xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 4d016ae42efb214d4b441b0654771ddf34c72891)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/io.h>
41 #include <linux/hardirq.h>
42 #include <linux/atomic.h>
43 #include <linux/iommu.h>
44 
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <asm/realmode.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/api.h>
54 #include <asm/cpu.h>
55 #include <asm/cpu_entry_area.h>
56 #include <asm/mce.h>
57 #include <asm/fixmap.h>
58 #include <asm/mach_traps.h>
59 #include <asm/alternative.h>
60 #include <asm/fpu/xstate.h>
61 #include <asm/vm86.h>
62 #include <asm/umip.h>
63 #include <asm/insn.h>
64 #include <asm/insn-eval.h>
65 #include <asm/vdso.h>
66 #include <asm/tdx.h>
67 #include <asm/cfi.h>
68 
69 #ifdef CONFIG_X86_64
70 #include <asm/x86_init.h>
71 #else
72 #include <asm/processor-flags.h>
73 #include <asm/setup.h>
74 #endif
75 
76 #include <asm/proto.h>
77 
78 DECLARE_BITMAP(system_vectors, NR_VECTORS);
79 
80 static inline void cond_local_irq_enable(struct pt_regs *regs)
81 {
82 	if (regs->flags & X86_EFLAGS_IF)
83 		local_irq_enable();
84 }
85 
86 static inline void cond_local_irq_disable(struct pt_regs *regs)
87 {
88 	if (regs->flags & X86_EFLAGS_IF)
89 		local_irq_disable();
90 }
91 
92 __always_inline int is_valid_bugaddr(unsigned long addr)
93 {
94 	if (addr < TASK_SIZE_MAX)
95 		return 0;
96 
97 	/*
98 	 * We got #UD, if the text isn't readable we'd have gotten
99 	 * a different exception.
100 	 */
101 	return *(unsigned short *)addr == INSN_UD2;
102 }
103 
104 static nokprobe_inline int
105 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
106 		  struct pt_regs *regs,	long error_code)
107 {
108 	if (v8086_mode(regs)) {
109 		/*
110 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
111 		 * On nmi (interrupt 2), do_trap should not be called.
112 		 */
113 		if (trapnr < X86_TRAP_UD) {
114 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
115 						error_code, trapnr))
116 				return 0;
117 		}
118 	} else if (!user_mode(regs)) {
119 		if (fixup_exception(regs, trapnr, error_code, 0))
120 			return 0;
121 
122 		tsk->thread.error_code = error_code;
123 		tsk->thread.trap_nr = trapnr;
124 		die(str, regs, error_code);
125 	} else {
126 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
127 			return 0;
128 	}
129 
130 	/*
131 	 * We want error_code and trap_nr set for userspace faults and
132 	 * kernelspace faults which result in die(), but not
133 	 * kernelspace faults which are fixed up.  die() gives the
134 	 * process no chance to handle the signal and notice the
135 	 * kernel fault information, so that won't result in polluting
136 	 * the information about previously queued, but not yet
137 	 * delivered, faults.  See also exc_general_protection below.
138 	 */
139 	tsk->thread.error_code = error_code;
140 	tsk->thread.trap_nr = trapnr;
141 
142 	return -1;
143 }
144 
145 static void show_signal(struct task_struct *tsk, int signr,
146 			const char *type, const char *desc,
147 			struct pt_regs *regs, long error_code)
148 {
149 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
150 	    printk_ratelimit()) {
151 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
152 			tsk->comm, task_pid_nr(tsk), type, desc,
153 			regs->ip, regs->sp, error_code);
154 		print_vma_addr(KERN_CONT " in ", regs->ip);
155 		pr_cont("\n");
156 	}
157 }
158 
159 static void
160 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
161 	long error_code, int sicode, void __user *addr)
162 {
163 	struct task_struct *tsk = current;
164 
165 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
166 		return;
167 
168 	show_signal(tsk, signr, "trap ", str, regs, error_code);
169 
170 	if (!sicode)
171 		force_sig(signr);
172 	else
173 		force_sig_fault(signr, sicode, addr);
174 }
175 NOKPROBE_SYMBOL(do_trap);
176 
177 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
178 	unsigned long trapnr, int signr, int sicode, void __user *addr)
179 {
180 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
181 
182 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
183 			NOTIFY_STOP) {
184 		cond_local_irq_enable(regs);
185 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
186 		cond_local_irq_disable(regs);
187 	}
188 }
189 
190 /*
191  * Posix requires to provide the address of the faulting instruction for
192  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
193  *
194  * This address is usually regs->ip, but when an uprobe moved the code out
195  * of line then regs->ip points to the XOL code which would confuse
196  * anything which analyzes the fault address vs. the unmodified binary. If
197  * a trap happened in XOL code then uprobe maps regs->ip back to the
198  * original instruction address.
