1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <linux/hardirq.h> 41 #include <linux/atomic.h> 42 43 #include <asm/stacktrace.h> 44 #include <asm/processor.h> 45 #include <asm/debugreg.h> 46 #include <asm/text-patching.h> 47 #include <asm/ftrace.h> 48 #include <asm/traps.h> 49 #include <asm/desc.h> 50 #include <asm/fpu/internal.h> 51 #include <asm/cpu.h> 52 #include <asm/cpu_entry_area.h> 53 #include <asm/mce.h> 54 #include <asm/fixmap.h> 55 #include <asm/mach_traps.h> 56 #include <asm/alternative.h> 57 #include <asm/fpu/xstate.h> 58 #include <asm/vm86.h> 59 #include <asm/umip.h> 60 #include <asm/insn.h> 61 #include <asm/insn-eval.h> 62 63 #ifdef CONFIG_X86_64 64 #include <asm/x86_init.h> 65 #include <asm/pgalloc.h> 66 #include <asm/proto.h> 67 #else 68 #include <asm/processor-flags.h> 69 #include <asm/setup.h> 70 #include <asm/proto.h> 71 #endif 72 73 DECLARE_BITMAP(system_vectors, NR_VECTORS); 74 75 static inline void cond_local_irq_enable(struct pt_regs *regs) 76 { 77 if (regs->flags & X86_EFLAGS_IF) 78 local_irq_enable(); 79 } 80 81 static inline void cond_local_irq_disable(struct pt_regs *regs) 82 { 83 if (regs->flags & X86_EFLAGS_IF) 84 local_irq_disable(); 85 } 86 87 __always_inline int is_valid_bugaddr(unsigned long addr) 88 { 89 if (addr < TASK_SIZE_MAX) 90 return 0; 91 92 /* 93 * We got #UD, if the text isn't readable we'd have gotten 94 * a different exception. 95 */ 96 return *(unsigned short *)addr == INSN_UD2; 97 } 98 99 static nokprobe_inline int 100 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 101 struct pt_regs *regs, long error_code) 102 { 103 if (v8086_mode(regs)) { 104 /* 105 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 106 * On nmi (interrupt 2), do_trap should not be called. 107 */ 108 if (trapnr < X86_TRAP_UD) { 109 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 110 error_code, trapnr)) 111 return 0; 112 } 113 } else if (!user_mode(regs)) { 114 if (fixup_exception(regs, trapnr, error_code, 0)) 115 return 0; 116 117 tsk->thread.error_code = error_code; 118 tsk->thread.trap_nr = trapnr; 119 die(str, regs, error_code); 120 } 121 122 /* 123 * We want error_code and trap_nr set for userspace faults and 124 * kernelspace faults which result in die(), but not 125 * kernelspace faults which are fixed up. die() gives the 126 * process no chance to handle the signal and notice the 127 * kernel fault information, so that won't result in polluting 128 * the information about previously queued, but not yet 129 * delivered, faults. See also exc_general_protection below. 130 */ 131 tsk->thread.error_code = error_code; 132 tsk->thread.trap_nr = trapnr; 133 134 return -1; 135 } 136 137 static void show_signal(struct task_struct *tsk, int signr, 138 const char *type, const char *desc, 139 struct pt_regs *regs, long error_code) 140 { 141 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 142 printk_ratelimit()) { 143 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 144 tsk->comm, task_pid_nr(tsk), type, desc, 145 regs->ip, regs->sp, error_code); 146 print_vma_addr(KERN_CONT " in ", regs->ip); 147 pr_cont("\n"); 148 } 149 } 150 151 static void 152 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 153 long error_code, int sicode, void __user *addr) 154 { 155 struct task_struct *tsk = current; 156 157 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 158 return; 159 160 show_signal(tsk, signr, "trap ", str, regs, error_code); 161 162 if (!sicode) 163 force_sig(signr); 164 else 165 force_sig_fault(signr, sicode, addr); 166 } 167 NOKPROBE_SYMBOL(do_trap); 168 169 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 170 unsigned long trapnr, int signr, int sicode, void __user *addr) 171 { 172 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 173 174 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 175 NOTIFY_STOP) { 176 cond_local_irq_enable(regs); 177 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 178 cond_local_irq_disable(regs); 179 } 180 } 181 182 /* 183 * Posix requires to provide the address of the faulting instruction for 184 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 185 * 186 * This address is usually regs->ip, but when an uprobe moved the code out 187 * of line then regs->ip points to the XOL code which would confuse 188 * anything which analyzes the fault address vs. the unmodified binary. If 189 * a trap happened in XOL code then uprobe maps regs->ip back to the 190 * original instruction address. 