xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 2c64e9cb)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
44 
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/nospec-branch.h>
62 #include <asm/mpx.h>
63 #include <asm/vm86.h>
64 #include <asm/umip.h>
65 
66 #ifdef CONFIG_X86_64
67 #include <asm/x86_init.h>
68 #include <asm/pgalloc.h>
69 #include <asm/proto.h>
70 #else
71 #include <asm/processor-flags.h>
72 #include <asm/setup.h>
73 #include <asm/proto.h>
74 #endif
75 
76 DECLARE_BITMAP(system_vectors, NR_VECTORS);
77 
78 static inline void cond_local_irq_enable(struct pt_regs *regs)
79 {
80 	if (regs->flags & X86_EFLAGS_IF)
81 		local_irq_enable();
82 }
83 
84 static inline void cond_local_irq_disable(struct pt_regs *regs)
85 {
86 	if (regs->flags & X86_EFLAGS_IF)
87 		local_irq_disable();
88 }
89 
90 /*
91  * In IST context, we explicitly disable preemption.  This serves two
92  * purposes: it makes it much less likely that we would accidentally
93  * schedule in IST context and it will force a warning if we somehow
94  * manage to schedule by accident.
95  */
96 void ist_enter(struct pt_regs *regs)
97 {
98 	if (user_mode(regs)) {
99 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
100 	} else {
101 		/*
102 		 * We might have interrupted pretty much anything.  In
103 		 * fact, if we're a machine check, we can even interrupt
104 		 * NMI processing.  We don't want in_nmi() to return true,
105 		 * but we need to notify RCU.
106 		 */
107 		rcu_nmi_enter();
108 	}
109 
110 	preempt_disable();
111 
112 	/* This code is a bit fragile.  Test it. */
113 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
114 }
115 NOKPROBE_SYMBOL(ist_enter);
116 
117 void ist_exit(struct pt_regs *regs)
118 {
119 	preempt_enable_no_resched();
120 
121 	if (!user_mode(regs))
122 		rcu_nmi_exit();
123 }
124 
125 /**
126  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
127  * @regs:	regs passed to the IST exception handler
128  *
129  * IST exception handlers normally cannot schedule.  As a special
130  * exception, if the exception interrupted userspace code (i.e.
131  * user_mode(regs) would return true) and the exception was not
132  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
133  * begins a non-atomic section within an ist_enter()/ist_exit() region.
134  * Callers are responsible for enabling interrupts themselves inside
135  * the non-atomic section, and callers must call ist_end_non_atomic()
136  * before ist_exit().
137  */
138 void ist_begin_non_atomic(struct pt_regs *regs)
139 {
140 	BUG_ON(!user_mode(regs));
141 
142 	/*
143 	 * Sanity check: we need to be on the normal thread stack.  This
144 	 * will catch asm bugs and any attempt to use ist_preempt_enable
145 	 * from double_fault.
146 	 */
147 	BUG_ON(!on_thread_stack());
148 
149 	preempt_enable_no_resched();
150 }
151 
152 /**
153  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
154  *
155  * Ends a non-atomic section started with ist_begin_non_atomic().
156  */
157 void ist_end_non_atomic(void)
158 {
159 	preempt_disable();
160 }
161 
162 int is_valid_bugaddr(unsigned long addr)
163 {
164 	unsigned short ud;
165 
166 	if (addr < TASK_SIZE_MAX)
167 		return 0;
168 
169 	if (probe_kernel_address((unsigned short *)addr, ud))
170 		return 0;
171 
172 	return ud == INSN_UD0 || ud == INSN_UD2;
173 }
174 
175 int fixup_bug(struct pt_regs *regs, int trapnr)
176 {
177 	if (trapnr != X86_TRAP_UD)
178 		return 0;
179 
180 	switch (report_bug(regs->ip, regs)) {
181 	case BUG_TRAP_TYPE_NONE:
182 	case BUG_TRAP_TYPE_BUG:
183 		break;
184 
185 	case BUG_TRAP_TYPE_WARN:
186 		regs->ip += LEN_UD2;
187 		return 1;
188 	}
189 
190 	return 0;
191 }
192 
193 static nokprobe_inline int
194 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
195 		  struct pt_regs *regs,	long error_code)
196 {
197 	if (v8086_mode(regs)) {
198 		/*
199 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
200 		 * On nmi (interrupt 2), do_trap should not be called.
