1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <linux/hardirq.h> 41 #include <linux/atomic.h> 42 43 #include <asm/stacktrace.h> 44 #include <asm/processor.h> 45 #include <asm/debugreg.h> 46 #include <asm/realmode.h> 47 #include <asm/text-patching.h> 48 #include <asm/ftrace.h> 49 #include <asm/traps.h> 50 #include <asm/desc.h> 51 #include <asm/fpu/internal.h> 52 #include <asm/cpu.h> 53 #include <asm/cpu_entry_area.h> 54 #include <asm/mce.h> 55 #include <asm/fixmap.h> 56 #include <asm/mach_traps.h> 57 #include <asm/alternative.h> 58 #include <asm/fpu/xstate.h> 59 #include <asm/vm86.h> 60 #include <asm/umip.h> 61 #include <asm/insn.h> 62 #include <asm/insn-eval.h> 63 #include <asm/vdso.h> 64 65 #ifdef CONFIG_X86_64 66 #include <asm/x86_init.h> 67 #include <asm/proto.h> 68 #else 69 #include <asm/processor-flags.h> 70 #include <asm/setup.h> 71 #include <asm/proto.h> 72 #endif 73 74 DECLARE_BITMAP(system_vectors, NR_VECTORS); 75 76 static inline void cond_local_irq_enable(struct pt_regs *regs) 77 { 78 if (regs->flags & X86_EFLAGS_IF) 79 local_irq_enable(); 80 } 81 82 static inline void cond_local_irq_disable(struct pt_regs *regs) 83 { 84 if (regs->flags & X86_EFLAGS_IF) 85 local_irq_disable(); 86 } 87 88 __always_inline int is_valid_bugaddr(unsigned long addr) 89 { 90 if (addr < TASK_SIZE_MAX) 91 return 0; 92 93 /* 94 * We got #UD, if the text isn't readable we'd have gotten 95 * a different exception. 96 */ 97 return *(unsigned short *)addr == INSN_UD2; 98 } 99 100 static nokprobe_inline int 101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 102 struct pt_regs *regs, long error_code) 103 { 104 if (v8086_mode(regs)) { 105 /* 106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 107 * On nmi (interrupt 2), do_trap should not be called. 108 */ 109 if (trapnr < X86_TRAP_UD) { 110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 111 error_code, trapnr)) 112 return 0; 113 } 114 } else if (!user_mode(regs)) { 115 if (fixup_exception(regs, trapnr, error_code, 0)) 116 return 0; 117 118 tsk->thread.error_code = error_code; 119 tsk->thread.trap_nr = trapnr; 120 die(str, regs, error_code); 121 } else { 122 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 123 return 0; 124 } 125 126 /* 127 * We want error_code and trap_nr set for userspace faults and 128 * kernelspace faults which result in die(), but not 129 * kernelspace faults which are fixed up. die() gives the 130 * process no chance to handle the signal and notice the 131 * kernel fault information, so that won't result in polluting 132 * the information about previously queued, but not yet 133 * delivered, faults. See also exc_general_protection below. 134 */ 135 tsk->thread.error_code = error_code; 136 tsk->thread.trap_nr = trapnr; 137 138 return -1; 139 } 140 141 static void show_signal(struct task_struct *tsk, int signr, 142 const char *type, const char *desc, 143 struct pt_regs *regs, long error_code) 144 { 145 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 146 printk_ratelimit()) { 147 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 148 tsk->comm, task_pid_nr(tsk), type, desc, 149 regs->ip, regs->sp, error_code); 150 print_vma_addr(KERN_CONT " in ", regs->ip); 151 pr_cont("\n"); 152 } 153 } 154 155 static void 156 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 157 long error_code, int sicode, void __user *addr) 158 { 159 struct task_struct *tsk = current; 160 161 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 162 return; 163 164 show_signal(tsk, signr, "trap ", str, regs, error_code); 165 166 if (!sicode) 167 force_sig(signr); 168 else 169 force_sig_fault(signr, sicode, addr); 170 } 171 NOKPROBE_SYMBOL(do_trap); 172 173 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 174 unsigned long trapnr, int signr, int sicode, void __user *addr) 175 { 176 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 177 178 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 179 NOTIFY_STOP) { 180 cond_local_irq_enable(regs); 181 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 182 cond_local_irq_disable(regs); 183 } 184 } 185 186 /* 187 * Posix requires to provide the address of the faulting instruction for 188 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 189 * 190 * This address is usually regs->ip, but when an uprobe moved the code out 191 * of line then regs->ip points to the XOL code which would confuse 192 * anything which analyzes the fault address vs. the unmodified binary. If 193 * a trap happened in XOL code then uprobe maps regs->ip back to the 194 * original instruction address. 