191 */ 192 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 193 { 194 return (void __user *)uprobe_get_trap_addr(regs); 195 } 196 197 DEFINE_IDTENTRY(exc_divide_error) 198 { 199 do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE, 200 FPE_INTDIV, error_get_trap_addr(regs)); 201 } 202 203 DEFINE_IDTENTRY(exc_overflow) 204 { 205 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 206 } 207 208 #ifdef CONFIG_X86_F00F_BUG 209 void handle_invalid_op(struct pt_regs *regs) 210 #else 211 static inline void handle_invalid_op(struct pt_regs *regs) 212 #endif 213 { 214 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 215 ILL_ILLOPN, error_get_trap_addr(regs)); 216 } 217 218 static noinstr bool handle_bug(struct pt_regs *regs) 219 { 220 bool handled = false; 221 222 if (!is_valid_bugaddr(regs->ip)) 223 return handled; 224 225 /* 226 * All lies, just get the WARN/BUG out. 227 */ 228 instrumentation_begin(); 229 /* 230 * Since we're emulating a CALL with exceptions, restore the interrupt 231 * state to what it was at the exception site. 232 */ 233 if (regs->flags & X86_EFLAGS_IF) 234 raw_local_irq_enable(); 235 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { 236 regs->ip += LEN_UD2; 237 handled = true; 238 } 239 if (regs->flags & X86_EFLAGS_IF) 240 raw_local_irq_disable(); 241 instrumentation_end(); 242 243 return handled; 244 } 245 246 DEFINE_IDTENTRY_RAW(exc_invalid_op) 247 { 248 bool rcu_exit; 249 250 /* 251 * We use UD2 as a short encoding for 'CALL __WARN', as such 252 * handle it before exception entry to avoid recursive WARN 253 * in case exception entry is the one triggering WARNs. 254 */ 255 if (!user_mode(regs) && handle_bug(regs)) 256 return; 257 258 rcu_exit = idtentry_enter_cond_rcu(regs); 259 instrumentation_begin(); 260 handle_invalid_op(regs); 261 instrumentation_end(); 262 idtentry_exit_cond_rcu(regs, rcu_exit); 263 } 264 265 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 266 { 267 do_error_trap(regs, 0, "coprocessor segment overrun", 268 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 269 } 270 271 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 272 { 273 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 274 0, NULL); 275 } 276 277 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 278 { 279 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 280 SIGBUS, 0, NULL); 281 } 282 283 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 284 { 285 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 286 0, NULL); 287 } 288 289 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 290 { 291 char *str = "alignment check"; 292 293 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 294 return; 295 296 if (!user_mode(regs)) 297 die("Split lock detected\n", regs, error_code); 298 299 local_irq_enable(); 300 301 if (handle_user_split_lock(regs, error_code)) 302 return; 303 304 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 305 error_code, BUS_ADRALN, NULL); 306 } 307 308 #ifdef CONFIG_VMAP_STACK 309 __visible void __noreturn handle_stack_overflow(const char *message, 310 struct pt_regs *regs, 311 unsigned long fault_address) 312 { 313 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 314 (void *)fault_address, current->stack, 315 (char *)current->stack + THREAD_SIZE - 1); 316 die(message, regs, 