199  */
200 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
201 {
202 	return (void __user *)uprobe_get_trap_addr(regs);
203 }
204 
205 DEFINE_IDTENTRY(exc_divide_error)
206 {
207 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
208 		      FPE_INTDIV, error_get_trap_addr(regs));
209 
210 	amd_clear_divider();
211 }
212 
213 DEFINE_IDTENTRY(exc_overflow)
214 {
215 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
216 }
217 
218 #ifdef CONFIG_X86_KERNEL_IBT
219 
220 static __ro_after_init bool ibt_fatal = true;
221 
222 extern void ibt_selftest_ip(void); /* code label defined in asm below */
223 
224 enum cp_error_code {
225 	CP_EC        = (1 << 15) - 1,
226 
227 	CP_RET       = 1,
228 	CP_IRET      = 2,
229 	CP_ENDBR     = 3,
230 	CP_RSTRORSSP = 4,
231 	CP_SETSSBSY  = 5,
232 
233 	CP_ENCL	     = 1 << 15,
234 };
235 
236 DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
237 {
238 	if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
239 		pr_err("Unexpected #CP\n");
240 		BUG();
241 	}
242 
243 	if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
244 		return;
245 
246 	if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
247 		regs->ax = 0;
248 		return;
249 	}
250 
251 	pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
252 	if (!ibt_fatal) {
253 		printk(KERN_DEFAULT CUT_HERE);
254 		__warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
255 		return;
256 	}
257 	BUG();
258 }
259 
260 /* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
261 noinline bool ibt_selftest(void)
262 {
263 	unsigned long ret;
264 
265 	asm ("	lea ibt_selftest_ip(%%rip), %%rax\n\t"
266 	     ANNOTATE_RETPOLINE_SAFE
267 	     "	jmp *%%rax\n\t"
268 	     "ibt_selftest_ip:\n\t"
269 	     UNWIND_HINT_FUNC
270 	     ANNOTATE_NOENDBR
271 	     "	nop\n\t"
272 
273 	     : "=a" (ret) : : "memory");
274 
275 	return !ret;
276 }
277 
278 static int __init ibt_setup(char *str)
279 {
280 	if (!strcmp(str, "off"))
281 		setup_clear_cpu_cap(X86_FEATURE_IBT);
282 
283 	if (!strcmp(str, "warn"))
284 		ibt_fatal = false;
285 
286 	return 1;
287 }
288 
289 __setup("ibt=", ibt_setup);
290 
291 #endif /* CONFIG_X86_KERNEL_IBT */
292 
293 #ifdef CONFIG_X86_F00F_BUG
294 void handle_invalid_op(struct pt_regs *regs)
295 #else
296 static inline void handle_invalid_op(struct pt_regs *regs)
297 #endif
298 {
299 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
300 		      ILL_ILLOPN, error_get_trap_addr(regs));
301 }
302 
303 static noinstr bool handle_bug(struct pt_regs *regs)
304 {
305 	bool handled = false;
306 
307 	/*
308 	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
309 	 * is a rare case that uses @regs without passing them to
310 	 * irqentry_enter().
311 	 */
312 	kmsan_unpoison_entry_regs(regs);
313 	if (!is_valid_bugaddr(regs->ip))
314 		return handled;
315 
316 	/*
317 	 * All lies, just get the WARN/BUG out.
318 	 */
319 	instrumentation_begin();
320 	/*
321 	 * Since we're emulating a CALL with exceptions, restore the interrupt
322 	 * state to what it was at the exception site.
323 	 */
324 	if (regs->flags & X86_EFLAGS_IF)
325 		raw_local_irq_enable();
326 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
327 	    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
328 		regs->ip += LEN_UD2;
329 		handled = true;
330 	}
331 	if (regs->flags & X86_EFLAGS_IF)
332 		raw_local_irq_disable();
333 	instrumentation_end();
334 
335 	return handled;
336 }
337 
338 DEFINE_IDTENTRY_RAW(exc_invalid_op)
339 {
340 	irqentry_state_t state;
341 
342 	/*
343 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
344 	 * handle it before exception entry to avoid recursive WARN
345 	 * in case exception entry is the one triggering WARNs.
346 	 */
347 	if (!user_mode(regs) && handle_bug(regs))
348 		return;
349 
350 	state = irqentry_enter(regs);
351 	instrumentation_begin();
352 	handle_invalid_op(regs);
353 	instrumentation_end();
354 	irqentry_exit(regs, state);
355 }
356 
357 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
358 {
359 	do_error_trap(regs, 0, "coprocessor segment overrun",
360 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
361 }
362 
363 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
364 {
365 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
366 		      0, NULL);
367 }
368 
369 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
370 {
371 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
372 		      SIGBUS, 0, NULL);
373 }
374 
375 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
376 {
377 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
378 		      0, NULL);
379 }
380 
381 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
382 {
383 	char *str = "alignment check";
384 
385 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
386 		return;
387 
388 	if (!user_mode(regs))
389 		die("Split lock detected\n", regs, error_code);
390 
391 	local_irq_enable();
392 
393 	if (handle_user_split_lock(regs, error_code))
394 		goto out;
395 
396 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
397 		error_code, BUS_ADRALN, NULL);
398 
399 out:
400 	local_irq_disable();
401 }
402 
403 #ifdef CONFIG_VMAP_STACK
404 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
405 						unsigned long fault_address,
406 						struct stack_info *info)
407 {
408 	const char *name = stack_type_name(info->type);
409 
410 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
411 	       name, (void *)fault_address, info->begin, info->end);
412 
413 	die("stack guard page", regs, 0);
414 
415 	/* Be absolutely certain we don't return. */
416 	panic("%s stack guard hit", name);
417 }
418 #endif
419 
420 /*
421  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
422  *
423  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
424  * SDM's warnings about double faults being unrecoverable, returning works as
425  * expected.  Presumably what the SDM actually means is that the CPU may get
426  * the register state wrong on entry, so returning could be a bad idea.
427  *
428  * Various CPU engineers have promised that double faults due to an IRET fault
429  * while the stack is read-only are, in fact, recoverable.
