xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 55fd7e02)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/text-patching.h>
47 #include <asm/ftrace.h>
48 #include <asm/traps.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/internal.h>
51 #include <asm/cpu.h>
52 #include <asm/cpu_entry_area.h>
53 #include <asm/mce.h>
54 #include <asm/fixmap.h>
55 #include <asm/mach_traps.h>
56 #include <asm/alternative.h>
57 #include <asm/fpu/xstate.h>
58 #include <asm/vm86.h>
59 #include <asm/umip.h>
60 #include <asm/insn.h>
61 #include <asm/insn-eval.h>
62 
63 #ifdef CONFIG_X86_64
64 #include <asm/x86_init.h>
65 #include <asm/pgalloc.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
72 
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
74 
75 static inline void cond_local_irq_enable(struct pt_regs *regs)
76 {
77 	if (regs->flags & X86_EFLAGS_IF)
78 		local_irq_enable();
79 }
80 
81 static inline void cond_local_irq_disable(struct pt_regs *regs)
82 {
83 	if (regs->flags & X86_EFLAGS_IF)
84 		local_irq_disable();
85 }
86 
87 __always_inline int is_valid_bugaddr(unsigned long addr)
88 {
89 	if (addr < TASK_SIZE_MAX)
90 		return 0;
91 
92 	/*
93 	 * We got #UD, if the text isn't readable we'd have gotten
94 	 * a different exception.
95 	 */
96 	return *(unsigned short *)addr == INSN_UD2;
97 }
98 
99 static nokprobe_inline int
100 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
101 		  struct pt_regs *regs,	long error_code)
102 {
103 	if (v8086_mode(regs)) {
104 		/*
105 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
106 		 * On nmi (interrupt 2), do_trap should not be called.
107 		 */
108 		if (trapnr < X86_TRAP_UD) {
109 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
110 						error_code, trapnr))
111 				return 0;
112 		}
113 	} else if (!user_mode(regs)) {
114 		if (fixup_exception(regs, trapnr, error_code, 0))
115 			return 0;
116 
117 		tsk->thread.error_code = error_code;
118 		tsk->thread.trap_nr = trapnr;
119 		die(str, regs, error_code);
120 	}
121 
122 	/*
123 	 * We want error_code and trap_nr set for userspace faults and
124 	 * kernelspace faults which result in die(), but not
125 	 * kernelspace faults which are fixed up.  die() gives the
126 	 * process no chance to handle the signal and notice the
127 	 * kernel fault information, so that won't result in polluting
128 	 * the information about previously queued, but not yet
129 	 * delivered, faults.  See also exc_general_protection below.
130 	 */
131 	tsk->thread.error_code = error_code;
132 	tsk->thread.trap_nr = trapnr;
133 
134 	return -1;
135 }
136 
137 static void show_signal(struct task_struct *tsk, int signr,
138 			const char *type, const char *desc,
139 			struct pt_regs *regs, long error_code)
140 {
141 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
142 	    printk_ratelimit()) {
143 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
144 			tsk->comm, task_pid_nr(tsk), type, desc,
145 			regs->ip, regs->sp, error_code);
146 		print_vma_addr(KERN_CONT " in ", regs->ip);
147 		pr_cont("\n");
148 	}
149 }
150 
151 static void
152 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
153 	long error_code, int sicode, void __user *addr)
154 {
155 	struct task_struct *tsk = current;
156 
157 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
158 		return;
159 
160 	show_signal(tsk, signr, "trap ", str, regs, error_code);
161 
162 	if (!sicode)
163 		force_sig(signr);
164 	else
165 		force_sig_fault(signr, sicode, addr);
166 }
167 NOKPROBE_SYMBOL(do_trap);
168 
169 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
170 	unsigned long trapnr, int signr, int sicode, void __user *addr)
171 {
172 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
173 
174 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
175 			NOTIFY_STOP) {
176 		cond_local_irq_enable(regs);
177 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
178 		cond_local_irq_disable(regs);
179 	}
180 }
181 
182 /*
183  * Posix requires to provide the address of the faulting instruction for
184  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
185  *
186  * This address is usually regs->ip, but when an uprobe moved the code out
187  * of line then regs->ip points to the XOL code which would confuse
188  * anything which analyzes the fault address vs. the unmodified binary. If
189  * a trap happened in XOL code then uprobe maps regs->ip back to the
190  * original instruction address.