0); 317 318 /* Be absolutely certain we don't return. */ 319 panic("%s", message); 320 } 321 #endif 322 323 /* 324 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 325 * 326 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 327 * SDM's warnings about double faults being unrecoverable, returning works as 328 * expected. Presumably what the SDM actually means is that the CPU may get 329 * the register state wrong on entry, so returning could be a bad idea. 330 * 331 * Various CPU engineers have promised that double faults due to an IRET fault 332 * while the stack is read-only are, in fact, recoverable. 333 * 334 * On x86_32, this is entered through a task gate, and regs are synthesized 335 * from the TSS. Returning is, in principle, okay, but changes to regs will 336 * be lost. If, for some reason, we need to return to a context with modified 337 * regs, the shim code could be adjusted to synchronize the registers. 338 * 339 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 340 * to be read before doing anything else. 341 */ 342 DEFINE_IDTENTRY_DF(exc_double_fault) 343 { 344 static const char str[] = "double fault"; 345 struct task_struct *tsk = current; 346 347 #ifdef CONFIG_VMAP_STACK 348 unsigned long address = read_cr2(); 349 #endif 350 351 #ifdef CONFIG_X86_ESPFIX64 352 extern unsigned char native_irq_return_iret[]; 353 354 /* 355 * If IRET takes a non-IST fault on the espfix64 stack, then we 356 * end up promoting it to a doublefault. In that case, take 357 * advantage of the fact that we're not using the normal (TSS.sp0) 358 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 359 * and then modify our own IRET frame so that, when we return, 360 * we land directly at the #GP(0) vector with the stack already 361 * set up according to its expectations. 362 * 363 * The net result is that our #GP handler will think that we 364 * entered from usermode with the bad user context. 365 * 366 * No need for nmi_enter() here because we don't use RCU. 367 */ 368 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 369 regs->cs == __KERNEL_CS && 370 regs->ip == (unsigned long)native_irq_return_iret) 371 { 372 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 373 unsigned long *p = (unsigned long *)regs->sp; 374 375 /* 376 * regs->sp points to the failing IRET frame on the 377 * ESPFIX64 stack. Copy it to the entry stack. This fills 378 * in gpregs->ss through gpregs->ip. 379 * 380 */ 381 gpregs->ip = p[0]; 382 gpregs->cs = p[1]; 383 gpregs->flags = p[2]; 384 gpregs->sp = p[3]; 385 gpregs->ss = p[4]; 386 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 387 388 /* 389 * Adjust our frame so that we return straight to the #GP 390 * vector with the expected RSP value. This is safe because 391 * we won't enable interupts or schedule before we invoke 392 * general_protection, so nothing will clobber the stack 393 * frame we just set up. 394 * 395 * We will enter general_protection with kernel GSBASE, 396 * which is what the stub expects, given that the faulting 397 * RIP will be the IRET instruction. 398 */ 399 regs->ip = (unsigned long)asm_exc_general_protection; 400 regs->sp = (unsigned long)&gpregs->orig_ax; 401 402 return; 403 } 404 #endif 405 406 nmi_enter(); 407 instrumentation_begin(); 408 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 409 410 tsk->thread.error_code = error_code; 411 tsk->thread.trap_nr = X86_TRAP_DF; 412 413 #ifdef CONFIG_VMAP_STACK 414 /* 415 * If we overflow the stack into a guard page, the CPU will fail 416 * to deliver #PF and will send #DF instead. Similarly, if we 417 * take any non-IST exception while too close to the bottom of 418 * the stack, the processor will get a page fault while 419 * delivering the exception and will generate a double fault. 