430  *
431  * On x86_32, this is entered through a task gate, and regs are synthesized
432  * from the TSS.  Returning is, in principle, okay, but changes to regs will
433  * be lost.  If, for some reason, we need to return to a context with modified
434  * regs, the shim code could be adjusted to synchronize the registers.
435  *
436  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
437  * to be read before doing anything else.
438  */
439 DEFINE_IDTENTRY_DF(exc_double_fault)
440 {
441 	static const char str[] = "double fault";
442 	struct task_struct *tsk = current;
443 
444 #ifdef CONFIG_VMAP_STACK
445 	unsigned long address = read_cr2();
446 	struct stack_info info;
447 #endif
448 
449 #ifdef CONFIG_X86_ESPFIX64
450 	extern unsigned char native_irq_return_iret[];
451 
452 	/*
453 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
454 	 * end up promoting it to a doublefault.  In that case, take
455 	 * advantage of the fact that we're not using the normal (TSS.sp0)
456 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
457 	 * and then modify our own IRET frame so that, when we return,
458 	 * we land directly at the #GP(0) vector with the stack already
459 	 * set up according to its expectations.
460 	 *
461 	 * The net result is that our #GP handler will think that we
462 	 * entered from usermode with the bad user context.
463 	 *
464 	 * No need for nmi_enter() here because we don't use RCU.
465 	 */
466 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
467 		regs->cs == __KERNEL_CS &&
468 		regs->ip == (unsigned long)native_irq_return_iret)
469 	{
470 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
471 		unsigned long *p = (unsigned long *)regs->sp;
472 
473 		/*
474 		 * regs->sp points to the failing IRET frame on the
475 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
476 		 * in gpregs->ss through gpregs->ip.
477 		 *
478 		 */
479 		gpregs->ip	= p[0];
480 		gpregs->cs	= p[1];
481 		gpregs->flags	= p[2];
482 		gpregs->sp	= p[3];
483 		gpregs->ss	= p[4];
484 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
485 
486 		/*
487 		 * Adjust our frame so that we return straight to the #GP
488 		 * vector with the expected RSP value.  This is safe because
489 		 * we won't enable interrupts or schedule before we invoke
490 		 * general_protection, so nothing will clobber the stack
491 		 * frame we just set up.
492 		 *
493 		 * We will enter general_protection with kernel GSBASE,
494 		 * which is what the stub expects, given that the faulting
495 		 * RIP will be the IRET instruction.
496 		 */
497 		regs->ip = (unsigned long)asm_exc_general_protection;
498 		regs->sp = (unsigned long)&gpregs->orig_ax;
499 
500 		return;
501 	}
502 #endif
503 
504 	irqentry_nmi_enter(regs);
505 	instrumentation_begin();
506 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
507 
508 	tsk->thread.error_code = error_code;
509 	tsk->thread.trap_nr = X86_TRAP_DF;
510 
511 #ifdef CONFIG_VMAP_STACK
512 	/*
513 	 * If we overflow the stack into a guard page, the CPU will fail
514 	 * to deliver #PF and will send #DF instead.  Similarly, if we
515 	 * take any non-IST exception while too close to the bottom of
516 	 * the stack, the processor will get a page fault while
517 	 * delivering the exception and will generate a double fault.
518 	 *
519 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
520 	 * Page-Fault Exception (#PF):
521 	 *
522 	 *   Processors update CR2 whenever a page fault is detected. If a
523 	 *   second page fault occurs while an earlier page fault is being
524 	 *   delivered, the faulting linear address of the second fault will
525 	 *   overwrite the contents of CR2 (replacing the previous
526 	 *   address). These updates to CR2 occur even if the page fault
527 	 *   results in a double fault or occurs during the delivery of a
528 	 *   double fault.
529 	 *
530 	 * The logic below has a small possibility of incorrectly diagnosing
531 	 * some errors as stack overflows.  For example, if the IDT or GDT
532 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
533 	 * causing #GP and we hit this condition while CR2 coincidentally
534 	 * points to the stack guard page, we'll think we overflowed the
535 	 * stack.  Given that we're going to panic one way or another
536 	 * if this happens, this isn't necessarily worth fixing.
537 	 *
538 	 * If necessary, we could improve the test by only diagnosing
539 	 * a stack overflow if the saved RSP points within 47 bytes of
540 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
541 	 * take an exception, the stack is already aligned and there
542 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
543 	 * possible error code, so a stack overflow would *not* double
544 	 * fault.  With any less space left, exception delivery could
545 	 * fail, and, as a practical matter, we've overflowed the
546 	 * stack even if the actual trigger for the double fault was
547 	 * something else.
548 	 */
549 	if (get_stack_guard_info((void *)address, &info))
550 		handle_stack_overflow(regs, address, &info);
551 #endif
552 
553 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
554 	die("double fault", regs, error_code);
555 	panic("Machine halted.");
556 	instrumentation_end();
557 }
558 
559 DEFINE_IDTENTRY(exc_bounds)
560 {
561 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
562 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
563 		return;
564 	cond_local_irq_enable(regs);
565 
566 	if (!user_mode(regs))
567 		die("bounds", regs, 0);
568 
569 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
570 
571 	cond_local_irq_disable(regs);
572 }
573 
574 enum kernel_gp_hint {
575 	GP_NO_HINT,
576 	GP_NON_CANONICAL,
577 	GP_CANONICAL
578 };
579 
580 /*
581  * When an uncaught #GP occurs, try to determine the memory address accessed by
582  * the instruction and return that address to the caller. Also, try to figure
583  * out whether any part of the access to that address was non-canonical.