195 */ 196 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 197 { 198 return (void __user *)uprobe_get_trap_addr(regs); 199 } 200 201 DEFINE_IDTENTRY(exc_divide_error) 202 { 203 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 204 FPE_INTDIV, error_get_trap_addr(regs)); 205 } 206 207 DEFINE_IDTENTRY(exc_overflow) 208 { 209 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 210 } 211 212 #ifdef CONFIG_X86_F00F_BUG 213 void handle_invalid_op(struct pt_regs *regs) 214 #else 215 static inline void handle_invalid_op(struct pt_regs *regs) 216 #endif 217 { 218 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 219 ILL_ILLOPN, error_get_trap_addr(regs)); 220 } 221 222 static noinstr bool handle_bug(struct pt_regs *regs) 223 { 224 bool handled = false; 225 226 if (!is_valid_bugaddr(regs->ip)) 227 return handled; 228 229 /* 230 * All lies, just get the WARN/BUG out. 231 */ 232 instrumentation_begin(); 233 /* 234 * Since we're emulating a CALL with exceptions, restore the interrupt 235 * state to what it was at the exception site. 236 */ 237 if (regs->flags & X86_EFLAGS_IF) 238 raw_local_irq_enable(); 239 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { 240 regs->ip += LEN_UD2; 241 handled = true; 242 } 243 if (regs->flags & X86_EFLAGS_IF) 244 raw_local_irq_disable(); 245 instrumentation_end(); 246 247 return handled; 248 } 249 250 DEFINE_IDTENTRY_RAW(exc_invalid_op) 251 { 252 irqentry_state_t state; 253 254 /* 255 * We use UD2 as a short encoding for 'CALL __WARN', as such 256 * handle it before exception entry to avoid recursive WARN 257 * in case exception entry is the one triggering WARNs. 258 */ 259 if (!user_mode(regs) && handle_bug(regs)) 260 return; 261 262 state = irqentry_enter(regs); 263 instrumentation_begin(); 264 handle_invalid_op(regs); 265 instrumentation_end(); 266 irqentry_exit(regs, state); 267 } 268 269 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 270 { 271 do_error_trap(regs, 0, "coprocessor segment overrun", 272 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 273 } 274 275 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 276 { 277 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 278 0, NULL); 279 } 280 281 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 282 { 283 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 284 SIGBUS, 0, NULL); 285 } 286 287 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 288 { 289 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 290 0, NULL); 291 } 292 293 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 294 { 295 char *str = "alignment check"; 296 297 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 298 return; 299 300 if (!user_mode(regs)) 301 die("Split lock detected\n", regs, error_code); 302 303 local_irq_enable(); 304 305 if (handle_user_split_lock(regs, error_code)) 306 goto out; 307 308 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 309 error_code, BUS_ADRALN, NULL); 310 311 out: 312 local_irq_disable(); 313 } 314 315 #ifdef CONFIG_VMAP_STACK 316 __visible void __noreturn handle_stack_overflow(const char *message, 317 struct pt_regs *regs, 318 unsigned long fault_address) 319 { 320 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 321 (void *)fault_address, current->stack, 322 (char *)current->stack + THREAD_SIZE - 1); 323 die(message, regs, 0); 324 325 /* Be absolutely certain we don't return. */ 326 panic("%s", message); 327 } 328 #endif 329 330 /* 331 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 332 * 333 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 334 * SDM's warnings about double faults being unrecoverable, returning works as 335 * expected. Presumably what the SDM actually means is that the CPU may get 336 * the register state wrong on entry, so returning could be a bad idea. 337 * 338 * Various CPU engineers have promised that double faults due to an IRET fault 339 * while the stack is read-only are, in fact, recoverable. 