420 * 421 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 422 * Page-Fault Exception (#PF): 423 * 424 * Processors update CR2 whenever a page fault is detected. If a 425 * second page fault occurs while an earlier page fault is being 426 * delivered, the faulting linear address of the second fault will 427 * overwrite the contents of CR2 (replacing the previous 428 * address). These updates to CR2 occur even if the page fault 429 * results in a double fault or occurs during the delivery of a 430 * double fault. 431 * 432 * The logic below has a small possibility of incorrectly diagnosing 433 * some errors as stack overflows. For example, if the IDT or GDT 434 * gets corrupted such that #GP delivery fails due to a bad descriptor 435 * causing #GP and we hit this condition while CR2 coincidentally 436 * points to the stack guard page, we'll think we overflowed the 437 * stack. Given that we're going to panic one way or another 438 * if this happens, this isn't necessarily worth fixing. 439 * 440 * If necessary, we could improve the test by only diagnosing 441 * a stack overflow if the saved RSP points within 47 bytes of 442 * the bottom of the stack: if RSP == tsk_stack + 48 and we 443 * take an exception, the stack is already aligned and there 444 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 445 * possible error code, so a stack overflow would *not* double 446 * fault. With any less space left, exception delivery could 447 * fail, and, as a practical matter, we've overflowed the 448 * stack even if the actual trigger for the double fault was 449 * something else. 450 */ 451 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) { 452 handle_stack_overflow("kernel stack overflow (double-fault)", 453 regs, address); 454 } 455 #endif 456 457 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 458 die("double fault", regs, error_code); 459 panic("Machine halted."); 460 instrumentation_end(); 461 } 462 463 DEFINE_IDTENTRY(exc_bounds) 464 { 465 if (notify_die(DIE_TRAP, "bounds", regs, 0, 466 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 467 return; 468 cond_local_irq_enable(regs); 469 470 if (!user_mode(regs)) 471 die("bounds", regs, 0); 472 473 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 474 475 cond_local_irq_disable(regs); 476 } 477 478 enum kernel_gp_hint { 479 GP_NO_HINT, 480 GP_NON_CANONICAL, 481 GP_CANONICAL 482 }; 483 484 /* 485 * When an uncaught #GP occurs, try to determine the memory address accessed by 486 * the instruction and return that address to the caller. Also, try to figure 487 * out whether any part of the access to that address was non-canonical. 488 */ 489 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 490 unsigned long *addr) 491 { 492 u8 insn_buf[MAX_INSN_SIZE]; 493 struct insn insn; 494 495 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 496 MAX_INSN_SIZE)) 497 return GP_NO_HINT; 498 499 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); 500 insn_get_modrm(&insn); 501 insn_get_sib(&insn); 502 503 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 504 if (*addr == -1UL) 505 return GP_NO_HINT; 506 507 #ifdef CONFIG_X86_64 508 /* 509 * Check that: 510 * - the operand is not in the kernel half 511 * - the last byte of the operand is not in the user canonical half 512 */ 513 if (*addr < ~__VIRTUAL_MASK && 514 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 515 return GP_NON_CANONICAL; 516 #endif 517 518 return GP_CANONICAL; 519 } 520 521 #define GPFSTR "general protection fault" 522 523 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 524 { 525 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 526 enum kernel_gp_hint hint = GP_NO_HINT; 527 struct task_struct *tsk; 528 unsigned long gp_addr; 529 int ret; 530 531 cond_local_irq_enable(regs); 532 533 if (static_cpu_has(X86_FEATURE_UMIP)) { 534 if (user_mode(regs) && fixup_umip_exception(regs)) 535 goto exit; 536 } 537 538 if (v8086_mode(regs)) { 539 local_irq_enable(); 540 