191  */
192 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
193 {
194 	return (void __user *)uprobe_get_trap_addr(regs);
195 }
196 
197 DEFINE_IDTENTRY(exc_divide_error)
198 {
199 	do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
200 		      FPE_INTDIV, error_get_trap_addr(regs));
201 }
202 
203 DEFINE_IDTENTRY(exc_overflow)
204 {
205 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
206 }
207 
208 #ifdef CONFIG_X86_F00F_BUG
209 void handle_invalid_op(struct pt_regs *regs)
210 #else
211 static inline void handle_invalid_op(struct pt_regs *regs)
212 #endif
213 {
214 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
215 		      ILL_ILLOPN, error_get_trap_addr(regs));
216 }
217 
218 static noinstr bool handle_bug(struct pt_regs *regs)
219 {
220 	bool handled = false;
221 
222 	if (!is_valid_bugaddr(regs->ip))
223 		return handled;
224 
225 	/*
226 	 * All lies, just get the WARN/BUG out.
227 	 */
228 	instrumentation_begin();
229 	/*
230 	 * Since we're emulating a CALL with exceptions, restore the interrupt
231 	 * state to what it was at the exception site.
232 	 */
233 	if (regs->flags & X86_EFLAGS_IF)
234 		raw_local_irq_enable();
235 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
236 		regs->ip += LEN_UD2;
237 		handled = true;
238 	}
239 	if (regs->flags & X86_EFLAGS_IF)
240 		raw_local_irq_disable();
241 	instrumentation_end();
242 
243 	return handled;
244 }
245 
246 DEFINE_IDTENTRY_RAW(exc_invalid_op)
247 {
248 	bool rcu_exit;
249 
250 	/*
251 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
252 	 * handle it before exception entry to avoid recursive WARN
253 	 * in case exception entry is the one triggering WARNs.
254 	 */
255 	if (!user_mode(regs) && handle_bug(regs))
256 		return;
257 
258 	rcu_exit = idtentry_enter_cond_rcu(regs);
259 	instrumentation_begin();
260 	handle_invalid_op(regs);
261 	instrumentation_end();
262 	idtentry_exit_cond_rcu(regs, rcu_exit);
263 }
264 
265 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
266 {
267 	do_error_trap(regs, 0, "coprocessor segment overrun",
268 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
269 }
270 
271 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
272 {
273 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
274 		      0, NULL);
275 }
276 
277 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
278 {
279 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
280 		      SIGBUS, 0, NULL);
281 }
282 
283 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
284 {
285 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
286 		      0, NULL);
287 }
288 
289 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
290 {
291 	char *str = "alignment check";
292 
293 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
294 		return;
295 
296 	if (!user_mode(regs))
297 		die("Split lock detected\n", regs, error_code);
298 
299 	local_irq_enable();
300 
301 	if (handle_user_split_lock(regs, error_code))
302 		return;
303 
304 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
305 		error_code, BUS_ADRALN, NULL);
306 }
307 
308 #ifdef CONFIG_VMAP_STACK
309 __visible void __noreturn handle_stack_overflow(const char *message,
310 						struct pt_regs *regs,
311 						unsigned long fault_address)
312 {
313 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
314 		 (void *)fault_address, current->stack,
315 		 (char *)current->stack + THREAD_SIZE - 1);
316 	die(message, regs, 0);
317 
318 	/* Be absolutely certain we don't return. */
319 	panic("%s", message);
320 }
321 #endif
322 
323 /*
324  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
325  *
326  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
327  * SDM's warnings about double faults being unrecoverable, returning works as
328  * expected.  Presumably what the SDM actually means is that the CPU may get
329  * the register state wrong on entry, so returning could be a bad idea.