340 * 341 * On x86_32, this is entered through a task gate, and regs are synthesized 342 * from the TSS. Returning is, in principle, okay, but changes to regs will 343 * be lost. If, for some reason, we need to return to a context with modified 344 * regs, the shim code could be adjusted to synchronize the registers. 345 * 346 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 347 * to be read before doing anything else. 348 */ 349 DEFINE_IDTENTRY_DF(exc_double_fault) 350 { 351 static const char str[] = "double fault"; 352 struct task_struct *tsk = current; 353 354 #ifdef CONFIG_VMAP_STACK 355 unsigned long address = read_cr2(); 356 #endif 357 358 #ifdef CONFIG_X86_ESPFIX64 359 extern unsigned char native_irq_return_iret[]; 360 361 /* 362 * If IRET takes a non-IST fault on the espfix64 stack, then we 363 * end up promoting it to a doublefault. In that case, take 364 * advantage of the fact that we're not using the normal (TSS.sp0) 365 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 366 * and then modify our own IRET frame so that, when we return, 367 * we land directly at the #GP(0) vector with the stack already 368 * set up according to its expectations. 369 * 370 * The net result is that our #GP handler will think that we 371 * entered from usermode with the bad user context. 372 * 373 * No need for nmi_enter() here because we don't use RCU. 374 */ 375 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 376 regs->cs == __KERNEL_CS && 377 regs->ip == (unsigned long)native_irq_return_iret) 378 { 379 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 380 unsigned long *p = (unsigned long *)regs->sp; 381 382 /* 383 * regs->sp points to the failing IRET frame on the 384 * ESPFIX64 stack. Copy it to the entry stack. This fills 385 * in gpregs->ss through gpregs->ip. 386 * 387 */ 388 gpregs->ip = p[0]; 389 gpregs->cs = p[1]; 390 gpregs->flags = p[2]; 391 gpregs->sp = p[3]; 392 gpregs->ss = p[4]; 393 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 394 395 /* 396 * Adjust our frame so that we return straight to the #GP 397 * vector with the expected RSP value. This is safe because 398 * we won't enable interupts or schedule before we invoke 399 * general_protection, so nothing will clobber the stack 400 * frame we just set up. 401 * 402 * We will enter general_protection with kernel GSBASE, 403 * which is what the stub expects, given that the faulting 404 * RIP will be the IRET instruction. 405 */ 406 regs->ip = (unsigned long)asm_exc_general_protection; 407 regs->sp = (unsigned long)&gpregs->orig_ax; 408 409 return; 410 } 411 #endif 412 413 irqentry_nmi_enter(regs); 414 instrumentation_begin(); 415 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 416 417 tsk->thread.error_code = error_code; 418 tsk->thread.trap_nr = X86_TRAP_DF; 419 420 #ifdef CONFIG_VMAP_STACK 421 /* 422 * If we overflow the stack into a guard page, the CPU will fail 423 * to deliver #PF and will send #DF instead. Similarly, if we 424 * take any non-IST exception while too close to the bottom of 425 * the stack, the processor will get a page fault while 426 * delivering the exception and will generate a double fault. 427 * 428 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 429 * Page-Fault Exception (#PF): 430 * 431 * Processors update CR2 whenever a page fault is detected. If a 432 * second page fault occurs while an earlier page fault is being 433 * delivered, the faulting linear address of the second fault will 434 * overwrite the contents of CR2 (replacing the previous 435 * address). These updates to CR2 occur even if the page fault 436 * results in a double fault or occurs during the delivery of a 437 * double fault. 438 * 439 * The logic below has a small possibility of incorrectly diagnosing 440 * some errors as stack overflows. For example, if the IDT or GDT 441 * gets corrupted such that #GP delivery fails due to a bad descriptor 442 * causing #GP and we hit this condition while CR2 coincidentally 443 * points to the stack guard page, we'll think we overflowed the 444 * stack. Given that we're going to panic one way or another 445 * if this happens, this isn't necessarily worth fixing. 