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 541 local_irq_disable(); 542 return; 543 } 544 545 tsk = current; 546 547 if (user_mode(regs)) { 548 tsk->thread.error_code = error_code; 549 tsk->thread.trap_nr = X86_TRAP_GP; 550 551 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 552 force_sig(SIGSEGV); 553 goto exit; 554 } 555 556 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 557 goto exit; 558 559 tsk->thread.error_code = error_code; 560 tsk->thread.trap_nr = X86_TRAP_GP; 561 562 /* 563 * To be potentially processing a kprobe fault and to trust the result 564 * from kprobe_running(), we have to be non-preemptible. 565 */ 566 if (!preemptible() && 567 kprobe_running() && 568 kprobe_fault_handler(regs, X86_TRAP_GP)) 569 goto exit; 570 571 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); 572 if (ret == NOTIFY_STOP) 573 goto exit; 574 575 if (error_code) 576 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 577 else 578 hint = get_kernel_gp_address(regs, &gp_addr); 579 580 if (hint != GP_NO_HINT) 581 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 582 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 583 : "maybe for address", 584 gp_addr); 585 586 /* 587 * KASAN is interested only in the non-canonical case, clear it 588 * otherwise. 589 */ 590 if (hint != GP_NON_CANONICAL) 591 gp_addr = 0; 592 593 die_addr(desc, regs, error_code, gp_addr); 594 595 exit: 596 cond_local_irq_disable(regs); 597 } 598 599 static bool do_int3(struct pt_regs *regs) 600 { 601 int res; 602 603 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 604 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 605 SIGTRAP) == NOTIFY_STOP) 606 return true; 607 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 608 609 #ifdef CONFIG_KPROBES 610 if (kprobe_int3_handler(regs)) 611 return true; 612 #endif 613 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 614 615 return res == NOTIFY_STOP; 616 } 617 618 static void do_int3_user(struct pt_regs *regs) 619 { 620 if (do_int3(regs)) 621 return; 622 623 cond_local_irq_enable(regs); 624 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 625 cond_local_irq_disable(regs); 626 } 627 628 DEFINE_IDTENTRY_RAW(exc_int3) 629 { 630 /* 631 * poke_int3_handler() is completely self contained code; it does (and 632 * must) *NOT* call out to anything, lest it hits upon yet another 633 * INT3. 634 */ 635 if (poke_int3_handler(regs)) 636 return; 637 638 /* 639 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore 640 * can trigger INT3, hence poke_int3_handler() must be done 641 * before. If the entry came from kernel mode, then use nmi_enter() 642 * because the INT3 could have been hit in any context including 643 * NMI. 644 */ 645 if (user_mode(regs)) { 646 idtentry_enter_user(regs); 647 instrumentation_begin(); 648 do_int3_user(regs); 649 instrumentation_end(); 650 idtentry_exit_user(regs); 651 } else { 652 nmi_enter(); 653 instrumentation_begin(); 654 trace_hardirqs_off_finish(); 655 if (!do_int3(regs)) 656 die("int3", regs, 0); 657 if (regs->flags & X86_EFLAGS_IF) 658 trace_hardirqs_on_prepare(); 659 instrumentation_end(); 660 nmi_exit(); 661 } 662 } 663 664 #ifdef CONFIG_X86_64 665 /* 666 * Help handler running on a per-cpu (IST or entry trampoline) stack 667 * to switch to the normal thread stack if the interrupted code was in 668 * user mode. The actual stack switch is done in entry_64.S 669 */ 670 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 671 { 672 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 673 if (regs != eregs) 674 *regs = *eregs; 675 return regs; 676 } 677 678 struct bad_iret_stack { 679 void *error_entry_ret; 680 struct pt_regs regs; 681 }; 682 683 asmlinkage __visible noinstr 684 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 685 { 686 /* 687 * This is called from entry_64.S early in handling a fault 688 * caused by a bad iret to user mode. To handle the fault 689 * correctly, we want to move our stack frame to where it would 690 * be had we entered directly on the entry stack (rather than 691 * just below the IRET frame) and we want to pretend that the 692 * exception came from the IRET target. 