201 		 */
202 		if (trapnr < X86_TRAP_UD) {
203 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
204 						error_code, trapnr))
205 				return 0;
206 		}
207 	} else if (!user_mode(regs)) {
208 		if (fixup_exception(regs, trapnr, error_code, 0))
209 			return 0;
210 
211 		tsk->thread.error_code = error_code;
212 		tsk->thread.trap_nr = trapnr;
213 		die(str, regs, error_code);
214 	}
215 
216 	/*
217 	 * We want error_code and trap_nr set for userspace faults and
218 	 * kernelspace faults which result in die(), but not
219 	 * kernelspace faults which are fixed up.  die() gives the
220 	 * process no chance to handle the signal and notice the
221 	 * kernel fault information, so that won't result in polluting
222 	 * the information about previously queued, but not yet
223 	 * delivered, faults.  See also do_general_protection below.
224 	 */
225 	tsk->thread.error_code = error_code;
226 	tsk->thread.trap_nr = trapnr;
227 
228 	return -1;
229 }
230 
231 static void show_signal(struct task_struct *tsk, int signr,
232 			const char *type, const char *desc,
233 			struct pt_regs *regs, long error_code)
234 {
235 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
236 	    printk_ratelimit()) {
237 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
238 			tsk->comm, task_pid_nr(tsk), type, desc,
239 			regs->ip, regs->sp, error_code);
240 		print_vma_addr(KERN_CONT " in ", regs->ip);
241 		pr_cont("\n");
242 	}
243 }
244 
245 static void
246 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
247 	long error_code, int sicode, void __user *addr)
248 {
249 	struct task_struct *tsk = current;
250 
251 
252 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
253 		return;
254 
255 	show_signal(tsk, signr, "trap ", str, regs, error_code);
256 
257 	if (!sicode)
258 		force_sig(signr, tsk);
259 	else
260 		force_sig_fault(signr, sicode, addr, tsk);
261 }
262 NOKPROBE_SYMBOL(do_trap);
263 
264 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
265 	unsigned long trapnr, int signr, int sicode, void __user *addr)
266 {
267 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
268 
269 	/*
270 	 * WARN*()s end up here; fix them up before we call the
271 	 * notifier chain.
272 	 */
273 	if (!user_mode(regs) && fixup_bug(regs, trapnr))
274 		return;
275 
276 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
277 			NOTIFY_STOP) {
278 		cond_local_irq_enable(regs);
279 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
280 	}
281 }
282 
283 #define IP ((void __user *)uprobe_get_trap_addr(regs))
284 #define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
285 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
286 {									   \
287 	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
288 }
289 
290 DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
291 DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
292 DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
293 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
294 DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
295 DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
296 DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
297 DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
298 #undef IP
299 
300 #ifdef CONFIG_VMAP_STACK
301 __visible void __noreturn handle_stack_overflow(const char *message,
302 						struct pt_regs *regs,
303 						unsigned long fault_address)
304 {
305 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
306 		 (void *)fault_address, current->stack,
307 		 (char *)current->stack + THREAD_SIZE - 1);
308 	die(message, regs, 0);
309 
310 	/* Be absolutely certain we don't return. */
311 	panic("%s", message);
312 }
313 #endif
314 
315 #ifdef CONFIG_X86_64
316 /* Runs on IST stack */
317 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
318 {
319 	static const char str[] = "double fault";
320 	struct task_struct *tsk = current;
321 #ifdef CONFIG_VMAP_STACK
322 	unsigned long cr2;
323 #endif
324 
325 #ifdef CONFIG_X86_ESPFIX64
326 	extern unsigned char native_irq_return_iret[];
327 
328 	/*
329 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
330 	 * end up promoting it to a doublefault.  In that case, take
331 	 * advantage of the fact that we're not using the normal (TSS.sp0)
332 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
333 	 * and then modify our own IRET frame so that, when we return,
334 	 * we land directly at the #GP(0) vector with the stack already
335 	 * set up according to its expectations.