584  */
585 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
586 						 unsigned long *addr)
587 {
588 	u8 insn_buf[MAX_INSN_SIZE];
589 	struct insn insn;
590 	int ret;
591 
592 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
593 			MAX_INSN_SIZE))
594 		return GP_NO_HINT;
595 
596 	ret = insn_decode_kernel(&insn, insn_buf);
597 	if (ret < 0)
598 		return GP_NO_HINT;
599 
600 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
601 	if (*addr == -1UL)
602 		return GP_NO_HINT;
603 
604 #ifdef CONFIG_X86_64
605 	/*
606 	 * Check that:
607 	 *  - the operand is not in the kernel half
608 	 *  - the last byte of the operand is not in the user canonical half
609 	 */
610 	if (*addr < ~__VIRTUAL_MASK &&
611 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
612 		return GP_NON_CANONICAL;
613 #endif
614 
615 	return GP_CANONICAL;
616 }
617 
618 #define GPFSTR "general protection fault"
619 
620 static bool fixup_iopl_exception(struct pt_regs *regs)
621 {
622 	struct thread_struct *t = &current->thread;
623 	unsigned char byte;
624 	unsigned long ip;
625 
626 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
627 		return false;
628 
629 	if (insn_get_effective_ip(regs, &ip))
630 		return false;
631 
632 	if (get_user(byte, (const char __user *)ip))
633 		return false;
634 
635 	if (byte != 0xfa && byte != 0xfb)
636 		return false;
637 
638 	if (!t->iopl_warn && printk_ratelimit()) {
639 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
640 		       current->comm, task_pid_nr(current), ip);
641 		print_vma_addr(KERN_CONT " in ", ip);
642 		pr_cont("\n");
643 		t->iopl_warn = 1;
644 	}
645 
646 	regs->ip += 1;
647 	return true;
648 }
649 
650 /*
651  * The unprivileged ENQCMD instruction generates #GPs if the
652  * IA32_PASID MSR has not been populated.  If possible, populate
653  * the MSR from a PASID previously allocated to the mm.
654  */
655 static bool try_fixup_enqcmd_gp(void)
656 {
657 #ifdef CONFIG_IOMMU_SVA
658 	u32 pasid;
659 
660 	/*
661 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
662 	 * writing to the MSR is only possible when fpregs
663 	 * are valid and the fpstate is not.  This is
664 	 * guaranteed when handling a userspace exception
665 	 * in *before* interrupts are re-enabled.
666 	 */
667 	lockdep_assert_irqs_disabled();
668 
669 	/*
670 	 * Hardware without ENQCMD will not generate
671 	 * #GPs that can be fixed up here.
672 	 */
673 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
674 		return false;
675 
676 	/*
677 	 * If the mm has not been allocated a
678 	 * PASID, the #GP can not be fixed up.
679 	 */
680 	if (!mm_valid_pasid(current->mm))
681 		return false;
682 
683 	pasid = current->mm->pasid;
684 
685 	/*
686 	 * Did this thread already have its PASID activated?
687 	 * If so, the #GP must be from something else.
688 	 */
689 	if (current->pasid_activated)
690 		return false;
691 
692 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
693 	current->pasid_activated = 1;
694 
695 	return true;
696 #else
697 	return false;
698 #endif
699 }
700 
701 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
702 				    unsigned long error_code, const char *str,
703 				    unsigned long address)
704 {
705 	if (fixup_exception(regs, trapnr, error_code, address))
706 		return true;
707 
708 	current->thread.error_code = error_code;
709 	current->thread.trap_nr = trapnr;
710 
711 	/*
712 	 * To be potentially processing a kprobe fault and to trust the result
713 	 * from kprobe_running(), we have to be non-preemptible.
714 	 */
715 	if (!preemptible() && kprobe_running() &&
716 	    kprobe_fault_handler(regs, trapnr))
717 		return true;
718 
719 	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
720 }
721 
722 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
723 				   unsigned long error_code, const char *str)
724 {
725 	current->thread.error_code = error_code;
726 	current->thread.trap_nr = trapnr;
727 	show_signal(current, SIGSEGV, "", str, regs, error_code);
728 	force_sig(SIGSEGV);
729 }
730 
731 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
732 {
733 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
734 	enum kernel_gp_hint hint = GP_NO_HINT;
735 	unsigned long gp_addr;
736 
737 	if (user_mode(regs) && try_fixup_enqcmd_gp())
738 		return;
739 
740 	cond_local_irq_enable(regs);
741 
742 	if (static_cpu_has(X86_FEATURE_UMIP)) {
743 		if (user_mode(regs) && fixup_umip_exception(regs))
744 			goto exit;
745 	}
746 
747 	if (v8086_mode(regs)) {
748 		local_irq_enable();
749 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
750 		local_irq_disable();
751 		return;
752 	}
753 
754 	if (user_mode(regs)) {
755 		if (fixup_iopl_exception(regs))
756 			goto exit;
757 
758 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
759 			goto exit;
760 
761 		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
762 		goto exit;
763 	}
764 
765 	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
766 		goto exit;
767 
768 	if (error_code)
769 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
770 	else
771 		hint = get_kernel_gp_address(regs, &gp_addr);
772 
773 	if (hint != GP_NO_HINT)
774 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
775 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
776 						    : "maybe for address",
777 			 gp_addr);
778 
779 	/*
780 	 * KASAN is interested only in the non-canonical case, clear it
781 	 * otherwise.