446 * 447 * If necessary, we could improve the test by only diagnosing 448 * a stack overflow if the saved RSP points within 47 bytes of 449 * the bottom of the stack: if RSP == tsk_stack + 48 and we 450 * take an exception, the stack is already aligned and there 451 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 452 * possible error code, so a stack overflow would *not* double 453 * fault. With any less space left, exception delivery could 454 * fail, and, as a practical matter, we've overflowed the 455 * stack even if the actual trigger for the double fault was 456 * something else. 457 */ 458 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) { 459 handle_stack_overflow("kernel stack overflow (double-fault)", 460 regs, address); 461 } 462 #endif 463 464 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 465 die("double fault", regs, error_code); 466 panic("Machine halted."); 467 instrumentation_end(); 468 } 469 470 DEFINE_IDTENTRY(exc_bounds) 471 { 472 if (notify_die(DIE_TRAP, "bounds", regs, 0, 473 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 474 return; 475 cond_local_irq_enable(regs); 476 477 if (!user_mode(regs)) 478 die("bounds", regs, 0); 479 480 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 481 482 cond_local_irq_disable(regs); 483 } 484 485 enum kernel_gp_hint { 486 GP_NO_HINT, 487 GP_NON_CANONICAL, 488 GP_CANONICAL 489 }; 490 491 /* 492 * When an uncaught #GP occurs, try to determine the memory address accessed by 493 * the instruction and return that address to the caller. Also, try to figure 494 * out whether any part of the access to that address was non-canonical. 495 */ 496 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 497 unsigned long *addr) 498 { 499 u8 insn_buf[MAX_INSN_SIZE]; 500 struct insn insn; 501 502 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 503 MAX_INSN_SIZE)) 504 return GP_NO_HINT; 505 506 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); 507 insn_get_modrm(&insn); 508 insn_get_sib(&insn); 509 510 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 511 if (*addr == -1UL) 512 return GP_NO_HINT; 513 514 #ifdef CONFIG_X86_64 515 /* 516 * Check that: 517 * - the operand is not in the kernel half 518 * - the last byte of the operand is not in the user canonical half 519 */ 520 if (*addr < ~__VIRTUAL_MASK && 521 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 522 return GP_NON_CANONICAL; 523 #endif 524 525 return GP_CANONICAL; 526 } 527 528 #define GPFSTR "general protection fault" 529 530 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 531 { 532 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 533 enum kernel_gp_hint hint = GP_NO_HINT; 534 struct task_struct *tsk; 535 unsigned long gp_addr; 536 int ret; 537 538 cond_local_irq_enable(regs); 539 540 if (static_cpu_has(X86_FEATURE_UMIP)) { 541 if (user_mode(regs) && fixup_umip_exception(regs)) 542 goto exit; 543 } 544 545 if (v8086_mode(regs)) { 546 local_irq_enable(); 547 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 548 local_irq_disable(); 549 return; 550 } 551 552 tsk = current; 553 554 if (user_mode(regs)) { 555 tsk->thread.error_code = error_code; 556 tsk->thread.trap_nr = X86_TRAP_GP; 557 558 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 559 return; 560 561 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 562 force_sig(SIGSEGV); 563 goto exit; 564 } 565 566 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 567 goto exit; 568 569 tsk->thread.error_code = error_code; 570 tsk->thread.trap_nr = X86_TRAP_GP; 571 572 /* 573 * To be potentially processing a kprobe fault and to trust the result 574 * from kprobe_running(), we have to be non-preemptible. 575 */ 576 if (!preemptible() && 577 kprobe_running() && 578 kprobe_fault_handler(regs, X86_TRAP_GP)) 579 goto exit; 580 581 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); 582 if (ret == NOTIFY_STOP) 583 goto exit; 584 585 if (error_code) 586 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 587 else 588 hint = get_kernel_gp_address(regs, &gp_addr); 589 590 if (hint != GP_NO_HINT) 591 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 592 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 593 : "maybe for address", 594 gp_addr); 595 596 /* 597 * KASAN is interested only in the non-canonical case, clear it 598 * otherwise. 