336 	 *
337 	 * The net result is that our #GP handler will think that we
338 	 * entered from usermode with the bad user context.
339 	 *
340 	 * No need for ist_enter here because we don't use RCU.
341 	 */
342 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
343 		regs->cs == __KERNEL_CS &&
344 		regs->ip == (unsigned long)native_irq_return_iret)
345 	{
346 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
347 
348 		/*
349 		 * regs->sp points to the failing IRET frame on the
350 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
351 		 * in gpregs->ss through gpregs->ip.
352 		 *
353 		 */
354 		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
355 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
356 
357 		/*
358 		 * Adjust our frame so that we return straight to the #GP
359 		 * vector with the expected RSP value.  This is safe because
360 		 * we won't enable interupts or schedule before we invoke
361 		 * general_protection, so nothing will clobber the stack
362 		 * frame we just set up.
363 		 *
364 		 * We will enter general_protection with kernel GSBASE,
365 		 * which is what the stub expects, given that the faulting
366 		 * RIP will be the IRET instruction.
367 		 */
368 		regs->ip = (unsigned long)general_protection;
369 		regs->sp = (unsigned long)&gpregs->orig_ax;
370 
371 		/*
372 		 * This situation can be triggered by userspace via
373 		 * modify_ldt(2) and the return does not take the regular
374 		 * user space exit, so a CPU buffer clear is required when
375 		 * MDS mitigation is enabled.
376 		 */
377 		mds_user_clear_cpu_buffers();
378 		return;
379 	}
380 #endif
381 
382 	ist_enter(regs);
383 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
384 
385 	tsk->thread.error_code = error_code;
386 	tsk->thread.trap_nr = X86_TRAP_DF;
387 
388 #ifdef CONFIG_VMAP_STACK
389 	/*
390 	 * If we overflow the stack into a guard page, the CPU will fail
391 	 * to deliver #PF and will send #DF instead.  Similarly, if we
392 	 * take any non-IST exception while too close to the bottom of
393 	 * the stack, the processor will get a page fault while
394 	 * delivering the exception and will generate a double fault.
395 	 *
396 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
397 	 * Page-Fault Exception (#PF):
398 	 *
399 	 *   Processors update CR2 whenever a page fault is detected. If a
400 	 *   second page fault occurs while an earlier page fault is being
401 	 *   delivered, the faulting linear address of the second fault will
402 	 *   overwrite the contents of CR2 (replacing the previous
403 	 *   address). These updates to CR2 occur even if the page fault
404 	 *   results in a double fault or occurs during the delivery of a
405 	 *   double fault.
406 	 *
407 	 * The logic below has a small possibility of incorrectly diagnosing
408 	 * some errors as stack overflows.  For example, if the IDT or GDT
409 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
410 	 * causing #GP and we hit this condition while CR2 coincidentally
411 	 * points to the stack guard page, we'll think we overflowed the
412 	 * stack.  Given that we're going to panic one way or another
413 	 * if this happens, this isn't necessarily worth fixing.
414 	 *
415 	 * If necessary, we could improve the test by only diagnosing
416 	 * a stack overflow if the saved RSP points within 47 bytes of
417 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
418 	 * take an exception, the stack is already aligned and there
419 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
420 	 * possible error code, so a stack overflow would *not* double
421 	 * fault.  With any less space left, exception delivery could
422 	 * fail, and, as a practical matter, we've overflowed the
423 	 * stack even if the actual trigger for the double fault was
424 	 * something else.
425 	 */
426 	cr2 = read_cr2();
427 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
428 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
429 #endif
430 
431 #ifdef CONFIG_DOUBLEFAULT
432 	df_debug(regs, error_code);
433 #endif
434 	/*
435 	 * This is always a kernel trap and never fixable (and thus must
436 	 * never return).
