; /* Success, it was handled */ 474 case 1: /* Bound violation. */ 475 { 476 struct task_struct *tsk = current; 477 struct mpx_fault_info mpx; 478 479 if (mpx_fault_info(&mpx, regs)) { 480 /* 481 * We failed to decode the MPX instruction. Act as if 482 * the exception was not caused by MPX. 483 */ 484 goto exit_trap; 485 } 486 /* 487 * Success, we decoded the instruction and retrieved 488 * an 'mpx' containing the address being accessed 489 * which caused the exception. This information 490 * allows and application to possibly handle the 491 * #BR exception itself. 492 */ 493 if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs, 494 error_code)) 495 break; 496 497 show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code); 498 499 force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper); 500 break; 501 } 502 case 0: /* No exception caused by Intel MPX operations. */ 503 goto exit_trap; 504 default: 505 die("bounds", regs, error_code); 506 } 507 508 return; 509 510 exit_trap: 511 /* 512 * This path out is for all the cases where we could not 513 * handle the exception in some way (like allocating a 514 * table or telling userspace about it. We will also end 515 * up here if the kernel has MPX turned off at compile 516 * time.. 517 */ 518 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); 519 } 520 521 dotraplinkage void 522 do_general_protection(struct pt_regs *regs, long error_code) 523 { 524 const char *desc = "general protection fault"; 525 struct task_struct *tsk; 526 527 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 528 cond_local_irq_enable(regs); 529 530 if (static_cpu_has(X86_FEATURE_UMIP)) { 531 if (user_mode(regs) && fixup_umip_exception(regs)) 532 return; 533 } 534 535 if (v8086_mode(regs)) { 536 local_irq_enable(); 537 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 538 return; 539 } 540 541 tsk = current; 542 if (!user_mode(regs)) { 543 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 544 return; 545 546 tsk->thread.error_code = error_code; 547 tsk->thread.trap_nr = X86_TRAP_GP; 548 549 /* 550 * To be potentially processing a kprobe fault and to 551 * trust the result from kprobe_running(), we have to 552 * be non-preemptible. 553 */ 554 if (!preemptible() && kprobe_running() && 555 kprobe_fault_handler(regs, X86_TRAP_GP)) 556 return; 557 558 if (notify_die(DIE_GPF, desc, regs, error_code, 559 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 560 die(desc, regs, error_code); 561 return; 562 } 563 564 tsk->thread.error_code = error_code; 565 tsk->thread.trap_nr = X86_TRAP_GP; 566 567 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 568 569 force_sig(SIGSEGV); 570 } 571 NOKPROBE_SYMBOL(do_general_protection); 572 573 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 574 { 575 #ifdef CONFIG_DYNAMIC_FTRACE 576 /* 577 * ftrace must be first, everything else may cause a recursive crash. 578 * See note by declaration of modifying_ftrace_code in ftrace.c 579 */ 580 if (unlikely(atomic_read(&modifying_ftrace_code)) && 581 ftrace_int3_handler(regs)) 582 return; 583 #endif 584 if (poke_int3_handler(regs)) 585 return; 586 587 /* 588 * Use ist_enter despite the fact that we don't use an IST stack. 589 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel 590 * mode or even during context tracking state changes. 591 * 592 * This means that we can't schedule. That's okay. 593 */ 594 ist_enter(regs); 595 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 596 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 597 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 598 SIGTRAP) == NOTIFY_STOP) 599 goto exit; 600 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 601 602 #ifdef CONFIG_KPROBES 603 if (kprobe_int3_handler(regs)) 604 goto exit; 605 #endif 606 607 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 608 SIGTRAP) == NOTIFY_STOP) 609 goto exit; 610 611 cond_local_irq_enable(regs); 612 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); 613 cond_local_irq_disable(regs); 614 615 exit: 616 ist_exit(regs); 617 } 618 NOKPROBE_SYMBOL(do_int3); 619 620 #ifdef CONFIG_X86_64 621 /* 622 * Help handler running on a per-cpu (IST or entry trampoline) stack 623 * to switch to the normal thread stack if the interrupted code was in 624 * user mode. The actual stack switch is done in entry_64.S 625 */ 626 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 627 { 628 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 629 if (regs != eregs) 630 *regs = *eregs; 631 return regs; 632 } 633 NOKPROBE_SYMBOL(sync_regs); 634 635 struct bad_iret_stack { 636 void *error_entry_ret; 637 struct pt_regs regs; 638 }; 639 640 asmlinkage __visible notrace 641 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 642 { 643 /* 644 * This is called from entry_64.S early in handling a fault 645 * caused by a bad iret to user mode. To handle the fault 646 * correctly, we want to move our stack frame to where it would 647 * be had we entered directly on the entry stack (rather than 648 * just below the IRET frame) and we want to pretend that the 649 * exception came from the IRET target. 