599 */ 600 if (hint != GP_NON_CANONICAL) 601 gp_addr = 0; 602 603 die_addr(desc, regs, error_code, gp_addr); 604 605 exit: 606 cond_local_irq_disable(regs); 607 } 608 609 static bool do_int3(struct pt_regs *regs) 610 { 611 int res; 612 613 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 614 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 615 SIGTRAP) == NOTIFY_STOP) 616 return true; 617 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 618 619 #ifdef CONFIG_KPROBES 620 if (kprobe_int3_handler(regs)) 621 return true; 622 #endif 623 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 624 625 return res == NOTIFY_STOP; 626 } 627 628 static void do_int3_user(struct pt_regs *regs) 629 { 630 if (do_int3(regs)) 631 return; 632 633 cond_local_irq_enable(regs); 634 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 635 cond_local_irq_disable(regs); 636 } 637 638 DEFINE_IDTENTRY_RAW(exc_int3) 639 { 640 /* 641 * poke_int3_handler() is completely self contained code; it does (and 642 * must) *NOT* call out to anything, lest it hits upon yet another 643 * INT3. 644 */ 645 if (poke_int3_handler(regs)) 646 return; 647 648 /* 649 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 650 * and therefore can trigger INT3, hence poke_int3_handler() must 651 * be done before. If the entry came from kernel mode, then use 652 * nmi_enter() because the INT3 could have been hit in any context 653 * including NMI. 654 */ 655 if (user_mode(regs)) { 656 irqentry_enter_from_user_mode(regs); 657 instrumentation_begin(); 658 do_int3_user(regs); 659 instrumentation_end(); 660 irqentry_exit_to_user_mode(regs); 661 } else { 662 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 663 664 instrumentation_begin(); 665 if (!do_int3(regs)) 666 die("int3", regs, 0); 667 instrumentation_end(); 668 irqentry_nmi_exit(regs, irq_state); 669 } 670 } 671 672 #ifdef CONFIG_X86_64 673 /* 674 * Help handler running on a per-cpu (IST or entry trampoline) stack 675 * to switch to the normal thread stack if the interrupted code was in 676 * user mode. The actual stack switch is done in entry_64.S 677 */ 678 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 679 { 680 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 681 if (regs != eregs) 682 *regs = *eregs; 683 return regs; 684 } 685 686 #ifdef CONFIG_AMD_MEM_ENCRYPT 687 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 688 { 689 unsigned long sp, *stack; 690 struct stack_info info; 691 struct pt_regs *regs_ret; 692 693 /* 694 * In the SYSCALL entry path the RSP value comes from user-space - don't 695 * trust it and switch to the current kernel stack 696 */ 697 if (ip_within_syscall_gap(regs)) { 698 sp = this_cpu_read(cpu_current_top_of_stack); 699 goto sync; 700 } 701 702 /* 703 * From here on the RSP value is trusted. Now check whether entry 704 * happened from a safe stack. Not safe are the entry or unknown stacks, 705 * use the fall-back stack instead in this case. 706 */ 707 sp = regs->sp; 708 stack = (unsigned long *)sp; 709 710 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 711 info.type >= STACK_TYPE_EXCEPTION_LAST) 712 sp = __this_cpu_ist_top_va(VC2); 713 714 sync: 715 /* 716 * Found a safe stack - switch to it as if the entry didn't happen via 717 * IST stack. The code below only copies pt_regs, the real switch happens 718 * in assembly code. 719 */ 720 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 721 722 regs_ret = (struct pt_regs *)sp; 723 *regs_ret = *regs; 724 725 return regs_ret; 726 } 727 #endif 728 729 struct bad_iret_stack { 730 void *error_entry_ret; 731 struct pt_regs regs; 732 }; 733 734 asmlinkage __visible noinstr 735 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 736 { 737 /* 738 * This is called from entry_64.S early in handling a fault 739 * caused by a bad iret to user mode. To handle the fault 740 * correctly, we want to move our stack frame to where it would 741 * be had we entered directly on the entry stack (rather than 742 * just below the IRET frame) and we want to pretend that the 743 * exception came from the IRET target. 