1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #ifdef CONFIG_EISA 42 #include <linux/ioport.h> 43 #include <linux/eisa.h> 44 #endif 45 46 #if defined(CONFIG_EDAC) 47 #include <linux/edac.h> 48 #endif 49 50 #include <asm/kmemcheck.h> 51 #include <asm/stacktrace.h> 52 #include <asm/processor.h> 53 #include <asm/debugreg.h> 54 #include <linux/atomic.h> 55 #include <asm/text-patching.h> 56 #include <asm/ftrace.h> 57 #include <asm/traps.h> 58 #include <asm/desc.h> 59 #include <asm/fpu/internal.h> 60 #include <asm/mce.h> 61 #include <asm/fixmap.h> 62 #include <asm/mach_traps.h> 63 #include <asm/alternative.h> 64 #include <asm/fpu/xstate.h> 65 #include <asm/trace/mpx.h> 66 #include <asm/mpx.h> 67 #include <asm/vm86.h> 68 69 #ifdef CONFIG_X86_64 70 #include <asm/x86_init.h> 71 #include <asm/pgalloc.h> 72 #include <asm/proto.h> 73 74 /* No need to be aligned, but done to keep all IDTs defined the same way. */ 75 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss; 76 #else 77 #include <asm/processor-flags.h> 78 #include <asm/setup.h> 79 #include <asm/proto.h> 80 #endif 81 82 /* Must be page-aligned because the real IDT is used in a fixmap. */ 83 gate_desc idt_table[NR_VECTORS] __page_aligned_bss; 84 85 DECLARE_BITMAP(used_vectors, NR_VECTORS); 86 EXPORT_SYMBOL_GPL(used_vectors); 87 88 static inline void cond_local_irq_enable(struct pt_regs *regs) 89 { 90 if (regs->flags & X86_EFLAGS_IF) 91 local_irq_enable(); 92 } 93 94 static inline void cond_local_irq_disable(struct pt_regs *regs) 95 { 96 if (regs->flags & X86_EFLAGS_IF) 97 local_irq_disable(); 98 } 99 100 /* 101 * In IST context, we explicitly disable preemption. This serves two 102 * purposes: it makes it much less likely that we would accidentally 103 * schedule in IST context and it will force a warning if we somehow 104 * manage to schedule by accident. 105 */ 106 void ist_enter(struct pt_regs *regs) 107 { 108 if (user_mode(regs)) { 109 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 110 } else { 111 /* 112 * We might have interrupted pretty much anything. In 113 * fact, if we're a machine check, we can even interrupt 114 * NMI processing. We don't want in_nmi() to return true, 115 * but we need to notify RCU. 116 */ 117 rcu_nmi_enter(); 118 } 119 120 preempt_disable(); 121 122 /* This code is a bit fragile. Test it. */ 123 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 124 } 125 126 void ist_exit(struct pt_regs *regs) 127 { 128 preempt_enable_no_resched(); 129 130 if (!user_mode(regs)) 131 rcu_nmi_exit(); 132 } 133 134 /** 135 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 136 * @regs: regs passed to the IST exception handler 137 * 138 * IST exception handlers normally cannot schedule. As a special 139 * exception, if the exception interrupted userspace code (i.e. 140 * user_mode(regs) would return true) and the exception was not 141 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 142 * begins a non-atomic section within an ist_enter()/ist_exit() region. 143 * Callers are responsible for enabling interrupts themselves inside 144 * the non-atomic section, and callers must call ist_end_non_atomic() 145 * before ist_exit(). 146 */ 147 void ist_begin_non_atomic(struct pt_regs *regs) 148 { 149 BUG_ON(!user_mode(regs)); 150 151 /* 152 * Sanity check: we need to be on the normal thread stack. This 153 * will catch asm bugs and any attempt to use ist_preempt_enable 154 * from double_fault. 155 */ 156 BUG_ON((unsigned long)(current_top_of_stack() - 157 current_stack_pointer()) >= THREAD_SIZE); 158 159 preempt_enable_no_resched(); 160 } 161 162 /** 163 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 164 * 165 * Ends a non-atomic section started with ist_begin_non_atomic(). 166 */ 167 void ist_end_non_atomic(void) 168 { 169 preempt_disable(); 170 } 171 172 int is_valid_bugaddr(unsigned long addr) 173 { 174 unsigned short ud; 175 176 if (addr < TASK_SIZE_MAX) 177 return 0; 178 179 if (probe_kernel_address((unsigned short *)addr, ud)) 180 return 0; 181 182 return ud == INSN_UD0 || ud == INSN_UD2; 183 } 184 185 int fixup_bug(struct pt_regs *regs, int trapnr) 186 { 187 if (trapnr != X86_TRAP_UD) 188 return 0; 189 190 switch (report_bug(regs->ip, regs)) { 191 case BUG_TRAP_TYPE_NONE: 192 case BUG_TRAP_TYPE_BUG: 193 break; 194 195 case BUG_TRAP_TYPE_WARN: 196 regs->ip += LEN_UD0; 197 return 1; 198 } 199 200 return 0; 201 } 202 203 static nokprobe_inline int 204 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, 205 struct pt_regs *regs, long error_code) 206 { 207 if (v8086_mode(regs)) { 208 /* 209 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 210 * On nmi (interrupt 2), do_trap should not be called. 