782 	 */
783 	if (hint != GP_NON_CANONICAL)
784 		gp_addr = 0;
785 
786 	die_addr(desc, regs, error_code, gp_addr);
787 
788 exit:
789 	cond_local_irq_disable(regs);
790 }
791 
792 static bool do_int3(struct pt_regs *regs)
793 {
794 	int res;
795 
796 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
797 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
798 			 SIGTRAP) == NOTIFY_STOP)
799 		return true;
800 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
801 
802 #ifdef CONFIG_KPROBES
803 	if (kprobe_int3_handler(regs))
804 		return true;
805 #endif
806 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
807 
808 	return res == NOTIFY_STOP;
809 }
810 NOKPROBE_SYMBOL(do_int3);
811 
812 static void do_int3_user(struct pt_regs *regs)
813 {
814 	if (do_int3(regs))
815 		return;
816 
817 	cond_local_irq_enable(regs);
818 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
819 	cond_local_irq_disable(regs);
820 }
821 
822 DEFINE_IDTENTRY_RAW(exc_int3)
823 {
824 	/*
825 	 * poke_int3_handler() is completely self contained code; it does (and
826 	 * must) *NOT* call out to anything, lest it hits upon yet another
827 	 * INT3.
828 	 */
829 	if (poke_int3_handler(regs))
830 		return;
831 
832 	/*
833 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
834 	 * and therefore can trigger INT3, hence poke_int3_handler() must
835 	 * be done before. If the entry came from kernel mode, then use
836 	 * nmi_enter() because the INT3 could have been hit in any context
837 	 * including NMI.
838 	 */
839 	if (user_mode(regs)) {
840 		irqentry_enter_from_user_mode(regs);
841 		instrumentation_begin();
842 		do_int3_user(regs);
843 		instrumentation_end();
844 		irqentry_exit_to_user_mode(regs);
845 	} else {
846 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
847 
848 		instrumentation_begin();
849 		if (!do_int3(regs))
850 			die("int3", regs, 0);
851 		instrumentation_end();
852 		irqentry_nmi_exit(regs, irq_state);
853 	}
854 }
855 
856 #ifdef CONFIG_X86_64
857 /*
858  * Help handler running on a per-cpu (IST or entry trampoline) stack
859  * to switch to the normal thread stack if the interrupted code was in
860  * user mode. The actual stack switch is done in entry_64.S
861  */
862 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
863 {
864 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
865 	if (regs != eregs)
866 		*regs = *eregs;
867 	return regs;
868 }
869 
870 #ifdef CONFIG_AMD_MEM_ENCRYPT
871 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
872 {
873 	unsigned long sp, *stack;
874 	struct stack_info info;
875 	struct pt_regs *regs_ret;
876 
877 	/*
878 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
879 	 * trust it and switch to the current kernel stack
880 	 */
881 	if (ip_within_syscall_gap(regs)) {
882 		sp = this_cpu_read(pcpu_hot.top_of_stack);
883 		goto sync;
884 	}
885 
886 	/*
887 	 * From here on the RSP value is trusted. Now check whether entry
888 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
889 	 * use the fall-back stack instead in this case.
890 	 */
891 	sp    = regs->sp;
892 	stack = (unsigned long *)sp;
893 
894 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
895 	    info.type > STACK_TYPE_EXCEPTION_LAST)
896 		sp = __this_cpu_ist_top_va(VC2);
897 
898 sync:
899 	/*
900 	 * Found a safe stack - switch to it as if the entry didn't happen via
901 	 * IST stack. The code below only copies pt_regs, the real switch happens
902 	 * in assembly code.
903 	 */
904 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
905 
906 	regs_ret = (struct pt_regs *)sp;
907 	*regs_ret = *regs;
908 
909 	return regs_ret;
910 }
911 #endif
912 
913 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
914 {
915 	struct pt_regs tmp, *new_stack;
916 
917 	/*
918 	 * This is called from entry_64.S early in handling a fault
919 	 * caused by a bad iret to user mode.  To handle the fault
920 	 * correctly, we want to move our stack frame to where it would
921 	 * be had we entered directly on the entry stack (rather than
922 	 * just below the IRET frame) and we want to pretend that the
923 	 * exception came from the IRET target.
924 	 */
925 	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
926 
927 	/* Copy the IRET target to the temporary storage. */
928 	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
929 
930 	/* Copy the remainder of the stack from the current stack. */
931 	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
932 
933 	/* Update the entry stack */
934 	__memcpy(new_stack, &tmp, sizeof(tmp));
935 
936 	BUG_ON(!user_mode(new_stack));
937 	return new_stack;
938 }
939 #endif
940 
941 static bool is_sysenter_singlestep(struct pt_regs *regs)
942 {
943 	/*
944 	 * We don't try for precision here.  If we're anywhere in the region of
945 	 * code that can be single-stepped in the SYSENTER entry path, then
946 	 * assume that this is a useless single-step trap due to SYSENTER
947 	 * being invoked with TF set.  (We don't know in advance exactly
948 	 * which instructions will be hit because BTF could plausibly
949 	 * be set.)