437 	 */
438 	for (;;)
439 		die(str, regs, error_code);
440 }
441 #endif
442 
443 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
444 {
445 	const struct mpx_bndcsr *bndcsr;
446 
447 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
448 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
449 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
450 		return;
451 	cond_local_irq_enable(regs);
452 
453 	if (!user_mode(regs))
454 		die("bounds", regs, error_code);
455 
456 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
457 		/* The exception is not from Intel MPX */
458 		goto exit_trap;
459 	}
460 
461 	/*
462 	 * We need to look at BNDSTATUS to resolve this exception.
463 	 * A NULL here might mean that it is in its 'init state',
464 	 * which is all zeros which indicates MPX was not
465 	 * responsible for the exception.
466 	 */
467 	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
468 	if (!bndcsr)
469 		goto exit_trap;
470 
471 	trace_bounds_exception_mpx(bndcsr);
472 	/*
473 	 * The error code field of the BNDSTATUS register communicates status
474 	 * information of a bound range exception #BR or operation involving
475 	 * bound directory.
476 	 */
477 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
478 	case 2:	/* Bound directory has invalid entry. */
479 		if (mpx_handle_bd_fault())
480 			goto exit_trap;
481 		break; /* Success, it was handled */
482 	case 1: /* Bound violation. */
483 	{
484 		struct task_struct *tsk = current;
485 		struct mpx_fault_info mpx;
486 
487 		if (mpx_fault_info(&mpx, regs)) {
488 			/*
489 			 * We failed to decode the MPX instruction.  Act as if
490 			 * the exception was not caused by MPX.
491 			 */
492 			goto exit_trap;
493 		}
494 		/*
495 		 * Success, we decoded the instruction and retrieved
496 		 * an 'mpx' containing the address being accessed
497 		 * which caused the exception.  This information
498 		 * allows and application to possibly handle the
499 		 * #BR exception itself.
500 		 */
501 		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
502 				       error_code))
503 			break;
504 
505 		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
506 
507 		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
508 		break;
509 	}
510 	case 0: /* No exception caused by Intel MPX operations. */
511 		goto exit_trap;
512 	default:
513 		die("bounds", regs, error_code);
514 	}
515 
516 	return;
517 
518 exit_trap:
519 	/*
520 	 * This path out is for all the cases where we could not
521 	 * handle the exception in some way (like allocating a
522 	 * table or telling userspace about it.  We will also end
523 	 * up here if the kernel has MPX turned off at compile
524 	 * time..
525 	 */
526 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
527 }
528 
529 dotraplinkage void
530 do_general_protection(struct pt_regs *regs, long error_code)
531 {
532 	const char *desc = "general protection fault";
533 	struct task_struct *tsk;
534 
535 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
536 	cond_local_irq_enable(regs);
537 
538 	if (static_cpu_has(X86_FEATURE_UMIP)) {
539 		if (user_mode(regs) && fixup_umip_exception(regs))
540 			return;
541 	}
542 
543 	if (v8086_mode(regs)) {
544 		local_irq_enable();
545 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
546 		return;
547 	}
548 
549 	tsk = current;
550 	if (!user_mode(regs)) {
551 		if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
552 			return;
553 
554 		tsk->thread.error_code = error_code;
555 		tsk->thread.trap_nr = X86_TRAP_GP;
556 
557 		/*
558 		 * To be potentially processing a kprobe fault and to
559 		 * trust the result from kprobe_running(), we have to
560 		 * be non-preemptible.
561 		 */
562 		if (!preemptible() && kprobe_running() &&
563 		    kprobe_fault_handler(regs, X86_TRAP_GP))
564 			return;
565 
566 		if (notify_die(DIE_GPF, desc, regs, error_code,
567 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
568 			die(desc, regs, error_code);
569 		return;
570 	}
571 
572 	tsk->thread.error_code = error_code;
573 	tsk->thread.trap_nr = X86_TRAP_GP;
574 
575 	show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
576 
577 	force_sig(SIGSEGV, tsk);
578 }
579 NOKPROBE_SYMBOL(do_general_protection);
580 
581 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
582 {
583 #ifdef CONFIG_DYNAMIC_FTRACE
584 	/*
585 	 * ftrace must be first, everything else may cause a recursive crash.