330  *
331  * Various CPU engineers have promised that double faults due to an IRET fault
332  * while the stack is read-only are, in fact, recoverable.
333  *
334  * On x86_32, this is entered through a task gate, and regs are synthesized
335  * from the TSS.  Returning is, in principle, okay, but changes to regs will
336  * be lost.  If, for some reason, we need to return to a context with modified
337  * regs, the shim code could be adjusted to synchronize the registers.
338  *
339  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
340  * to be read before doing anything else.
341  */
342 DEFINE_IDTENTRY_DF(exc_double_fault)
343 {
344 	static const char str[] = "double fault";
345 	struct task_struct *tsk = current;
346 
347 #ifdef CONFIG_VMAP_STACK
348 	unsigned long address = read_cr2();
349 #endif
350 
351 #ifdef CONFIG_X86_ESPFIX64
352 	extern unsigned char native_irq_return_iret[];
353 
354 	/*
355 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
356 	 * end up promoting it to a doublefault.  In that case, take
357 	 * advantage of the fact that we're not using the normal (TSS.sp0)
358 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
359 	 * and then modify our own IRET frame so that, when we return,
360 	 * we land directly at the #GP(0) vector with the stack already
361 	 * set up according to its expectations.
362 	 *
363 	 * The net result is that our #GP handler will think that we
364 	 * entered from usermode with the bad user context.
365 	 *
366 	 * No need for nmi_enter() here because we don't use RCU.
367 	 */
368 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
369 		regs->cs == __KERNEL_CS &&
370 		regs->ip == (unsigned long)native_irq_return_iret)
371 	{
372 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
373 		unsigned long *p = (unsigned long *)regs->sp;
374 
375 		/*
376 		 * regs->sp points to the failing IRET frame on the
377 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
378 		 * in gpregs->ss through gpregs->ip.
379 		 *
380 		 */
381 		gpregs->ip	= p[0];
382 		gpregs->cs	= p[1];
383 		gpregs->flags	= p[2];
384 		gpregs->sp	= p[3];
385 		gpregs->ss	= p[4];
386 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
387 
388 		/*
389 		 * Adjust our frame so that we return straight to the #GP
390 		 * vector with the expected RSP value.  This is safe because
391 		 * we won't enable interupts or schedule before we invoke
392 		 * general_protection, so nothing will clobber the stack
393 		 * frame we just set up.
394 		 *
395 		 * We will enter general_protection with kernel GSBASE,
396 		 * which is what the stub expects, given that the faulting
397 		 * RIP will be the IRET instruction.
398 		 */
399 		regs->ip = (unsigned long)asm_exc_general_protection;
400 		regs->sp = (unsigned long)&gpregs->orig_ax;
401 
402 		return;
403 	}
404 #endif
405 
406 	nmi_enter();
407 	instrumentation_begin();
408 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
409 
410 	tsk->thread.error_code = error_code;
411 	tsk->thread.trap_nr = X86_TRAP_DF;
412 
413 #ifdef CONFIG_VMAP_STACK
414 	/*
415 	 * If we overflow the stack into a guard page, the CPU will fail
416 	 * to deliver #PF and will send #DF instead.  Similarly, if we
417 	 * take any non-IST exception while too close to the bottom of
418 	 * the stack, the processor will get a page fault while
419 	 * delivering the exception and will generate a double fault.
420 	 *
421 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
422 	 * Page-Fault Exception (#PF):
423 	 *
424 	 *   Processors update CR2 whenever a page fault is detected. If a
425 	 *   second page fault occurs while an earlier page fault is being
426 	 *   delivered, the faulting linear address of the second fault will
427 	 *   overwrite the contents of CR2 (replacing the previous
428 	 *   address). These updates to CR2 occur even if the page fault
429 	 *   results in a double fault or occurs during the delivery of a
430 	 *   double fault.