211 */ 212 if (trapnr < X86_TRAP_UD) { 213 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 214 error_code, trapnr)) 215 return 0; 216 } 217 return -1; 218 } 219 220 if (!user_mode(regs)) { 221 if (fixup_exception(regs, trapnr)) 222 return 0; 223 224 if (fixup_bug(regs, trapnr)) 225 return 0; 226 227 tsk->thread.error_code = error_code; 228 tsk->thread.trap_nr = trapnr; 229 die(str, regs, error_code); 230 } 231 232 return -1; 233 } 234 235 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, 236 siginfo_t *info) 237 { 238 unsigned long siaddr; 239 int sicode; 240 241 switch (trapnr) { 242 default: 243 return SEND_SIG_PRIV; 244 245 case X86_TRAP_DE: 246 sicode = FPE_INTDIV; 247 siaddr = uprobe_get_trap_addr(regs); 248 break; 249 case X86_TRAP_UD: 250 sicode = ILL_ILLOPN; 251 siaddr = uprobe_get_trap_addr(regs); 252 break; 253 case X86_TRAP_AC: 254 sicode = BUS_ADRALN; 255 siaddr = 0; 256 break; 257 } 258 259 info->si_signo = signr; 260 info->si_errno = 0; 261 info->si_code = sicode; 262 info->si_addr = (void __user *)siaddr; 263 return info; 264 } 265 266 static void 267 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 268 long error_code, siginfo_t *info) 269 { 270 struct task_struct *tsk = current; 271 272 273 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 274 return; 275 /* 276 * We want error_code and trap_nr set for userspace faults and 277 * kernelspace faults which result in die(), but not 278 * kernelspace faults which are fixed up. die() gives the 279 * process no chance to handle the signal and notice the 280 * kernel fault information, so that won't result in polluting 281 * the information about previously queued, but not yet 282 * delivered, faults. See also do_general_protection below. 283 */ 284 tsk->thread.error_code = error_code; 285 tsk->thread.trap_nr = trapnr; 286 287 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 288 printk_ratelimit()) { 289 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", 290 tsk->comm, tsk->pid, str, 291 regs->ip, regs->sp, error_code); 292 print_vma_addr(KERN_CONT " in ", regs->ip); 293 pr_cont("\n"); 294 } 295 296 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); 297 } 298 NOKPROBE_SYMBOL(do_trap); 299 300 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 301 unsigned long trapnr, int signr) 302 { 303 siginfo_t info; 304 305 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 306 307 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 308 NOTIFY_STOP) { 309 cond_local_irq_enable(regs); 310 do_trap(trapnr, signr, str, regs, error_code, 311 fill_trap_info(regs, signr, trapnr, &info)); 312 } 313 } 314 315 #define DO_ERROR(trapnr, signr, str, name) \ 316 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 317 { \ 318 do_error_trap(regs, error_code, str, trapnr, signr); \ 319 } 320 321 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) 322 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) 323 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) 324 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) 325 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) 326 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) 327 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) 328 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) 329 330 #ifdef CONFIG_VMAP_STACK 331 __visible void __noreturn handle_stack_overflow(const char *message, 332 struct pt_regs *regs, 333 unsigned long fault_address) 334 { 335 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 336 (void *)fault_address, current->stack, 337 (char *)current->stack + THREAD_SIZE - 1); 338 die(message, regs, 0); 339 340 /* Be absolutely certain we don't return. */ 341 panic(message); 342 } 343 #endif 344 345 #ifdef CONFIG_X86_64 346 /* Runs on IST stack */ 347 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 348 { 349 static const char str[] = "double fault"; 350 struct task_struct *tsk = current; 351 #ifdef CONFIG_VMAP_STACK 352 unsigned long cr2; 353 #endif 354 355 #ifdef CONFIG_X86_ESPFIX64 356 extern unsigned char native_irq_return_iret[]; 357 358 /* 359 * If IRET takes a non-IST fault on the espfix64 stack, then we 360 * end up promoting it