586 	 * See note by declaration of modifying_ftrace_code in ftrace.c
587 	 */
588 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
589 	    ftrace_int3_handler(regs))
590 		return;
591 #endif
592 	if (poke_int3_handler(regs))
593 		return;
594 
595 	/*
596 	 * Use ist_enter despite the fact that we don't use an IST stack.
597 	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
598 	 * mode or even during context tracking state changes.
599 	 *
600 	 * This means that we can't schedule.  That's okay.
601 	 */
602 	ist_enter(regs);
603 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
604 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
605 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
606 				SIGTRAP) == NOTIFY_STOP)
607 		goto exit;
608 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
609 
610 #ifdef CONFIG_KPROBES
611 	if (kprobe_int3_handler(regs))
612 		goto exit;
613 #endif
614 
615 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
616 			SIGTRAP) == NOTIFY_STOP)
617 		goto exit;
618 
619 	cond_local_irq_enable(regs);
620 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
621 	cond_local_irq_disable(regs);
622 
623 exit:
624 	ist_exit(regs);
625 }
626 NOKPROBE_SYMBOL(do_int3);
627 
628 #ifdef CONFIG_X86_64
629 /*
630  * Help handler running on a per-cpu (IST or entry trampoline) stack
631  * to switch to the normal thread stack if the interrupted code was in
632  * user mode. The actual stack switch is done in entry_64.S
633  */
634 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
635 {
636 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
637 	if (regs != eregs)
638 		*regs = *eregs;
639 	return regs;
640 }
641 NOKPROBE_SYMBOL(sync_regs);
642 
643 struct bad_iret_stack {
644 	void *error_entry_ret;
645 	struct pt_regs regs;
646 };
647 
648 asmlinkage __visible notrace
649 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
650 {
651 	/*
652 	 * This is called from entry_64.S early in handling a fault
653 	 * caused by a bad iret to user mode.  To handle the fault
654 	 * correctly, we want to move our stack frame to where it would
655 	 * be had we entered directly on the entry stack (rather than
656 	 * just below the IRET frame) and we want to pretend that the
657 	 * exception came from the IRET target.
658 	 */
659 	struct bad_iret_stack *new_stack =
660 		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
661 
662 	/* Copy the IRET target to the new stack. */
663 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
664 
665 	/* Copy the remainder of the stack from the current stack. */
666 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
667 
668 	BUG_ON(!user_mode(&new_stack->regs));
669 	return new_stack;
670 }
671 NOKPROBE_SYMBOL(fixup_bad_iret);
672 #endif
673 
674 static bool is_sysenter_singlestep(struct pt_regs *regs)
675 {
676 	/*
677 	 * We don't try for precision here.  If we're anywhere in the region of
678 	 * code that can be single-stepped in the SYSENTER entry path, then
679 	 * assume that this is a useless single-step trap due to SYSENTER
680 	 * being invoked with TF set.  (We don't know in advance exactly
681 	 * which instructions will be hit because BTF could plausibly
682 	 * be set.)
683 	 */
684 #ifdef CONFIG_X86_32
685 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
686 		(unsigned long)__end_SYSENTER_singlestep_region -
687 		(unsigned long)__begin_SYSENTER_singlestep_region;
688 #elif defined(CONFIG_IA32_EMULATION)
689 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
690 		(unsigned long)__end_entry_SYSENTER_compat -
691 		(unsigned long)entry_SYSENTER_compat;
692 #else
693 	return false;
694 #endif
695 }
696 
697 /*
698  * Our handling of the processor debug registers is non-trivial.
699  * We do not clear them on entry and exit from the kernel. Therefore
700  * it is possible to get a watchpoint trap here from inside the kernel.