431 	 *
432 	 * The logic below has a small possibility of incorrectly diagnosing
433 	 * some errors as stack overflows.  For example, if the IDT or GDT
434 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
435 	 * causing #GP and we hit this condition while CR2 coincidentally
436 	 * points to the stack guard page, we'll think we overflowed the
437 	 * stack.  Given that we're going to panic one way or another
438 	 * if this happens, this isn't necessarily worth fixing.
439 	 *
440 	 * If necessary, we could improve the test by only diagnosing
441 	 * a stack overflow if the saved RSP points within 47 bytes of
442 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
443 	 * take an exception, the stack is already aligned and there
444 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
445 	 * possible error code, so a stack overflow would *not* double
446 	 * fault.  With any less space left, exception delivery could
447 	 * fail, and, as a practical matter, we've overflowed the
448 	 * stack even if the actual trigger for the double fault was
449 	 * something else.
450 	 */
451 	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
452 		handle_stack_overflow("kernel stack overflow (double-fault)",
453 				      regs, address);
454 	}
455 #endif
456 
457 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
458 	die("double fault", regs, error_code);
459 	panic("Machine halted.");
460 	instrumentation_end();
461 }
462 
463 DEFINE_IDTENTRY(exc_bounds)
464 {
465 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
466 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
467 		return;
468 	cond_local_irq_enable(regs);
469 
470 	if (!user_mode(regs))
471 		die("bounds", regs, 0);
472 
473 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
474 
475 	cond_local_irq_disable(regs);
476 }
477 
478 enum kernel_gp_hint {
479 	GP_NO_HINT,
480 	GP_NON_CANONICAL,
481 	GP_CANONICAL
482 };
483 
484 /*
485  * When an uncaught #GP occurs, try to determine the memory address accessed by
486  * the instruction and return that address to the caller. Also, try to figure
487  * out whether any part of the access to that address was non-canonical.
488  */
489 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
490 						 unsigned long *addr)
491 {
492 	u8 insn_buf[MAX_INSN_SIZE];
493 	struct insn insn;
494 
495 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
496 			MAX_INSN_SIZE))
497 		return GP_NO_HINT;
498 
499 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
500 	insn_get_modrm(&insn);
501 	insn_get_sib(&insn);
502 
503 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
504 	if (*addr == -1UL)
505 		return GP_NO_HINT;
506 
507 #ifdef CONFIG_X86_64
508 	/*
509 	 * Check that:
510 	 *  - the operand is not in the kernel half
511 	 *  - the last byte of the operand is not in the user canonical half
512 	 */
513 	if (*addr < ~__VIRTUAL_MASK &&
514 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
515 		return GP_NON_CANONICAL;
516 #endif
517 
518 	return GP_CANONICAL;
519 }
520 
521 #define GPFSTR "general protection fault"
522 
523 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
524 {
525 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
526 	enum kernel_gp_hint hint = GP_NO_HINT;
527 	struct task_struct *tsk;
528 	unsigned long gp_addr;
529 	int ret;
530 
531 	cond_local_irq_enable(regs);
532 
533 	if (static_cpu_has(X86_FEATURE_UMIP)) {
534 		if (user_mode(regs) && fixup_umip_exception(regs))
535 			goto exit;
536 	}
537 
538 	if (v8086_mode(regs)) {
539 		local_irq_enable();
540 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
541 		local_irq_disable();
542 		return;
543 	}
544 
545 	tsk = current;
546 
547 	if (user_mode(regs)) {
548 		tsk->thread.error_code = error_code;
549 		tsk->thread.trap_nr = X86_TRAP_GP;
550 
551 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
552 		force_sig(SIGSEGV);
553 		goto exit;
554 	}
555 
556 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
557 		goto exit;
558 
559 	tsk->thread.error_code = error_code;
560 	tsk->thread.trap_nr = X86_TRAP_GP;
561 
562 	/*
563 	 * To be potentially processing a kprobe fault and to trust the result
564 	 * from kprobe_running(), we have to be non-preemptible.