744 */ 745 struct bad_iret_stack tmp, *new_stack = 746 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 747 748 /* Copy the IRET target to the temporary storage. */ 749 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); 750 751 /* Copy the remainder of the stack from the current stack. */ 752 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); 753 754 /* Update the entry stack */ 755 __memcpy(new_stack, &tmp, sizeof(tmp)); 756 757 BUG_ON(!user_mode(&new_stack->regs)); 758 return new_stack; 759 } 760 #endif 761 762 static bool is_sysenter_singlestep(struct pt_regs *regs) 763 { 764 /* 765 * We don't try for precision here. If we're anywhere in the region of 766 * code that can be single-stepped in the SYSENTER entry path, then 767 * assume that this is a useless single-step trap due to SYSENTER 768 * being invoked with TF set. (We don't know in advance exactly 769 * which instructions will be hit because BTF could plausibly 770 * be set.) 771 */ 772 #ifdef CONFIG_X86_32 773 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 774 (unsigned long)__end_SYSENTER_singlestep_region - 775 (unsigned long)__begin_SYSENTER_singlestep_region; 776 #elif defined(CONFIG_IA32_EMULATION) 777 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 778 (unsigned long)__end_entry_SYSENTER_compat - 779 (unsigned long)entry_SYSENTER_compat; 780 #else 781 return false; 782 #endif 783 } 784 785 static __always_inline unsigned long debug_read_clear_dr6(void) 786 { 787 unsigned long dr6; 788 789 /* 790 * The Intel SDM says: 791 * 792 * Certain debug exceptions may clear bits 0-3. The remaining 793 * contents of the DR6 register are never cleared by the 794 * processor. To avoid confusion in identifying debug 795 * exceptions, debug handlers should clear the register before 796 * returning to the interrupted task. 797 * 798 * Keep it simple: clear DR6 immediately. 799 */ 800 get_debugreg(dr6, 6); 801 set_debugreg(DR6_RESERVED, 6); 802 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 803 804 return dr6; 805 } 806 807 /* 808 * Our handling of the processor debug registers is non-trivial. 809 * We do not clear them on entry and exit from the kernel. Therefore 810 * it is possible to get a watchpoint trap here from inside the kernel. 811 * However, the code in ./ptrace.c has ensured that the user can 812 * only set watchpoints on userspace addresses. Therefore the in-kernel 813 * watchpoint trap can only occur in code which is reading/writing 814 * from user space. Such code must not hold kernel locks (since it 815 * can equally take a page fault), therefore it is safe to call 816 * force_sig_info even though that claims and releases locks. 817 * 818 * Code in ./signal.c ensures that the debug control register 819 * is restored before we deliver any signal, and therefore that 820 * user code runs with the correct debug control register even though 821 * we clear it here. 822 * 823 * Being careful here means that we don't have to be as careful in a 824 * lot of more complicated places (task switching can be a bit lazy 825 * about restoring all the debug state, and ptrace doesn't have to 826 * find every occurrence of the TF bit that could be saved away even 827 * by user code) 828 * 829 * May run on IST stack. 830 */ 831 832 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 833 { 834 /* 835 * Notifiers will clear bits in @dr6 to indicate the event has been 836 * consumed - hw_breakpoint_handler(), single_stop_cont(). 837 * 838 * Notifiers will set bits in @virtual_dr6 to indicate the desire 839 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 840 */ 841 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 842 return true; 843 844 return false; 845 } 846 847 static __always_inline void exc_debug_kernel(struct pt_regs *regs, 848 unsigned long dr6) 849 { 850 /* 851 * Disable breakpoints during exception handling; recursive exceptions 852 * are exceedingly 'fun'. 853 * 854 * Since this function is NOKPROBE, and that also applies to 855 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 856 * HW_BREAKPOINT_W on our stack) 857 * 858 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 859 * includes the entry stack is excluded for everything. 860 */ 861 unsigned long dr7 = local_db_save(); 862 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 863 instrumentation_begin(); 864 865 /* 866 * If something gets miswired and we end up here for a user mode 867 * #DB, we will malfunction. 