to a doublefault. In that case, modify 361 * the stack to make it look like we just entered the #GP 362 * handler from user space, similar to bad_iret. 363 * 364 * No need for ist_enter here because we don't use RCU. 365 */ 366 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY && 367 regs->cs == __KERNEL_CS && 368 regs->ip == (unsigned long)native_irq_return_iret) 369 { 370 struct pt_regs *normal_regs = task_pt_regs(current); 371 372 /* Fake a #GP(0) from userspace. */ 373 memmove(&normal_regs->ip, (void *)regs->sp, 5*8); 374 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */ 375 regs->ip = (unsigned long)general_protection; 376 regs->sp = (unsigned long)&normal_regs->orig_ax; 377 378 return; 379 } 380 #endif 381 382 ist_enter(regs); 383 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 384 385 tsk->thread.error_code = error_code; 386 tsk->thread.trap_nr = X86_TRAP_DF; 387 388 #ifdef CONFIG_VMAP_STACK 389 /* 390 * If we overflow the stack into a guard page, the CPU will fail 391 * to deliver #PF and will send #DF instead. Similarly, if we 392 * take any non-IST exception while too close to the bottom of 393 * the stack, the processor will get a page fault while 394 * delivering the exception and will generate a double fault. 395 * 396 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 397 * Page-Fault Exception (#PF): 398 * 399 * Processors update CR2 whenever a page fault is detected. If a 400 * second page fault occurs while an earlier page fault is being 401 * deliv- ered, the faulting linear address of the second fault will 402 * overwrite the contents of CR2 (replacing the previous 403 * address). These updates to CR2 occur even if the page fault 404 * results in a double fault or occurs during the delivery of a 405 * double fault. 406 * 407 * The logic below has a small possibility of incorrectly diagnosing 408 * some errors as stack overflows. For example, if the IDT or GDT 409 * gets corrupted such that #GP delivery fails due to a bad descriptor 410 * causing #GP and we hit this condition while CR2 coincidentally 411 * points to the stack guard page, we'll think we overflowed the 412 * stack. Given that we're going to panic one way or another 413 * if this happens, this isn't necessarily worth fixing. 414 * 415 * If necessary, we could improve the test by only diagnosing 416 * a stack overflow if the saved RSP points within 47 bytes of 417 * the bottom of the stack: if RSP == tsk_stack + 48 and we 418 * take an exception, the stack is already aligned and there 419 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 420 * possible error code, so a stack overflow would *not* double 421 * fault. With any less space left, exception delivery could 422 * fail, and, as a practical matter, we've overflowed the 423 * stack even if the actual trigger for the double fault was 424 * something else. 425 */ 426 cr2 = read_cr2(); 427 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 428 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 429 #endif 430 431 #ifdef CONFIG_DOUBLEFAULT 432 df_debug(regs, error_code); 433 #endif 434 /* 435 * This is always a kernel trap and never fixable (and thus must 436 * never return). 437 */ 438 for (;;) 439 die(str, regs, error_code); 440 } 441 #endif 442 443 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 444 { 445 const struct mpx_bndcsr *bndcsr; 446 siginfo_t *info; 447 448 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 449 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 450 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 451 return; 452 cond_local_irq_enable(regs); 453 454 if (!user_mode(regs)) 455 die("bounds", regs, error_code); 456 457 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 458 /* The exception is not from Intel MPX */ 459 goto exit_trap; 460 } 461 462 /* 463 * We need to look at BNDSTATUS to resolve this exception. 464 * A NULL here might mean that it is in its 'init state', 465 * which is all zeros which indicates MPX was not 466 * responsible for the exception. 467 */ 468 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 469 if (!bndcsr) 470 goto exit_trap; 471 472 trace_bounds_exception_mpx(bndcsr); 473 /* 474 * The error code field of the BNDSTATUS register communicates status 475 * information of a bound range exception #BR or operation involving 476 * bound directory. 