693 */ 694 struct bad_iret_stack tmp, *new_stack = 695 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 696 697 /* Copy the IRET target to the temporary storage. */ 698 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); 699 700 /* Copy the remainder of the stack from the current stack. */ 701 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); 702 703 /* Update the entry stack */ 704 __memcpy(new_stack, &tmp, sizeof(tmp)); 705 706 BUG_ON(!user_mode(&new_stack->regs)); 707 return new_stack; 708 } 709 #endif 710 711 static bool is_sysenter_singlestep(struct pt_regs *regs) 712 { 713 /* 714 * We don't try for precision here. If we're anywhere in the region of 715 * code that can be single-stepped in the SYSENTER entry path, then 716 * assume that this is a useless single-step trap due to SYSENTER 717 * being invoked with TF set. (We don't know in advance exactly 718 * which instructions will be hit because BTF could plausibly 719 * be set.) 720 */ 721 #ifdef CONFIG_X86_32 722 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 723 (unsigned long)__end_SYSENTER_singlestep_region - 724 (unsigned long)__begin_SYSENTER_singlestep_region; 725 #elif defined(CONFIG_IA32_EMULATION) 726 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 727 (unsigned long)__end_entry_SYSENTER_compat - 728 (unsigned long)entry_SYSENTER_compat; 729 #else 730 return false; 731 #endif 732 } 733 734 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7) 735 { 736 /* 737 * Disable breakpoints during exception handling; recursive exceptions 738 * are exceedingly 'fun'. 739 * 740 * Since this function is NOKPROBE, and that also applies to 741 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 742 * HW_BREAKPOINT_W on our stack) 743 * 744 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 745 * includes the entry stack is excluded for everything. 746 */ 747 *dr7 = local_db_save(); 748 749 /* 750 * The Intel SDM says: 751 * 752 * Certain debug exceptions may clear bits 0-3. The remaining 753 * contents of the DR6 register are never cleared by the 754 * processor. To avoid confusion in identifying debug 755 * exceptions, debug handlers should clear the register before 756 * returning to the interrupted task. 757 * 758 * Keep it simple: clear DR6 immediately. 759 */ 760 get_debugreg(*dr6, 6); 761 set_debugreg(0, 6); 762 /* Filter out all the reserved bits which are preset to 1 */ 763 *dr6 &= ~DR6_RESERVED; 764 } 765 766 static __always_inline void debug_exit(unsigned long dr7) 767 { 768 local_db_restore(dr7); 769 } 770 771 /* 772 * Our handling of the processor debug registers is non-trivial. 773 * We do not clear them on entry and exit from the kernel. Therefore 774 * it is possible to get a watchpoint trap here from inside the kernel. 775 * However, the code in ./ptrace.c has ensured that the user can 776 * only set watchpoints on userspace addresses. Therefore the in-kernel 777 * watchpoint trap can only occur in code which is reading/writing 778 * from user space. Such code must not hold kernel locks (since it 779 * can equally take a page fault), therefore it is safe to call 780 * force_sig_info even though that claims and releases locks. 781 * 782 * Code in ./signal.c ensures that the debug control register 783 * is restored before we deliver any signal, and therefore that 784 * user code runs with the correct debug control register even though 785 * we clear it here. 786 * 787 * Being careful here means that we don't have to be as careful in a 788 * lot of more complicated places (task switching can be a bit lazy 789 * about restoring all the debug state, and ptrace doesn't have to 790 * find every occurrence of the TF bit that could be saved away even 791 * by user code) 792 * 793 * May run on IST stack. 