950 	 */
951 #ifdef CONFIG_X86_32
952 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
953 		(unsigned long)__end_SYSENTER_singlestep_region -
954 		(unsigned long)__begin_SYSENTER_singlestep_region;
955 #elif defined(CONFIG_IA32_EMULATION)
956 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
957 		(unsigned long)__end_entry_SYSENTER_compat -
958 		(unsigned long)entry_SYSENTER_compat;
959 #else
960 	return false;
961 #endif
962 }
963 
964 static __always_inline unsigned long debug_read_clear_dr6(void)
965 {
966 	unsigned long dr6;
967 
968 	/*
969 	 * The Intel SDM says:
970 	 *
971 	 *   Certain debug exceptions may clear bits 0-3. The remaining
972 	 *   contents of the DR6 register are never cleared by the
973 	 *   processor. To avoid confusion in identifying debug
974 	 *   exceptions, debug handlers should clear the register before
975 	 *   returning to the interrupted task.
976 	 *
977 	 * Keep it simple: clear DR6 immediately.
978 	 */
979 	get_debugreg(dr6, 6);
980 	set_debugreg(DR6_RESERVED, 6);
981 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
982 
983 	return dr6;
984 }
985 
986 /*
987  * Our handling of the processor debug registers is non-trivial.
988  * We do not clear them on entry and exit from the kernel. Therefore
989  * it is possible to get a watchpoint trap here from inside the kernel.
990  * However, the code in ./ptrace.c has ensured that the user can
991  * only set watchpoints on userspace addresses. Therefore the in-kernel
992  * watchpoint trap can only occur in code which is reading/writing
993  * from user space. Such code must not hold kernel locks (since it
994  * can equally take a page fault), therefore it is safe to call
995  * force_sig_info even though that claims and releases locks.
996  *
997  * Code in ./signal.c ensures that the debug control register
998  * is restored before we deliver any signal, and therefore that
999  * user code runs with the correct debug control register even though
1000  * we clear it here.
1001  *
1002  * Being careful here means that we don't have to be as careful in a
1003  * lot of more complicated places (task switching can be a bit lazy
1004  * about restoring all the debug state, and ptrace doesn't have to
1005  * find every occurrence of the TF bit that could be saved away even
1006  * by user code)
1007  *
1008  * May run on IST stack.
1009  */
1010 
1011 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1012 {
1013 	/*
1014 	 * Notifiers will clear bits in @dr6 to indicate the event has been
1015 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
1016 	 *
1017 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1018 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1019 	 */
1020 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1021 		return true;
1022 
1023 	return false;
1024 }
1025 
1026 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1027 					     unsigned long dr6)
1028 {
1029 	/*
1030 	 * Disable breakpoints during exception handling; recursive exceptions
1031 	 * are exceedingly 'fun'.
1032 	 *
1033 	 * Since this function is NOKPROBE, and that also applies to
1034 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1035 	 * HW_BREAKPOINT_W on our stack)
1036 	 *
1037 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1038 	 * includes the entry stack is excluded for everything.
1039 	 */
1040 	unsigned long dr7 = local_db_save();
1041 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1042 	instrumentation_begin();
1043 
1044 	/*
1045 	 * If something gets miswired and we end up here for a user mode
1046 	 * #DB, we will malfunction.
1047 	 */
1048 	WARN_ON_ONCE(user_mode(regs));
1049 
1050 	if (test_thread_flag(TIF_BLOCKSTEP)) {
1051 		/*
1052 		 * The SDM says "The processor clears the BTF flag when it
1053 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1054 		 * it for userspace, but we just took a kernel #DB, so re-set
1055 		 * BTF.
1056 		 */
1057 		unsigned long debugctl;
1058 
1059 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1060 		debugctl |= DEBUGCTLMSR_BTF;
1061 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1062 	}
1063 
1064 	/*
1065 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1066 	 * watchpoint at the same time then that will still be handled.
1067 	 */
1068 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1069 		dr6 &= ~DR_STEP;
1070 
1071 	/*
1072 	 * The kernel doesn't use INT1
1073 	 */
1074 	if (!dr6)
1075 		goto out;
1076 
1077 	if (notify_debug(regs, &dr6))
1078 		goto out;
1079 
1080 	/*
1081 	 * The kernel doesn't use TF single-step outside of:
1082 	 *
1083 	 *  - Kprobes, consumed through kprobe_debug_handler()
1084 	 *  - KGDB, consumed through notify_debug()
1085 	 *
1086 	 * So if we get here with DR_STEP set, something is wonky.
1087 	 *
1088 	 * A known way to trigger this is through QEMU's GDB stub,
1089 	 * which leaks #DB into the guest and causes IST recursion.
1090 	 */
1091 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1092 		regs->flags &= ~X86_EFLAGS_TF;
1093 out:
1094 	instrumentation_end();
1095 	irqentry_nmi_exit(regs, irq_state);
1096 
1097 	local_db_restore(dr7);
1098 }
1099 
1100 static __always_inline void exc_debug_user(struct pt_regs *regs,
1101 					   unsigned long dr6)
1102 {
1103 	bool icebp;
1104 
1105 	/*
1106 	 * If something gets miswired and we end up here for a kernel mode
1107 	 * #DB, we will malfunction.
1108 	 */
1109 	WARN_ON_ONCE(!user_mode(regs));
1110 
1111 	/*
1112 	 * NB: We can't easily clear DR7 here because
1113 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1114 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1115 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1116 	 * Since we're not on the IST stack right now, everything will be
1117 	 * fine.
1118 	 */
1119 
1120 	irqentry_enter_from_user_mode(regs);
1121 	instrumentation_begin();
1122 
1123 	/*
1124 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1125 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1126 	 *
1127 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1128 	 * even if it is not the result of PTRACE_SINGLESTEP.