565 	 */
566 	if (!preemptible() &&
567 	    kprobe_running() &&
568 	    kprobe_fault_handler(regs, X86_TRAP_GP))
569 		goto exit;
570 
571 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
572 	if (ret == NOTIFY_STOP)
573 		goto exit;
574 
575 	if (error_code)
576 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
577 	else
578 		hint = get_kernel_gp_address(regs, &gp_addr);
579 
580 	if (hint != GP_NO_HINT)
581 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
582 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
583 						    : "maybe for address",
584 			 gp_addr);
585 
586 	/*
587 	 * KASAN is interested only in the non-canonical case, clear it
588 	 * otherwise.
589 	 */
590 	if (hint != GP_NON_CANONICAL)
591 		gp_addr = 0;
592 
593 	die_addr(desc, regs, error_code, gp_addr);
594 
595 exit:
596 	cond_local_irq_disable(regs);
597 }
598 
599 static bool do_int3(struct pt_regs *regs)
600 {
601 	int res;
602 
603 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
604 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
605 			 SIGTRAP) == NOTIFY_STOP)
606 		return true;
607 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
608 
609 #ifdef CONFIG_KPROBES
610 	if (kprobe_int3_handler(regs))
611 		return true;
612 #endif
613 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
614 
615 	return res == NOTIFY_STOP;
616 }
617 
618 static void do_int3_user(struct pt_regs *regs)
619 {
620 	if (do_int3(regs))
621 		return;
622 
623 	cond_local_irq_enable(regs);
624 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
625 	cond_local_irq_disable(regs);
626 }
627 
628 DEFINE_IDTENTRY_RAW(exc_int3)
629 {
630 	/*
631 	 * poke_int3_handler() is completely self contained code; it does (and
632 	 * must) *NOT* call out to anything, lest it hits upon yet another
633 	 * INT3.
634 	 */
635 	if (poke_int3_handler(regs))
636 		return;
637 
638 	/*
639 	 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore
640 	 * can trigger INT3, hence poke_int3_handler() must be done
641 	 * before. If the entry came from kernel mode, then use nmi_enter()
642 	 * because the INT3 could have been hit in any context including
643 	 * NMI.
644 	 */
645 	if (user_mode(regs)) {
646 		idtentry_enter_user(regs);
647 		instrumentation_begin();
648 		do_int3_user(regs);
649 		instrumentation_end();
650 		idtentry_exit_user(regs);
651 	} else {
652 		nmi_enter();
653 		instrumentation_begin();
654 		trace_hardirqs_off_finish();
655 		if (!do_int3(regs))
656 			die("int3", regs, 0);
657 		if (regs->flags & X86_EFLAGS_IF)
658 			trace_hardirqs_on_prepare();
659 		instrumentation_end();
660 		nmi_exit();
661 	}
662 }
663 
664 #ifdef CONFIG_X86_64
665 /*
666  * Help handler running on a per-cpu (IST or entry trampoline) stack
667  * to switch to the normal thread stack if the interrupted code was in
668  * user mode. The actual stack switch is done in entry_64.S
669  */
670 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
671 {
672 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
673 	if (regs != eregs)
674 		*regs = *eregs;
675 	return regs;
676 }
677 
678 struct bad_iret_stack {
679 	void *error_entry_ret;
680 	struct pt_regs regs;
681 };
682 
683 asmlinkage __visible noinstr
684 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
685 {
686 	/*
687 	 * This is called from entry_64.S early in handling a fault
688 	 * caused by a bad iret to user mode.  To handle the fault
689 	 * correctly, we want to move our stack frame to where it would
690 	 * be had we entered directly on the entry stack (rather than
691 	 * just below the IRET frame) and we want to pretend that the
692 	 * exception came from the IRET target.