701  * However, the code in ./ptrace.c has ensured that the user can
702  * only set watchpoints on userspace addresses. Therefore the in-kernel
703  * watchpoint trap can only occur in code which is reading/writing
704  * from user space. Such code must not hold kernel locks (since it
705  * can equally take a page fault), therefore it is safe to call
706  * force_sig_info even though that claims and releases locks.
707  *
708  * Code in ./signal.c ensures that the debug control register
709  * is restored before we deliver any signal, and therefore that
710  * user code runs with the correct debug control register even though
711  * we clear it here.
712  *
713  * Being careful here means that we don't have to be as careful in a
714  * lot of more complicated places (task switching can be a bit lazy
715  * about restoring all the debug state, and ptrace doesn't have to
716  * find every occurrence of the TF bit that could be saved away even
717  * by user code)
718  *
719  * May run on IST stack.
720  */
721 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
722 {
723 	struct task_struct *tsk = current;
724 	int user_icebp = 0;
725 	unsigned long dr6;
726 	int si_code;
727 
728 	ist_enter(regs);
729 
730 	get_debugreg(dr6, 6);
731 	/*
732 	 * The Intel SDM says:
733 	 *
734 	 *   Certain debug exceptions may clear bits 0-3. The remaining
735 	 *   contents of the DR6 register are never cleared by the
736 	 *   processor. To avoid confusion in identifying debug
737 	 *   exceptions, debug handlers should clear the register before
738 	 *   returning to the interrupted task.
739 	 *
740 	 * Keep it simple: clear DR6 immediately.
741 	 */
742 	set_debugreg(0, 6);
743 
744 	/* Filter out all the reserved bits which are preset to 1 */
745 	dr6 &= ~DR6_RESERVED;
746 
747 	/*
748 	 * The SDM says "The processor clears the BTF flag when it
749 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
750 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
751 	 */
752 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
753 
754 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
755 		     is_sysenter_singlestep(regs))) {
756 		dr6 &= ~DR_STEP;
757 		if (!dr6)
758 			goto exit;
759 		/*
760 		 * else we might have gotten a single-step trap and hit a
761 		 * watchpoint at the same time, in which case we should fall
762 		 * through and handle the watchpoint.
763 		 */
764 	}
765 
766 	/*
767 	 * If dr6 has no reason to give us about the origin of this trap,
768 	 * then it's very likely the result of an icebp/int01 trap.
769 	 * User wants a sigtrap for that.
770 	 */
771 	if (!dr6 && user_mode(regs))
772 		user_icebp = 1;
773 
774 	/* Store the virtualized DR6 value */
775 	tsk->thread.debugreg6 = dr6;
776 
777 #ifdef CONFIG_KPROBES
778 	if (kprobe_debug_handler(regs))
779 		goto exit;
780 #endif
781 
782 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
783 							SIGTRAP) == NOTIFY_STOP)
784 		goto exit;
785 
786 	/*
787 	 * Let others (NMI) know that the debug stack is in use
788 	 * as we may switch to the interrupt stack.
789 	 */
790 	debug_stack_usage_inc();
791 
792 	/* It's safe to allow irq's after DR6 has been saved */
793 	cond_local_irq_enable(regs);
794 
795 	if (v8086_mode(regs)) {
796 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
797 					X86_TRAP_DB);
798 		cond_local_irq_disable(regs);
799 		debug_stack_usage_dec();
800 		goto exit;
801 	}
802 
803 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
804 		/*
805 		 * Historical junk that used to handle SYSENTER single-stepping.
806 		 * This should be unreachable now.  If we survive for a while
807 		 * without anyone hitting this warning, we'll turn this into
808 		 * an oops.