477 */ 478 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 479 case 2: /* Bound directory has invalid entry. */ 480 if (mpx_handle_bd_fault()) 481 goto exit_trap; 482 break; /* Success, it was handled */ 483 case 1: /* Bound violation. */ 484 info = mpx_generate_siginfo(regs); 485 if (IS_ERR(info)) { 486 /* 487 * We failed to decode the MPX instruction. Act as if 488 * the exception was not caused by MPX. 489 */ 490 goto exit_trap; 491 } 492 /* 493 * Success, we decoded the instruction and retrieved 494 * an 'info' containing the address being accessed 495 * which caused the exception. This information 496 * allows and application to possibly handle the 497 * #BR exception itself. 498 */ 499 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); 500 kfree(info); 501 break; 502 case 0: /* No exception caused by Intel MPX operations. */ 503 goto exit_trap; 504 default: 505 die("bounds", regs, error_code); 506 } 507 508 return; 509 510 exit_trap: 511 /* 512 * This path out is for all the cases where we could not 513 * handle the exception in some way (like allocating a 514 * table or telling userspace about it. We will also end 515 * up here if the kernel has MPX turned off at compile 516 * time.. 517 */ 518 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); 519 } 520 521 dotraplinkage void 522 do_general_protection(struct pt_regs *regs, long error_code) 523 { 524 struct task_struct *tsk; 525 526 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 527 cond_local_irq_enable(regs); 528 529 if (v8086_mode(regs)) { 530 local_irq_enable(); 531 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 532 return; 533 } 534 535 tsk = current; 536 if (!user_mode(regs)) { 537 if (fixup_exception(regs, X86_TRAP_GP)) 538 return; 539 540 tsk->thread.error_code = error_code; 541 tsk->thread.trap_nr = X86_TRAP_GP; 542 if (notify_die(DIE_GPF, "general protection fault", regs, error_code, 543 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 544 die("general protection fault", regs, error_code); 545 return; 546 } 547 548 tsk->thread.error_code = error_code; 549 tsk->thread.trap_nr = X86_TRAP_GP; 550 551 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 552 printk_ratelimit()) { 553 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", 554 tsk->comm, task_pid_nr(tsk), 555 regs->ip, regs->sp, error_code); 556 print_vma_addr(KERN_CONT " in ", regs->ip); 557 pr_cont("\n"); 558 } 559 560 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); 561 } 562 NOKPROBE_SYMBOL(do_general_protection); 563 564 /* May run on IST stack. */ 565 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 566 { 567 #ifdef CONFIG_DYNAMIC_FTRACE 568 /* 569 * ftrace must be first, everything else may cause a recursive crash. 570 * See note by declaration of modifying_ftrace_code in ftrace.c 571 */ 572 if (unlikely(atomic_read(&modifying_ftrace_code)) && 573 ftrace_int3_handler(regs)) 574 return; 575 #endif 576 if (poke_int3_handler(regs)) 577 return; 578 579 ist_enter(regs); 580 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 581 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 582 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 583 SIGTRAP) == NOTIFY_STOP) 584 goto exit; 585 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 586 587 #ifdef CONFIG_KPROBES 588 if (kprobe_int3_handler(regs)) 589 goto exit; 590 #endif 591 592 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 593 SIGTRAP) == NOTIFY_STOP) 594 goto exit; 595 596 /* 597 * Let others (NMI) know that the debug stack is in use 598 * as we may switch to the interrupt stack. 599 */ 600 debug_stack_usage_inc(); 601 cond_local_irq_enable(regs); 602 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); 603 cond_local_irq_disable(regs); 604 debug_stack_usage_dec(); 605 exit: 606 ist_exit(regs); 607 } 608 NOKPROBE_SYMBOL(do_int3); 609 610 #ifdef CONFIG_X86_64 611 /* 612 * Help handler running on IST stack to switch off the IST stack if the 613 * interrupted code was in user mode. The actual stack switch is done in 614 * entry_64.S 615 */ 616 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 617 { 618 struct pt_regs *regs = task_pt_regs(current); 619 *regs = *eregs; 620 return regs; 621 } 622 NOKPROBE_SYMBOL(sync_regs); 623 624 struct bad_iret_stack { 625 void *error_entry_ret; 626 struct pt_regs regs; 627 }; 628 629 asmlinkage __visible notrace 630 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 631 { 632 /* 633 * This is called from entry_64.S early in handling a fault 634 * caused by a bad iret to user mode. To handle the fault 635 * correctly, we want move our stack frame to task_pt_regs 636 * and we want to pretend that the exception came from the 637 * iret target. 