693 	 */
694 	struct bad_iret_stack tmp, *new_stack =
695 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
696 
697 	/* Copy the IRET target to the temporary storage. */
698 	__memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
699 
700 	/* Copy the remainder of the stack from the current stack. */
701 	__memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
702 
703 	/* Update the entry stack */
704 	__memcpy(new_stack, &tmp, sizeof(tmp));
705 
706 	BUG_ON(!user_mode(&new_stack->regs));
707 	return new_stack;
708 }
709 #endif
710 
711 static bool is_sysenter_singlestep(struct pt_regs *regs)
712 {
713 	/*
714 	 * We don't try for precision here.  If we're anywhere in the region of
715 	 * code that can be single-stepped in the SYSENTER entry path, then
716 	 * assume that this is a useless single-step trap due to SYSENTER
717 	 * being invoked with TF set.  (We don't know in advance exactly
718 	 * which instructions will be hit because BTF could plausibly
719 	 * be set.)
720 	 */
721 #ifdef CONFIG_X86_32
722 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
723 		(unsigned long)__end_SYSENTER_singlestep_region -
724 		(unsigned long)__begin_SYSENTER_singlestep_region;
725 #elif defined(CONFIG_IA32_EMULATION)
726 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
727 		(unsigned long)__end_entry_SYSENTER_compat -
728 		(unsigned long)entry_SYSENTER_compat;
729 #else
730 	return false;
731 #endif
732 }
733 
734 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
735 {
736 	/*
737 	 * Disable breakpoints during exception handling; recursive exceptions
738 	 * are exceedingly 'fun'.
739 	 *
740 	 * Since this function is NOKPROBE, and that also applies to
741 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
742 	 * HW_BREAKPOINT_W on our stack)
743 	 *
744 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
745 	 * includes the entry stack is excluded for everything.
746 	 */
747 	*dr7 = local_db_save();
748 
749 	/*
750 	 * The Intel SDM says:
751 	 *
752 	 *   Certain debug exceptions may clear bits 0-3. The remaining
753 	 *   contents of the DR6 register are never cleared by the
754 	 *   processor. To avoid confusion in identifying debug
755 	 *   exceptions, debug handlers should clear the register before
756 	 *   returning to the interrupted task.
757 	 *
758 	 * Keep it simple: clear DR6 immediately.
759 	 */
760 	get_debugreg(*dr6, 6);
761 	set_debugreg(0, 6);
762 	/* Filter out all the reserved bits which are preset to 1 */
763 	*dr6 &= ~DR6_RESERVED;
764 }
765 
766 static __always_inline void debug_exit(unsigned long dr7)
767 {
768 	local_db_restore(dr7);
769 }
770 
771 /*
772  * Our handling of the processor debug registers is non-trivial.
773  * We do not clear them on entry and exit from the kernel. Therefore
774  * it is possible to get a watchpoint trap here from inside the kernel.
775  * However, the code in ./ptrace.c has ensured that the user can
776  * only set watchpoints on userspace addresses. Therefore the in-kernel
777  * watchpoint trap can only occur in code which is reading/writing
778  * from user space. Such code must not hold kernel locks (since it
779  * can equally take a page fault), therefore it is safe to call
780  * force_sig_info even though that claims and releases locks.
781  *
782  * Code in ./signal.c ensures that the debug control register
783  * is restored before we deliver any signal, and therefore that
784  * user code runs with the correct debug control register even though
785  * we clear it here.
786  *
787  * Being careful here means that we don't have to be as careful in a
788  * lot of more complicated places (task switching can be a bit lazy
789  * about restoring all the debug state, and ptrace doesn't have to
790  * find every occurrence of the TF bit that could be saved away even
791  * by user code)
792  *
793  * May run on IST stack.
794  */
795 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
796 {
797 	struct task_struct *tsk = current;
798 	bool user_icebp;
799 	int si_code;
800 
801 	/*
802 	 * The SDM says "The processor clears the BTF flag when it
803 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
804 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
805 	 */
806 	clear_thread_flag(TIF_BLOCKSTEP);
807 
808 	/*
809 	 * If DR6 is zero, no point in trying to handle it. The kernel is
810 	 * not using INT1.
811 	 */
812 	if (!user && !dr6)
813 		return;
814 
815 	/*
816 	 * If dr6 has no reason to give us about the origin of this trap,
817 	 * then it's very likely the result of an icebp/int01 trap.