794 */ 795 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user) 796 { 797 struct task_struct *tsk = current; 798 bool user_icebp; 799 int si_code; 800 801 /* 802 * The SDM says "The processor clears the BTF flag when it 803 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 804 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 805 */ 806 clear_thread_flag(TIF_BLOCKSTEP); 807 808 /* 809 * If DR6 is zero, no point in trying to handle it. The kernel is 810 * not using INT1. 811 */ 812 if (!user && !dr6) 813 return; 814 815 /* 816 * If dr6 has no reason to give us about the origin of this trap, 817 * then it's very likely the result of an icebp/int01 trap. 818 * User wants a sigtrap for that. 819 */ 820 user_icebp = user && !dr6; 821 822 /* Store the virtualized DR6 value */ 823 tsk->thread.debugreg6 = dr6; 824 825 #ifdef CONFIG_KPROBES 826 if (kprobe_debug_handler(regs)) { 827 return; 828 } 829 #endif 830 831 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0, 832 SIGTRAP) == NOTIFY_STOP) { 833 return; 834 } 835 836 /* It's safe to allow irq's after DR6 has been saved */ 837 cond_local_irq_enable(regs); 838 839 if (v8086_mode(regs)) { 840 handle_vm86_trap((struct kernel_vm86_regs *) regs, 0, 841 X86_TRAP_DB); 842 goto out; 843 } 844 845 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 846 /* 847 * Historical junk that used to handle SYSENTER single-stepping. 848 * This should be unreachable now. If we survive for a while 849 * without anyone hitting this warning, we'll turn this into 850 * an oops. 851 */ 852 tsk->thread.debugreg6 &= ~DR_STEP; 853 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 854 regs->flags &= ~X86_EFLAGS_TF; 855 } 856 857 si_code = get_si_code(tsk->thread.debugreg6); 858 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 859 send_sigtrap(regs, 0, si_code); 860 861 out: 862 cond_local_irq_disable(regs); 863 } 864 865 static __always_inline void exc_debug_kernel(struct pt_regs *regs, 866 unsigned long dr6) 867 { 868 nmi_enter(); 869 instrumentation_begin(); 870 trace_hardirqs_off_finish(); 871 872 /* 873 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 874 * watchpoint at the same time then that will still be handled. 875 */ 876 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 877 dr6 &= ~DR_STEP; 878 879 handle_debug(regs, dr6, false); 880 881 if (regs->flags & X86_EFLAGS_IF) 882 trace_hardirqs_on_prepare(); 883 instrumentation_end(); 884 nmi_exit(); 885 } 886 887 static __always_inline void exc_debug_user(struct pt_regs *regs, 888 unsigned long dr6) 889 { 890 idtentry_enter_user(regs); 891 instrumentation_begin(); 892 893 handle_debug(regs, dr6, true); 894 instrumentation_end(); 895 idtentry_exit_user(regs); 896 } 897 898 #ifdef CONFIG_X86_64 899 /* IST stack entry */ 900 DEFINE_IDTENTRY_DEBUG(exc_debug) 901 { 902 unsigned long dr6, dr7; 903 904 debug_enter(&dr6, &dr7); 905 exc_debug_kernel(regs, dr6); 906 debug_exit(dr7); 907 } 908 909 /* User entry, runs on regular task stack */ 910 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 911 { 912 unsigned long dr6, dr7; 913 914 debug_enter(&dr6, &dr7); 915 exc_debug_user(regs, dr6); 916 debug_exit(dr7); 917 } 918 #else 919 /* 32 bit does not have separate entry points. */ 920 DEFINE_IDTENTRY_DEBUG(exc_debug) 921 { 922 unsigned long dr6, dr7; 923 924 debug_enter(&dr6, &dr7); 925 926 if (user_mode(regs)) 927 exc_debug_user(regs, dr6); 928 else 929 exc_debug_kernel(regs, dr6); 930 931 debug_exit(dr7); 932 } 933 #endif 934 935 /* 936 * Note that we play around with the 'TS' bit in an attempt to get 937 * the correct behaviour even in the presence of the asynchronous 938 * IRQ13 behaviour 939 */ 940 static void math_error(struct pt_regs *regs, int trapnr) 941 { 942 