638 */ 639 struct bad_iret_stack *new_stack = 640 container_of(task_pt_regs(current), 641 struct bad_iret_stack, regs); 642 643 /* Copy the IRET target to the new stack. */ 644 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 645 646 /* Copy the remainder of the stack from the current stack. */ 647 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 648 649 BUG_ON(!user_mode(&new_stack->regs)); 650 return new_stack; 651 } 652 NOKPROBE_SYMBOL(fixup_bad_iret); 653 #endif 654 655 static bool is_sysenter_singlestep(struct pt_regs *regs) 656 { 657 /* 658 * We don't try for precision here. If we're anywhere in the region of 659 * code that can be single-stepped in the SYSENTER entry path, then 660 * assume that this is a useless single-step trap due to SYSENTER 661 * being invoked with TF set. (We don't know in advance exactly 662 * which instructions will be hit because BTF could plausibly 663 * be set.) 664 */ 665 #ifdef CONFIG_X86_32 666 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 667 (unsigned long)__end_SYSENTER_singlestep_region - 668 (unsigned long)__begin_SYSENTER_singlestep_region; 669 #elif defined(CONFIG_IA32_EMULATION) 670 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 671 (unsigned long)__end_entry_SYSENTER_compat - 672 (unsigned long)entry_SYSENTER_compat; 673 #else 674 return false; 675 #endif 676 } 677 678 /* 679 * Our handling of the processor debug registers is non-trivial. 680 * We do not clear them on entry and exit from the kernel. Therefore 681 * it is possible to get a watchpoint trap here from inside the kernel. 682 * However, the code in ./ptrace.c has ensured that the user can 683 * only set watchpoints on userspace addresses. Therefore the in-kernel 684 * watchpoint trap can only occur in code which is reading/writing 685 * from user space. Such code must not hold kernel locks (since it 686 * can equally take a page fault), therefore it is safe to call 687 * force_sig_info even though that claims and releases locks. 688 * 689 * Code in ./signal.c ensures that the debug control register 690 * is restored before we deliver any signal, and therefore that 691 * user code runs with the correct debug control register even though 692 * we clear it here. 693 * 694 * Being careful here means that we don't have to be as careful in a 695 * lot of more complicated places (task switching can be a bit lazy 696 * about restoring all the debug state, and ptrace doesn't have to 697 * find every occurrence of the TF bit that could be saved away even 698 * by user code) 699 * 700 * May run on IST stack. 701 */ 702 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 703 { 704 struct task_struct *tsk = current; 705 int user_icebp = 0; 706 unsigned long dr6; 707 int si_code; 708 709 ist_enter(regs); 710 711 get_debugreg(dr6, 6); 712 /* 713 * The Intel SDM says: 714 * 715 * Certain debug exceptions may clear bits 0-3. The remaining 716 * contents of the DR6 register are never cleared by the 717 * processor. To avoid confusion in identifying debug 718 * exceptions, debug handlers should clear the register before 719 * returning to the interrupted task. 720 * 721 * Keep it simple: clear DR6 immediately. 722 */ 723 set_debugreg(0, 6); 724 725 /* Filter out all the reserved bits which are preset to 1 */ 726 dr6 &= ~DR6_RESERVED; 727 728 /* 729 * The SDM says "The processor clears the BTF flag when it 730 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 731 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 732 */ 733 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 734 735 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 736 is_sysenter_singlestep(regs))) { 737 dr6 &= ~DR_STEP; 738 if (!dr6) 739 goto exit; 740 /* 741 * else we might have gotten a single-step trap and hit a 742 * watchpoint at the same time, in which case we should fall 743 * through and handle the watchpoint. 