1129 	 */
1130 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1131 
1132 	/*
1133 	 * The SDM says "The processor clears the BTF flag when it
1134 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1135 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1136 	 */
1137 	clear_thread_flag(TIF_BLOCKSTEP);
1138 
1139 	/*
1140 	 * If dr6 has no reason to give us about the origin of this trap,
1141 	 * then it's very likely the result of an icebp/int01 trap.
1142 	 * User wants a sigtrap for that.
1143 	 */
1144 	icebp = !dr6;
1145 
1146 	if (notify_debug(regs, &dr6))
1147 		goto out;
1148 
1149 	/* It's safe to allow irq's after DR6 has been saved */
1150 	local_irq_enable();
1151 
1152 	if (v8086_mode(regs)) {
1153 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1154 		goto out_irq;
1155 	}
1156 
1157 	/* #DB for bus lock can only be triggered from userspace. */
1158 	if (dr6 & DR_BUS_LOCK)
1159 		handle_bus_lock(regs);
1160 
1161 	/* Add the virtual_dr6 bits for signals. */
1162 	dr6 |= current->thread.virtual_dr6;
1163 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1164 		send_sigtrap(regs, 0, get_si_code(dr6));
1165 
1166 out_irq:
1167 	local_irq_disable();
1168 out:
1169 	instrumentation_end();
1170 	irqentry_exit_to_user_mode(regs);
1171 }
1172 
1173 #ifdef CONFIG_X86_64
1174 /* IST stack entry */
1175 DEFINE_IDTENTRY_DEBUG(exc_debug)
1176 {
1177 	exc_debug_kernel(regs, debug_read_clear_dr6());
1178 }
1179 
1180 /* User entry, runs on regular task stack */
1181 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1182 {
1183 	exc_debug_user(regs, debug_read_clear_dr6());
1184 }
1185 #else
1186 /* 32 bit does not have separate entry points. */
1187 DEFINE_IDTENTRY_RAW(exc_debug)
1188 {
1189 	unsigned long dr6 = debug_read_clear_dr6();
1190 
1191 	if (user_mode(regs))
1192 		exc_debug_user(regs, dr6);
1193 	else
1194 		exc_debug_kernel(regs, dr6);
1195 }
1196 #endif
1197 
1198 /*
1199  * Note that we play around with the 'TS' bit in an attempt to get
1200  * the correct behaviour even in the presence of the asynchronous
1201  * IRQ13 behaviour
1202  */
1203 static void math_error(struct pt_regs *regs, int trapnr)
1204 {
1205 	struct task_struct *task = current;
1206 	struct fpu *fpu = &task->thread.fpu;
1207 	int si_code;
1208 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1209 						"simd exception";
1210 
1211 	cond_local_irq_enable(regs);
1212 
1213 	if (!user_mode(regs)) {
1214 		if (fixup_exception(regs, trapnr, 0, 0))
1215 			goto exit;
1216 
1217 		task->thread.error_code = 0;
1218 		task->thread.trap_nr = trapnr;
1219 
1220 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1221 			       SIGFPE) != NOTIFY_STOP)
1222 			die(str, regs, 0);
1223 		goto exit;
1224 	}
1225 
1226 	/*
1227 	 * Synchronize the FPU register state to the memory register state
1228 	 * if necessary. This allows the exception handler to inspect it.
1229 	 */
1230 	fpu_sync_fpstate(fpu);
1231 
1232 	task->thread.trap_nr	= trapnr;
1233 	task->thread.error_code = 0;
1234 
1235 	si_code = fpu__exception_code(fpu, trapnr);
1236 	/* Retry when we get spurious exceptions: */
1237 	if (!si_code)
1238 		goto exit;
1239 
1240 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1241 		goto exit;
1242 
1243 	force_sig_fault(SIGFPE, si_code,
1244 			(void __user *)uprobe_get_trap_addr(regs));
1245 exit:
1246 	cond_local_irq_disable(regs);
1247 }
1248 
1249 DEFINE_IDTENTRY(exc_coprocessor_error)
1250 {
1251 	math_error(regs, X86_TRAP_MF);
1252 }
1253 
1254 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1255 {
1256 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1257 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1258 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1259 			__exc_general_protection(regs, 0);
1260 			return;
1261 		}
1262 	}
1263 	math_error(regs, X86_TRAP_XF);
1264 }
1265 
1266 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1267 {
1268 	/*
1269 	 * This addresses a Pentium Pro Erratum:
1270 	 *
1271 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1272 	 * Virtual Wire mode implemented through the local APIC, an
1273 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1274 	 * generated by the local APIC (Int 15).  This vector may be
1275 	 * generated upon receipt of a spurious interrupt (an interrupt
1276 	 * which is removed before the system receives the INTA sequence)
1277 	 * instead of the programmed 8259 spurious interrupt vector.
1278 	 *
1279 	 * IMPLICATION: The spurious interrupt vector programmed in the
1280 	 * 8259 is normally handled by an operating system's spurious
1281 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1282 	 * operating systems, which would crash if this erratum occurred.
1283 	 *
1284 	 * In theory this could be limited to 32bit, but the handler is not
1285 	 * hurting and who knows which other CPUs suffer from this.