818 	 * User wants a sigtrap for that.
819 	 */
820 	user_icebp = user && !dr6;
821 
822 	/* Store the virtualized DR6 value */
823 	tsk->thread.debugreg6 = dr6;
824 
825 #ifdef CONFIG_KPROBES
826 	if (kprobe_debug_handler(regs)) {
827 		return;
828 	}
829 #endif
830 
831 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
832 		       SIGTRAP) == NOTIFY_STOP) {
833 		return;
834 	}
835 
836 	/* It's safe to allow irq's after DR6 has been saved */
837 	cond_local_irq_enable(regs);
838 
839 	if (v8086_mode(regs)) {
840 		handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
841 				 X86_TRAP_DB);
842 		goto out;
843 	}
844 
845 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
846 		/*
847 		 * Historical junk that used to handle SYSENTER single-stepping.
848 		 * This should be unreachable now.  If we survive for a while
849 		 * without anyone hitting this warning, we'll turn this into
850 		 * an oops.
851 		 */
852 		tsk->thread.debugreg6 &= ~DR_STEP;
853 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
854 		regs->flags &= ~X86_EFLAGS_TF;
855 	}
856 
857 	si_code = get_si_code(tsk->thread.debugreg6);
858 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
859 		send_sigtrap(regs, 0, si_code);
860 
861 out:
862 	cond_local_irq_disable(regs);
863 }
864 
865 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
866 					     unsigned long dr6)
867 {
868 	nmi_enter();
869 	instrumentation_begin();
870 	trace_hardirqs_off_finish();
871 
872 	/*
873 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
874 	 * watchpoint at the same time then that will still be handled.
875 	 */
876 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
877 		dr6 &= ~DR_STEP;
878 
879 	handle_debug(regs, dr6, false);
880 
881 	if (regs->flags & X86_EFLAGS_IF)
882 		trace_hardirqs_on_prepare();
883 	instrumentation_end();
884 	nmi_exit();
885 }
886 
887 static __always_inline void exc_debug_user(struct pt_regs *regs,
888 					   unsigned long dr6)
889 {
890 	idtentry_enter_user(regs);
891 	instrumentation_begin();
892 
893 	handle_debug(regs, dr6, true);
894 	instrumentation_end();
895 	idtentry_exit_user(regs);
896 }
897 
898 #ifdef CONFIG_X86_64
899 /* IST stack entry */
900 DEFINE_IDTENTRY_DEBUG(exc_debug)
901 {
902 	unsigned long dr6, dr7;
903 
904 	debug_enter(&dr6, &dr7);
905 	exc_debug_kernel(regs, dr6);
906 	debug_exit(dr7);
907 }
908 
909 /* User entry, runs on regular task stack */
910 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
911 {
912 	unsigned long dr6, dr7;
913 
914 	debug_enter(&dr6, &dr7);
915 	exc_debug_user(regs, dr6);
916 	debug_exit(dr7);
917 }
918 #else
919 /* 32 bit does not have separate entry points. */
920 DEFINE_IDTENTRY_DEBUG(exc_debug)
921 {
922 	unsigned long dr6, dr7;
923 
924 	debug_enter(&dr6, &dr7);
925 
926 	if (user_mode(regs))
927 		exc_debug_user(regs, dr6);
928 	else
929 		exc_debug_kernel(regs, dr6);
930 
931 	debug_exit(dr7);
932 }
933 #endif
934 
935 /*
936  * Note that we play around with the 'TS' bit in an attempt to get
937  * the correct behaviour even in the presence of the asynchronous
938  * IRQ13 behaviour
939  */
940 static void math_error(struct pt_regs *regs, int trapnr)
941 {
942 	struct task_struct *task = current;
943 	struct fpu *fpu = &task->thread.fpu;
944 	int si_code;
945 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
946 						"simd exception";
947 
948 	cond_local_irq_enable(regs);
949 
950 	if (!user_mode(regs)) {
951 		if (fixup_exception(regs, trapnr, 0, 0))
952 			goto exit;
953 
954 		task->thread.error_code = 0;
955 		task->thread.trap_nr = trapnr;
956 
957 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
958 			       SIGFPE) != NOTIFY_STOP)
959 			die(str, regs, 0);
960 		goto exit;
961 	}
962 
963 	/*
964 	 * Save the info for the exception handler and clear the error.