809 		 */
810 		tsk->thread.debugreg6 &= ~DR_STEP;
811 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
812 		regs->flags &= ~X86_EFLAGS_TF;
813 	}
814 	si_code = get_si_code(tsk->thread.debugreg6);
815 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
816 		send_sigtrap(tsk, regs, error_code, si_code);
817 	cond_local_irq_disable(regs);
818 	debug_stack_usage_dec();
819 
820 exit:
821 	ist_exit(regs);
822 }
823 NOKPROBE_SYMBOL(do_debug);
824 
825 /*
826  * Note that we play around with the 'TS' bit in an attempt to get
827  * the correct behaviour even in the presence of the asynchronous
828  * IRQ13 behaviour
829  */
830 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
831 {
832 	struct task_struct *task = current;
833 	struct fpu *fpu = &task->thread.fpu;
834 	int si_code;
835 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
836 						"simd exception";
837 
838 	cond_local_irq_enable(regs);
839 
840 	if (!user_mode(regs)) {
841 		if (fixup_exception(regs, trapnr, error_code, 0))
842 			return;
843 
844 		task->thread.error_code = error_code;
845 		task->thread.trap_nr = trapnr;
846 
847 		if (notify_die(DIE_TRAP, str, regs, error_code,
848 					trapnr, SIGFPE) != NOTIFY_STOP)
849 			die(str, regs, error_code);
850 		return;
851 	}
852 
853 	/*
854 	 * Save the info for the exception handler and clear the error.
855 	 */
856 	fpu__save(fpu);
857 
858 	task->thread.trap_nr	= trapnr;
859 	task->thread.error_code = error_code;
860 
861 	si_code = fpu__exception_code(fpu, trapnr);
862 	/* Retry when we get spurious exceptions: */
863 	if (!si_code)
864 		return;
865 
866 	force_sig_fault(SIGFPE, si_code,
867 			(void __user *)uprobe_get_trap_addr(regs), task);
868 }
869 
870 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
871 {
872 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
873 	math_error(regs, error_code, X86_TRAP_MF);
874 }
875 
876 dotraplinkage void
877 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
878 {
879 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
880 	math_error(regs, error_code, X86_TRAP_XF);
881 }
882 
883 dotraplinkage void
884 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
885 {
886 	cond_local_irq_enable(regs);
887 }
888 
889 dotraplinkage void
890 do_device_not_available(struct pt_regs *regs, long error_code)
891 {
892 	unsigned long cr0 = read_cr0();
893 
894 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
895 
896 #ifdef CONFIG_MATH_EMULATION
897 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
898 		struct math_emu_info info = { };
899 
900 		cond_local_irq_enable(regs);
901 
902 		info.regs = regs;
903 		math_emulate(&info);
904 		return;
905 	}
906 #endif
907 
908 	/* This should not happen. */
909 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
910 		/* Try to fix it up and carry on. */
911 		write_cr0(cr0 & ~X86_CR0_TS);
912 	} else {
913 		/*
914 		 * Something terrible happened, and we're better off trying
915 		 * to kill the task than getting stuck in a never-ending
916 		 * loop of #NM faults.
917 		 */
918 		die("unexpected #NM exception", regs, error_code);
919 	}
920 }
921 NOKPROBE_SYMBOL(do_device_not_available);
922 
923 #ifdef CONFIG_X86_32
924 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
925 {
926 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
927 	local_irq_enable();
928 
929 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
930 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
931 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
932 			ILL_BADSTK, (void __user *)NULL);
933 	}
934 }
935 #endif
936 
937 void __init trap_init(void)
938 {
939 	/* Init cpu_entry_area before IST entries are set up */
940 	setup_cpu_entry_areas();
941 
942 	idt_setup_traps();
943 
944 	/*
945 	 * Set the IDT descriptor to a fixed read-only location, so that the
946 	 * "sidt" instruction will not leak the location of the kernel, and
947 	 * to defend the IDT against arbitrary memory write vulnerabilities.
948 	 * It will be reloaded in cpu_init() */
949 	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
950 		    PAGE_KERNEL_RO);
951 	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
952 
953 	/*
954 	 * Should be a barrier for any external CPU state:
955 	 */
956 	cpu_init();
957 
958 	idt_setup_ist_traps();
959 
960 	x86_init.irqs.trap_init();
961 
962 	idt_setup_debugidt_traps();
963 }
964