1286 	 */
1287 }
1288 
1289 static bool handle_xfd_event(struct pt_regs *regs)
1290 {
1291 	u64 xfd_err;
1292 	int err;
1293 
1294 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1295 		return false;
1296 
1297 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1298 	if (!xfd_err)
1299 		return false;
1300 
1301 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1302 
1303 	/* Die if that happens in kernel space */
1304 	if (WARN_ON(!user_mode(regs)))
1305 		return false;
1306 
1307 	local_irq_enable();
1308 
1309 	err = xfd_enable_feature(xfd_err);
1310 
1311 	switch (err) {
1312 	case -EPERM:
1313 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1314 		break;
1315 	case -EFAULT:
1316 		force_sig(SIGSEGV);
1317 		break;
1318 	}
1319 
1320 	local_irq_disable();
1321 	return true;
1322 }
1323 
1324 DEFINE_IDTENTRY(exc_device_not_available)
1325 {
1326 	unsigned long cr0 = read_cr0();
1327 
1328 	if (handle_xfd_event(regs))
1329 		return;
1330 
1331 #ifdef CONFIG_MATH_EMULATION
1332 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1333 		struct math_emu_info info = { };
1334 
1335 		cond_local_irq_enable(regs);
1336 
1337 		info.regs = regs;
1338 		math_emulate(&info);
1339 
1340 		cond_local_irq_disable(regs);
1341 		return;
1342 	}
1343 #endif
1344 
1345 	/* This should not happen. */
1346 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1347 		/* Try to fix it up and carry on. */
1348 		write_cr0(cr0 & ~X86_CR0_TS);
1349 	} else {
1350 		/*
1351 		 * Something terrible happened, and we're better off trying
1352 		 * to kill the task than getting stuck in a never-ending
1353 		 * loop of #NM faults.
1354 		 */
1355 		die("unexpected #NM exception", regs, 0);
1356 	}
1357 }
1358 
1359 #ifdef CONFIG_INTEL_TDX_GUEST
1360 
1361 #define VE_FAULT_STR "VE fault"
1362 
1363 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1364 			   unsigned long address)
1365 {
1366 	if (user_mode(regs)) {
1367 		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1368 		return;
1369 	}
1370 
1371 	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1372 				    VE_FAULT_STR, address)) {
1373 		return;
1374 	}
1375 
1376 	die_addr(VE_FAULT_STR, regs, error_code, address);
1377 }
1378 
1379 /*
1380  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1381  * specific guest actions which may happen in either user space or the
1382  * kernel:
1383  *
1384  *  * Specific instructions (WBINVD, for example)
1385  *  * Specific MSR accesses
1386  *  * Specific CPUID leaf accesses
1387  *  * Access to specific guest physical addresses
1388  *
1389  * In the settings that Linux will run in, virtualization exceptions are
1390  * never generated on accesses to normal, TD-private memory that has been
1391  * accepted (by BIOS or with tdx_enc_status_changed()).
1392  *
1393  * Syscall entry code has a critical window where the kernel stack is not
1394  * yet set up. Any exception in this window leads to hard to debug issues
1395  * and can be exploited for privilege escalation. Exceptions in the NMI
1396  * entry code also cause issues. Returning from the exception handler with
1397  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1398  *
1399  * For these reasons, the kernel avoids #VEs during the syscall gap and
1400  * the NMI entry code. Entry code paths do not access TD-shared memory,
1401  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1402  * that might generate #VE. VMM can remove memory from TD at any point,
1403  * but access to unaccepted (or missing) private memory leads to VM
1404  * termination, not to #VE.
1405  *
1406  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1407  * handlers once the kernel is ready to deal with nested NMIs.
1408  *
1409  * During #VE delivery, all interrupts, including NMIs, are blocked until
1410  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1411  * the VE info.
1412  *
1413  * If a guest kernel action which would normally cause a #VE occurs in
1414  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1415  * exception) is delivered to the guest which will result in an oops.
1416  *
1417  * The entry code has been audited carefully for following these expectations.
1418  * Changes in the entry code have to be audited for correctness vs. this
1419  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1420  * privilege escalation or may lead to random crashes.
1421  */
1422 DEFINE_IDTENTRY(exc_virtualization_exception)
1423 {
1424 	struct ve_info ve;
1425 
1426 	/*
1427 	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1428 	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1429 	 * info cannot be overwritten by a nested #VE.
1430 	 */
1431 	tdx_get_ve_info(&ve);
1432 
1433 	cond_local_irq_enable(regs);
1434 
1435 	/*
1436 	 * If tdx_handle_virt_exception() could not process
1437 	 * it successfully, treat it as #GP(0) and handle it.
1438 	 */
1439 	if (!tdx_handle_virt_exception(regs, &ve))
1440 		ve_raise_fault(regs, 0, ve.gla);
1441 
1442 	cond_local_irq_disable(regs);
1443 }
1444 
1445 #endif
1446 
1447 #ifdef CONFIG_X86_32
1448 DEFINE_IDTENTRY_SW(iret_error)
1449 {
1450 	local_irq_enable();
1451 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1452 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1453 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1454 			ILL_BADSTK, (void __user *)NULL);
1455 	}
1456 	local_irq_disable();
1457 }
1458 #endif
1459 
1460 void __init trap_init(void)
1461 {
1462 	/* Init cpu_entry_area before IST entries are set up */
1463 	setup_cpu_entry_areas();
1464 
1465 	/* Init GHCB memory pages when running as an SEV-ES guest */
1466 	sev_es_init_vc_handling();
1467 
1468 	/* Initialize TSS before setting up traps so ISTs work */
1469 	cpu_init_exception_handling();
1470 	/* Setup traps as cpu_init() might #GP */
1471 	idt_setup_traps();
1472 	cpu_init();
1473 }
1474