744 */ 745 } 746 747 /* 748 * If dr6 has no reason to give us about the origin of this trap, 749 * then it's very likely the result of an icebp/int01 trap. 750 * User wants a sigtrap for that. 751 */ 752 if (!dr6 && user_mode(regs)) 753 user_icebp = 1; 754 755 /* Catch kmemcheck conditions! */ 756 if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) 757 goto exit; 758 759 /* Store the virtualized DR6 value */ 760 tsk->thread.debugreg6 = dr6; 761 762 #ifdef CONFIG_KPROBES 763 if (kprobe_debug_handler(regs)) 764 goto exit; 765 #endif 766 767 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 768 SIGTRAP) == NOTIFY_STOP) 769 goto exit; 770 771 /* 772 * Let others (NMI) know that the debug stack is in use 773 * as we may switch to the interrupt stack. 774 */ 775 debug_stack_usage_inc(); 776 777 /* It's safe to allow irq's after DR6 has been saved */ 778 cond_local_irq_enable(regs); 779 780 if (v8086_mode(regs)) { 781 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 782 X86_TRAP_DB); 783 cond_local_irq_disable(regs); 784 debug_stack_usage_dec(); 785 goto exit; 786 } 787 788 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 789 /* 790 * Historical junk that used to handle SYSENTER single-stepping. 791 * This should be unreachable now. If we survive for a while 792 * without anyone hitting this warning, we'll turn this into 793 * an oops. 794 */ 795 tsk->thread.debugreg6 &= ~DR_STEP; 796 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 797 regs->flags &= ~X86_EFLAGS_TF; 798 } 799 si_code = get_si_code(tsk->thread.debugreg6); 800 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 801 send_sigtrap(tsk, regs, error_code, si_code); 802 cond_local_irq_disable(regs); 803 debug_stack_usage_dec(); 804 805 exit: 806 #if defined(CONFIG_X86_32) 807 /* 808 * This is the most likely code path that involves non-trivial use 809 * of the SYSENTER stack. Check that we haven't overrun it. 810 */ 811 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC, 812 "Overran or corrupted SYSENTER stack\n"); 813 #endif 814 ist_exit(regs); 815 } 816 NOKPROBE_SYMBOL(do_debug); 817 818 /* 819 * Note that we play around with the 'TS' bit in an attempt to get 820 * the correct behaviour even in the presence of the asynchronous 821 * IRQ13 behaviour 822 */ 823 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 824 { 825 struct task_struct *task = current; 826 struct fpu *fpu = &task->thread.fpu; 827 siginfo_t info; 828 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 829 "simd exception"; 830 831 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) 832 return; 833 cond_local_irq_enable(regs); 834 835 if (!user_mode(regs)) { 836 if (!fixup_exception(regs, trapnr)) { 837 task->thread.error_code = error_code; 838 task->thread.trap_nr = trapnr; 839 die(str, regs, error_code); 840 } 841 return; 842 } 843 844 /* 845 * Save the info for the exception handler and clear the error. 846 */ 847 fpu__save(fpu); 848 849 task->thread.trap_nr = trapnr; 850 task->thread.error_code = error_code; 851 info.si_signo = SIGFPE; 852 info.si_errno = 0; 853 info.si_addr = (void __user *)uprobe_get_trap_addr(regs); 854 855 info.si_code = fpu__exception_code(fpu, trapnr); 856 857 /* Retry when we get spurious exceptions: */ 858 if (!info.si_code) 859 return; 860 861 force_sig_info(SIGFPE, &info, task); 862 } 863 864 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 865 { 866 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 867 math_error(regs, error_code, X86_TRAP_MF); 868 } 869 870 dotraplinkage void 871 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 872 { 873 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 874 math_error(regs, error_code, X86_TRAP_XF); 875 } 876 877 dotraplinkage void 878 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 879 { 880 cond_local_irq_enable(regs); 881 } 882 883 dotraplinkage void 884 do_device_not_available(struct pt_regs *regs, long error_code) 885 { 886 unsigned long cr0; 887 888 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 889 890 #ifdef CONFIG_MATH_EMULATION 891 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { 892 struct math_emu_info info = { }; 893 894 cond_local_irq_enable(regs); 895 896 info.regs = regs; 897 math_emulate(&info); 898 return; 899 } 900 #endif 901 902 /* This should not happen. */ 903 cr0 = read_cr0(); 904 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 905 /* Try to fix it up and carry on. */ 906 write_cr0(cr0 & ~X86_CR0_TS); 907 } else { 908 /* 909 * Something terrible happened, and we're better off trying 910 * to kill the task than getting stuck in a never-ending 911 * loop of #NM faults. 