650 */ 651 struct bad_iret_stack *new_stack = 652 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 653 654 /* Copy the IRET target to the new stack. */ 655 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 656 657 /* Copy the remainder of the stack from the current stack. */ 658 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 659 660 BUG_ON(!user_mode(&new_stack->regs)); 661 return new_stack; 662 } 663 NOKPROBE_SYMBOL(fixup_bad_iret); 664 #endif 665 666 static bool is_sysenter_singlestep(struct pt_regs *regs) 667 { 668 /* 669 * We don't try for precision here. If we're anywhere in the region of 670 * code that can be single-stepped in the SYSENTER entry path, then 671 * assume that this is a useless single-step trap due to SYSENTER 672 * being invoked with TF set. (We don't know in advance exactly 673 * which instructions will be hit because BTF could plausibly 674 * be set.) 675 */ 676 #ifdef CONFIG_X86_32 677 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 678 (unsigned long)__end_SYSENTER_singlestep_region - 679 (unsigned long)__begin_SYSENTER_singlestep_region; 680 #elif defined(CONFIG_IA32_EMULATION) 681 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 682 (unsigned long)__end_entry_SYSENTER_compat - 683 (unsigned long)entry_SYSENTER_compat; 684 #else 685 return false; 686 #endif 687 } 688 689 /* 690 * Our handling of the processor debug registers is non-trivial. 691 * We do not clear them on entry and exit from the kernel. Therefore 692 * it is possible to get a watchpoint trap here from inside the kernel. 693 * However, the code in ./ptrace.c has ensured that the user can 694 * only set watchpoints on userspace addresses. Therefore the in-kernel 695 * watchpoint trap can only occur in code which is reading/writing 696 * from user space. Such code must not hold kernel locks (since it 697 * can equally take a page fault), therefore it is safe to call 698 * force_sig_info even though that claims and releases locks. 699 * 700 * Code in ./signal.c ensures that the debug control register 701 * is restored before we deliver any signal, and therefore that 702 * user code runs with the correct debug control register even though 703 * we clear it here. 704 * 705 * Being careful here means that we don't have to be as careful in a 706 * lot of more complicated places (task switching can be a bit lazy 707 * about restoring all the debug state, and ptrace doesn't have to 708 * find every occurrence of the TF bit that could be saved away even 709 * by user code) 710 * 711 * May run on IST stack. 712 */ 713 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 714 { 715 struct task_struct *tsk = current; 716 int user_icebp = 0; 717 unsigned long dr6; 718 int si_code; 719 720 ist_enter(regs); 721 722 get_debugreg(dr6, 6); 723 /* 724 * The Intel SDM says: 725 * 726 * Certain debug exceptions may clear bits 0-3. The remaining 727 * contents of the DR6 register are never cleared by the 728 * processor. To avoid confusion in identifying debug 729 * exceptions, debug handlers should clear the register before 730 * returning to the interrupted task. 731 * 732 * Keep it simple: clear DR6 immediately. 733 */ 734 set_debugreg(0, 6); 735 736 /* Filter out all the reserved bits which are preset to 1 */ 737 dr6 &= ~DR6_RESERVED; 738 739 /* 740 * The SDM says "The processor clears the BTF flag when it 741 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 742 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 743 */ 744 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 745 746 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 747 is_sysenter_singlestep(regs))) { 748 dr6 &= ~DR_STEP; 749 if (!dr6) 750 goto exit; 751 /* 752 * else we might have gotten a single-step trap and hit a 753 * watchpoint at the same time, in which case we should fall 754 * through and handle the watchpoint. 755 */ 756 } 757 758 /* 759 * If dr6 has no reason to give us about the origin of this trap, 760 * then it's very likely the result of an icebp/int01 trap. 761 * User wants a sigtrap for that. 762 */ 763 if (!dr6 && user_mode(regs)) 764 user_icebp = 1; 765 766 /* Store the virtualized DR6 value */ 767 tsk->thread.debugreg6 = dr6; 768 769 #ifdef CONFIG_KPROBES 770 if (kprobe_debug_handler(regs)) 771 goto exit; 772 #endif 773 774 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 775 SIGTRAP) == NOTIFY_STOP) 776 goto exit; 777 778 /* 779 * Let others (NMI) know that the debug stack is in use 780 * as we may switch to the interrupt stack. 