868 */ 869 WARN_ON_ONCE(user_mode(regs)); 870 871 if (test_thread_flag(TIF_BLOCKSTEP)) { 872 /* 873 * The SDM says "The processor clears the BTF flag when it 874 * generates a debug exception." but PTRACE_BLOCKSTEP requested 875 * it for userspace, but we just took a kernel #DB, so re-set 876 * BTF. 877 */ 878 unsigned long debugctl; 879 880 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 881 debugctl |= DEBUGCTLMSR_BTF; 882 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 883 } 884 885 /* 886 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 887 * watchpoint at the same time then that will still be handled. 888 */ 889 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 890 dr6 &= ~DR_STEP; 891 892 if (kprobe_debug_handler(regs)) 893 goto out; 894 895 /* 896 * The kernel doesn't use INT1 897 */ 898 if (!dr6) 899 goto out; 900 901 if (notify_debug(regs, &dr6)) 902 goto out; 903 904 /* 905 * The kernel doesn't use TF single-step outside of: 906 * 907 * - Kprobes, consumed through kprobe_debug_handler() 908 * - KGDB, consumed through notify_debug() 909 * 910 * So if we get here with DR_STEP set, something is wonky. 911 * 912 * A known way to trigger this is through QEMU's GDB stub, 913 * which leaks #DB into the guest and causes IST recursion. 914 */ 915 if (WARN_ON_ONCE(dr6 & DR_STEP)) 916 regs->flags &= ~X86_EFLAGS_TF; 917 out: 918 instrumentation_end(); 919 irqentry_nmi_exit(regs, irq_state); 920 921 local_db_restore(dr7); 922 } 923 924 static __always_inline void exc_debug_user(struct pt_regs *regs, 925 unsigned long dr6) 926 { 927 bool icebp; 928 929 /* 930 * If something gets miswired and we end up here for a kernel mode 931 * #DB, we will malfunction. 932 */ 933 WARN_ON_ONCE(!user_mode(regs)); 934 935 /* 936 * NB: We can't easily clear DR7 here because 937 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 938 * user memory, etc. This means that a recursive #DB is possible. If 939 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 940 * Since we're not on the IST stack right now, everything will be 941 * fine. 942 */ 943 944 irqentry_enter_from_user_mode(regs); 945 instrumentation_begin(); 946 947 /* 948 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 949 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 950 * 951 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 952 * even if it is not the result of PTRACE_SINGLESTEP. 953 */ 954 current->thread.virtual_dr6 = (dr6 & DR_STEP); 955 956 /* 957 * The SDM says "The processor clears the BTF flag when it 958 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 959 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 960 */ 961 clear_thread_flag(TIF_BLOCKSTEP); 962 963 /* 964 * If dr6 has no reason to give us about the origin of this trap, 965 * then it's very likely the result of an icebp/int01 trap. 966 * User wants a sigtrap for that. 967 */ 968 icebp = !dr6; 969 970 if (notify_debug(regs, &dr6)) 971 goto out; 972 973 /* It's safe to allow irq's after DR6 has been saved */ 974 local_irq_enable(); 975 976 if (v8086_mode(regs)) { 977 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 978 goto out_irq; 979 } 980 981 /* Add the virtual_dr6 bits for signals. */ 982 dr6 |= current->thread.virtual_dr6; 983 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 984 send_sigtrap(regs, 0, get_si_code(dr6)); 985 986 out_irq: 987 local_irq_disable(); 988 out: 989 instrumentation_end(); 990 irqentry_exit_to_user_mode(regs); 991 } 992 993 #ifdef CONFIG_X86_64 994 /* IST stack entry */ 995 DEFINE_IDTENTRY_DEBUG(exc_debug) 996 { 997 exc_debug_kernel(regs, debug_read_clear_dr6()); 998 } 999 1000 /* User entry, runs on regular task stack */ 1001 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1002 { 1003 exc_debug_user(regs, debug_read_clear_dr6()); 1004 } 1005 #else 1006 /* 32 bit does not have separate entry points. */ 1007 DEFINE_IDTENTRY_RAW(exc_debug) 1008 { 1009 unsigned long dr6 = debug_read_clear_dr6(); 1010 1011 if (user_mode(regs)) 1012 exc_debug_user(regs, dr6); 1013 else 1014 exc_debug_kernel(regs, dr6); 1015 } 1016 #endif 1017 1018 /* 1019 * Note that we play around with the 'TS' bit in an attempt to get 1020 * the correct behaviour even in