965 	 */
966 	fpu__save(fpu);
967 
968 	task->thread.trap_nr	= trapnr;
969 	task->thread.error_code = 0;
970 
971 	si_code = fpu__exception_code(fpu, trapnr);
972 	/* Retry when we get spurious exceptions: */
973 	if (!si_code)
974 		goto exit;
975 
976 	force_sig_fault(SIGFPE, si_code,
977 			(void __user *)uprobe_get_trap_addr(regs));
978 exit:
979 	cond_local_irq_disable(regs);
980 }
981 
982 DEFINE_IDTENTRY(exc_coprocessor_error)
983 {
984 	math_error(regs, X86_TRAP_MF);
985 }
986 
987 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
988 {
989 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
990 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
991 		if (!static_cpu_has(X86_FEATURE_XMM)) {
992 			__exc_general_protection(regs, 0);
993 			return;
994 		}
995 	}
996 	math_error(regs, X86_TRAP_XF);
997 }
998 
999 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1000 {
1001 	/*
1002 	 * This addresses a Pentium Pro Erratum:
1003 	 *
1004 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1005 	 * Virtual Wire mode implemented through the local APIC, an
1006 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1007 	 * generated by the local APIC (Int 15).  This vector may be
1008 	 * generated upon receipt of a spurious interrupt (an interrupt
1009 	 * which is removed before the system receives the INTA sequence)
1010 	 * instead of the programmed 8259 spurious interrupt vector.
1011 	 *
1012 	 * IMPLICATION: The spurious interrupt vector programmed in the
1013 	 * 8259 is normally handled by an operating system's spurious
1014 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1015 	 * operating systems, which would crash if this erratum occurred.
1016 	 *
1017 	 * In theory this could be limited to 32bit, but the handler is not
1018 	 * hurting and who knows which other CPUs suffer from this.
1019 	 */
1020 }
1021 
1022 DEFINE_IDTENTRY(exc_device_not_available)
1023 {
1024 	unsigned long cr0 = read_cr0();
1025 
1026 #ifdef CONFIG_MATH_EMULATION
1027 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1028 		struct math_emu_info info = { };
1029 
1030 		cond_local_irq_enable(regs);
1031 
1032 		info.regs = regs;
1033 		math_emulate(&info);
1034 
1035 		cond_local_irq_disable(regs);
1036 		return;
1037 	}
1038 #endif
1039 
1040 	/* This should not happen. */
1041 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1042 		/* Try to fix it up and carry on. */
1043 		write_cr0(cr0 & ~X86_CR0_TS);
1044 	} else {
1045 		/*
1046 		 * Something terrible happened, and we're better off trying
1047 		 * to kill the task than getting stuck in a never-ending
1048 		 * loop of #NM faults.
1049 		 */
1050 		die("unexpected #NM exception", regs, 0);
1051 	}
1052 }
1053 
1054 #ifdef CONFIG_X86_32
1055 DEFINE_IDTENTRY_SW(iret_error)
1056 {
1057 	local_irq_enable();
1058 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1059 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1060 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1061 			ILL_BADSTK, (void __user *)NULL);
1062 	}
1063 	local_irq_disable();
1064 }
1065 #endif
1066 
1067 void __init trap_init(void)
1068 {
1069 	/* Init cpu_entry_area before IST entries are set up */
1070 	setup_cpu_entry_areas();
1071 
1072 	idt_setup_traps();
1073 
1074 	/*
1075 	 * Should be a barrier for any external CPU state:
1076 	 */
1077 	cpu_init();
1078 
1079 	idt_setup_ist_traps();
1080 }
1081