912 */ 913 die("unexpected #NM exception", regs, error_code); 914 } 915 } 916 NOKPROBE_SYMBOL(do_device_not_available); 917 918 #ifdef CONFIG_X86_32 919 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 920 { 921 siginfo_t info; 922 923 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 924 local_irq_enable(); 925 926 info.si_signo = SIGILL; 927 info.si_errno = 0; 928 info.si_code = ILL_BADSTK; 929 info.si_addr = NULL; 930 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 931 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 932 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 933 &info); 934 } 935 } 936 #endif 937 938 /* Set of traps needed for early debugging. */ 939 void __init early_trap_init(void) 940 { 941 /* 942 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS 943 * is ready in cpu_init() <-- trap_init(). Before trap_init(), 944 * CPU runs at ring 0 so it is impossible to hit an invalid 945 * stack. Using the original stack works well enough at this 946 * early stage. DEBUG_STACK will be equipped after cpu_init() in 947 * trap_init(). 948 * 949 * We don't need to set trace_idt_table like set_intr_gate(), 950 * since we don't have trace_debug and it will be reset to 951 * 'debug' in trap_init() by set_intr_gate_ist(). 952 */ 953 set_intr_gate_notrace(X86_TRAP_DB, debug); 954 /* int3 can be called from all */ 955 set_system_intr_gate(X86_TRAP_BP, &int3); 956 #ifdef CONFIG_X86_32 957 set_intr_gate(X86_TRAP_PF, page_fault); 958 #endif 959 load_idt(&idt_descr); 960 } 961 962 void __init early_trap_pf_init(void) 963 { 964 #ifdef CONFIG_X86_64 965 set_intr_gate(X86_TRAP_PF, page_fault); 966 #endif 967 } 968 969 void __init trap_init(void) 970 { 971 int i; 972 973 #ifdef CONFIG_EISA 974 void __iomem *p = early_ioremap(0x0FFFD9, 4); 975 976 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) 977 EISA_bus = 1; 978 early_iounmap(p, 4); 979 #endif 980 981 set_intr_gate(X86_TRAP_DE, divide_error); 982 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK); 983 /* int4 can be called from all */ 984 set_system_intr_gate(X86_TRAP_OF, &overflow); 985 set_intr_gate(X86_TRAP_BR, bounds); 986 set_intr_gate(X86_TRAP_UD, invalid_op); 987 set_intr_gate(X86_TRAP_NM, device_not_available); 988 #ifdef CONFIG_X86_32 989 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS); 990 #else 991 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK); 992 #endif 993 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun); 994 set_intr_gate(X86_TRAP_TS, invalid_TSS); 995 set_intr_gate(X86_TRAP_NP, segment_not_present); 996 set_intr_gate(X86_TRAP_SS, stack_segment); 997 set_intr_gate(X86_TRAP_GP, general_protection); 998 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug); 999 set_intr_gate(X86_TRAP_MF, coprocessor_error); 1000 set_intr_gate(X86_TRAP_AC, alignment_check); 1001 #ifdef CONFIG_X86_MCE 1002 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK); 1003 #endif 1004 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error); 1005 1006 /* Reserve all the builtin and the syscall vector: */ 1007 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) 1008 set_bit(i, used_vectors); 1009 1010 #ifdef CONFIG_IA32_EMULATION 1011 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat); 1012 set_bit(IA32_SYSCALL_VECTOR, used_vectors); 1013 #endif 1014 1015 #ifdef CONFIG_X86_32 1016 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32); 1017 set_bit(IA32_SYSCALL_VECTOR, used_vectors); 1018 #endif 1019 1020 /* 1021 * Set the IDT descriptor to a fixed read-only location, so that the 1022 * "sidt" instruction will not leak the location of the kernel, and 1023 * to defend the IDT against arbitrary memory write vulnerabilities. 1024 * It will be reloaded in cpu_init() */ 1025 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO); 1026 idt_descr.address = fix_to_virt(FIX_RO_IDT); 1027 1028 /* 1029 * Should be a barrier for any external CPU state: 1030 */ 1031 cpu_init(); 1032 1033 /* 1034 * X86_TRAP_DB and X86_TRAP_BP have been set 1035 * in early_trap_init(). However, ITS works only after 1036 * cpu_init() loads TSS. See comments in early_trap_init(). 1037 */ 1038 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK); 1039 /* int3 can be called from all */ 1040 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK); 1041 1042 x86_init.irqs.trap_init(); 1043 1044 #ifdef CONFIG_X86_64 1045 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16); 1046 set_nmi_gate(X86_TRAP_DB, &debug); 1047 set_nmi_gate(X86_TRAP_BP, &int3); 1048 #endif 1049 } 1050