the presence of the asynchronous 1021 * IRQ13 behaviour 1022 */ 1023 static void math_error(struct pt_regs *regs, int trapnr) 1024 { 1025 struct task_struct *task = current; 1026 struct fpu *fpu = &task->thread.fpu; 1027 int si_code; 1028 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1029 "simd exception"; 1030 1031 cond_local_irq_enable(regs); 1032 1033 if (!user_mode(regs)) { 1034 if (fixup_exception(regs, trapnr, 0, 0)) 1035 goto exit; 1036 1037 task->thread.error_code = 0; 1038 task->thread.trap_nr = trapnr; 1039 1040 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1041 SIGFPE) != NOTIFY_STOP) 1042 die(str, regs, 0); 1043 goto exit; 1044 } 1045 1046 /* 1047 * Save the info for the exception handler and clear the error. 1048 */ 1049 fpu__save(fpu); 1050 1051 task->thread.trap_nr = trapnr; 1052 task->thread.error_code = 0; 1053 1054 si_code = fpu__exception_code(fpu, trapnr); 1055 /* Retry when we get spurious exceptions: */ 1056 if (!si_code) 1057 goto exit; 1058 1059 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1060 return; 1061 1062 force_sig_fault(SIGFPE, si_code, 1063 (void __user *)uprobe_get_trap_addr(regs)); 1064 exit: 1065 cond_local_irq_disable(regs); 1066 } 1067 1068 DEFINE_IDTENTRY(exc_coprocessor_error) 1069 { 1070 math_error(regs, X86_TRAP_MF); 1071 } 1072 1073 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1074 { 1075 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1076 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1077 if (!static_cpu_has(X86_FEATURE_XMM)) { 1078 __exc_general_protection(regs, 0); 1079 return; 1080 } 1081 } 1082 math_error(regs, X86_TRAP_XF); 1083 } 1084 1085 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1086 { 1087 /* 1088 * This addresses a Pentium Pro Erratum: 1089 * 1090 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1091 * Virtual Wire mode implemented through the local APIC, an 1092 * interrupt vector of 0Fh (Intel reserved encoding) may be 1093 * generated by the local APIC (Int 15). This vector may be 1094 * generated upon receipt of a spurious interrupt (an interrupt 1095 * which is removed before the system receives the INTA sequence) 1096 * instead of the programmed 8259 spurious interrupt vector. 1097 * 1098 * IMPLICATION: The spurious interrupt vector programmed in the 1099 * 8259 is normally handled by an operating system's spurious 1100 * interrupt handler. However, a vector of 0Fh is unknown to some 1101 * operating systems, which would crash if this erratum occurred. 1102 * 1103 * In theory this could be limited to 32bit, but the handler is not 1104 * hurting and who knows which other CPUs suffer from this. 1105 */ 1106 } 1107 1108 DEFINE_IDTENTRY(exc_device_not_available) 1109 { 1110 unsigned long cr0 = read_cr0(); 1111 1112 #ifdef CONFIG_MATH_EMULATION 1113 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1114 struct math_emu_info info = { }; 1115 1116 cond_local_irq_enable(regs); 1117 1118 info.regs = regs; 1119 math_emulate(&info); 1120 1121 cond_local_irq_disable(regs); 1122 return; 1123 } 1124 #endif 1125 1126 /* This should not happen. */ 1127 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1128 /* Try to fix it up and carry on. */ 1129 write_cr0(cr0 & ~X86_CR0_TS); 1130 } else { 1131 /* 1132 * Something terrible happened, and we're better off trying 1133 * to kill the task than getting stuck in a never-ending 1134 * loop of #NM faults. 1135 */ 1136 die("unexpected #NM exception", regs, 0); 1137 } 1138 } 1139 1140 #ifdef CONFIG_X86_32 1141 DEFINE_IDTENTRY_SW(iret_error) 1142 { 1143 local_irq_enable(); 1144 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1145 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1146 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1147 ILL_BADSTK, (void __user *)NULL); 1148 } 1149 local_irq_disable(); 1150 } 1151 #endif 1152 1153 void __init trap_init(void) 1154 { 1155 /* Init cpu_entry_area before IST entries are set up */ 1156 setup_cpu_entry_areas(); 1157 1158 /* Init GHCB memory pages when running as an SEV-ES guest */ 1159 sev_es_init_vc_handling(); 1160 1161 idt_setup_traps(); 1162 1163 /* 1164 * Should be a barrier for any external CPU state: 1165 */ 1166 cpu_init(); 1167 1168 idt_setup_ist_traps(); 1169 } 1170