781 */ 782 debug_stack_usage_inc(); 783 784 /* It's safe to allow irq's after DR6 has been saved */ 785 cond_local_irq_enable(regs); 786 787 if (v8086_mode(regs)) { 788 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 789 X86_TRAP_DB); 790 cond_local_irq_disable(regs); 791 debug_stack_usage_dec(); 792 goto exit; 793 } 794 795 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 796 /* 797 * Historical junk that used to handle SYSENTER single-stepping. 798 * This should be unreachable now. If we survive for a while 799 * without anyone hitting this warning, we'll turn this into 800 * an oops. 801 */ 802 tsk->thread.debugreg6 &= ~DR_STEP; 803 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 804 regs->flags &= ~X86_EFLAGS_TF; 805 } 806 si_code = get_si_code(tsk->thread.debugreg6); 807 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 808 send_sigtrap(regs, error_code, si_code); 809 cond_local_irq_disable(regs); 810 debug_stack_usage_dec(); 811 812 exit: 813 ist_exit(regs); 814 } 815 NOKPROBE_SYMBOL(do_debug); 816 817 /* 818 * Note that we play around with the 'TS' bit in an attempt to get 819 * the correct behaviour even in the presence of the asynchronous 820 * IRQ13 behaviour 821 */ 822 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 823 { 824 struct task_struct *task = current; 825 struct fpu *fpu = &task->thread.fpu; 826 int si_code; 827 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 828 "simd exception"; 829 830 cond_local_irq_enable(regs); 831 832 if (!user_mode(regs)) { 833 if (fixup_exception(regs, trapnr, error_code, 0)) 834 return; 835 836 task->thread.error_code = error_code; 837 task->thread.trap_nr = trapnr; 838 839 if (notify_die(DIE_TRAP, str, regs, error_code, 840 trapnr, SIGFPE) != NOTIFY_STOP) 841 die(str, regs, error_code); 842 return; 843 } 844 845 /* 846 * Save the info for the exception handler and clear the error. 847 */ 848 fpu__save(fpu); 849 850 task->thread.trap_nr = trapnr; 851 task->thread.error_code = error_code; 852 853 si_code = fpu__exception_code(fpu, trapnr); 854 /* Retry when we get spurious exceptions: */ 855 if (!si_code) 856 return; 857 858 force_sig_fault(SIGFPE, si_code, 859 (void __user *)uprobe_get_trap_addr(regs)); 860 } 861 862 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 863 { 864 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 865 math_error(regs, error_code, X86_TRAP_MF); 866 } 867 868 dotraplinkage void 869 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 870 { 871 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 872 math_error(regs, error_code, X86_TRAP_XF); 873 } 874 875 dotraplinkage void 876 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 877 { 878 cond_local_irq_enable(regs); 879 } 880 881 dotraplinkage void 882 do_device_not_available(struct pt_regs *regs, long error_code) 883 { 884 unsigned long cr0 = read_cr0(); 885 886 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 887 888 #ifdef CONFIG_MATH_EMULATION 889 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 890 struct math_emu_info info = { }; 891 892 cond_local_irq_enable(regs); 893 894 info.regs = regs; 895 math_emulate(&info); 896 return; 897 } 898 #endif 899 900 /* This should not happen. */ 901 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 902 /* Try to fix it up and carry on. */ 903 write_cr0(cr0 & ~X86_CR0_TS); 904 } else { 905 /* 906 * Something terrible happened, and we're better off trying 907 * to kill the task than getting stuck in a never-ending 908 * loop of #NM faults. 909 */ 910 die("unexpected #NM exception", regs, error_code); 911 } 912 } 913 NOKPROBE_SYMBOL(do_device_not_available); 914 915 #ifdef CONFIG_X86_32 916 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 917 { 918 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 919 local_irq_enable(); 920 921 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 922 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 923 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 924 ILL_BADSTK, (void __user *)NULL); 925 } 926 } 927 #endif 928 929 void __init trap_init(void) 930 { 931 /* Init cpu_entry_area before IST entries are set up */ 932 setup_cpu_entry_areas(); 933 934 idt_setup_traps(); 935 936 /* 937 * Set the IDT descriptor to a fixed read-only location, so that the 938 * "sidt" instruction will not leak the location of the kernel, and 939 * to defend the IDT against arbitrary memory write vulnerabilities. 940 * It will be reloaded in cpu_init() */ 941 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 942 PAGE_KERNEL_RO); 943 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 944 945 /* 946 * Should be a barrier for any external CPU state: 947 */ 948 cpu_init(); 949 950 idt_setup_ist_traps(); 951 952 x86_init.irqs.trap_init(); 953 954 idt_setup_debugidt_traps(); 955 } 956