struct task_struct *task = current; 943 struct fpu *fpu = &task->thread.fpu; 944 int si_code; 945 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 946 "simd exception"; 947 948 cond_local_irq_enable(regs); 949 950 if (!user_mode(regs)) { 951 if (fixup_exception(regs, trapnr, 0, 0)) 952 goto exit; 953 954 task->thread.error_code = 0; 955 task->thread.trap_nr = trapnr; 956 957 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 958 SIGFPE) != NOTIFY_STOP) 959 die(str, regs, 0); 960 goto exit; 961 } 962 963 /* 964 * Save the info for the exception handler and clear the error. 965 */ 966 fpu__save(fpu); 967 968 task->thread.trap_nr = trapnr; 969 task->thread.error_code = 0; 970 971 si_code = fpu__exception_code(fpu, trapnr); 972 /* Retry when we get spurious exceptions: */ 973 if (!si_code) 974 goto exit; 975 976 force_sig_fault(SIGFPE, si_code, 977 (void __user *)uprobe_get_trap_addr(regs)); 978 exit: 979 cond_local_irq_disable(regs); 980 } 981 982 DEFINE_IDTENTRY(exc_coprocessor_error) 983 { 984 math_error(regs, X86_TRAP_MF); 985 } 986 987 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 988 { 989 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 990 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 991 if (!static_cpu_has(X86_FEATURE_XMM)) { 992 __exc_general_protection(regs, 0); 993 return; 994 } 995 } 996 math_error(regs, X86_TRAP_XF); 997 } 998 999 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1000 { 1001 /* 1002 * This addresses a Pentium Pro Erratum: 1003 * 1004 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1005 * Virtual Wire mode implemented through the local APIC, an 1006 * interrupt vector of 0Fh (Intel reserved encoding) may be 1007 * generated by the local APIC (Int 15). This vector may be 1008 * generated upon receipt of a spurious interrupt (an interrupt 1009 * which is removed before the system receives the INTA sequence) 1010 * instead of the programmed 8259 spurious interrupt vector. 1011 * 1012 * IMPLICATION: The spurious interrupt vector programmed in the 1013 * 8259 is normally handled by an operating system's spurious 1014 * interrupt handler. However, a vector of 0Fh is unknown to some 1015 * operating systems, which would crash if this erratum occurred. 1016 * 1017 * In theory this could be limited to 32bit, but the handler is not 1018 * hurting and who knows which other CPUs suffer from this. 1019 */ 1020 } 1021 1022 DEFINE_IDTENTRY(exc_device_not_available) 1023 { 1024 unsigned long cr0 = read_cr0(); 1025 1026 #ifdef CONFIG_MATH_EMULATION 1027 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1028 struct math_emu_info info = { }; 1029 1030 cond_local_irq_enable(regs); 1031 1032 info.regs = regs; 1033 math_emulate(&info); 1034 1035 cond_local_irq_disable(regs); 1036 return; 1037 } 1038 #endif 1039 1040 /* This should not happen. */ 1041 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1042 /* Try to fix it up and carry on. */ 1043 write_cr0(cr0 & ~X86_CR0_TS); 1044 } else { 1045 /* 1046 * Something terrible happened, and we're better off trying 1047 * to kill the task than getting stuck in a never-ending 1048 * loop of #NM faults. 1049 */ 1050 die("unexpected #NM exception", regs, 0); 1051 } 1052 } 1053 1054 #ifdef CONFIG_X86_32 1055 DEFINE_IDTENTRY_SW(iret_error) 1056 { 1057 local_irq_enable(); 1058 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1059 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1060 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1061 ILL_BADSTK, (void __user *)NULL); 1062 } 1063 local_irq_disable(); 1064 } 1065 #endif 1066 1067 void __init trap_init(void) 1068 { 1069 /* Init cpu_entry_area before IST entries are set up */ 1070 setup_cpu_entry_areas(); 1071 1072 idt_setup_traps(); 1073 1074 /* 1075 * Should be a barrier for any external CPU state: 1076 */ 1077 cpu_init(); 1078 1079 idt_setup_ist_traps(); 1080 } 1081