1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #if defined(CONFIG_EDAC) 42 #include <linux/edac.h> 43 #endif 44 45 #include <asm/stacktrace.h> 46 #include <asm/processor.h> 47 #include <asm/debugreg.h> 48 #include <linux/atomic.h> 49 #include <asm/text-patching.h> 50 #include <asm/ftrace.h> 51 #include <asm/traps.h> 52 #include <asm/desc.h> 53 #include <asm/fpu/internal.h> 54 #include <asm/cpu_entry_area.h> 55 #include <asm/mce.h> 56 #include <asm/fixmap.h> 57 #include <asm/mach_traps.h> 58 #include <asm/alternative.h> 59 #include <asm/fpu/xstate.h> 60 #include <asm/trace/mpx.h> 61 #include <asm/nospec-branch.h> 62 #include <asm/mpx.h> 63 #include <asm/vm86.h> 64 #include <asm/umip.h> 65 66 #ifdef CONFIG_X86_64 67 #include <asm/x86_init.h> 68 #include <asm/pgalloc.h> 69 #include <asm/proto.h> 70 #else 71 #include <asm/processor-flags.h> 72 #include <asm/setup.h> 73 #include <asm/proto.h> 74 #endif 75 76 DECLARE_BITMAP(system_vectors, NR_VECTORS); 77 78 static inline void cond_local_irq_enable(struct pt_regs *regs) 79 { 80 if (regs->flags & X86_EFLAGS_IF) 81 local_irq_enable(); 82 } 83 84 static inline void cond_local_irq_disable(struct pt_regs *regs) 85 { 86 if (regs->flags & X86_EFLAGS_IF) 87 local_irq_disable(); 88 } 89 90 /* 91 * In IST context, we explicitly disable preemption. This serves two 92 * purposes: it makes it much less likely that we would accidentally 93 * schedule in IST context and it will force a warning if we somehow 94 * manage to schedule by accident. 95 */ 96 void ist_enter(struct pt_regs *regs) 97 { 98 if (user_mode(regs)) { 99 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 100 } else { 101 /* 102 * We might have interrupted pretty much anything. In 103 * fact, if we're a machine check, we can even interrupt 104 * NMI processing. We don't want in_nmi() to return true, 105 * but we need to notify RCU. 106 */ 107 rcu_nmi_enter(); 108 } 109 110 preempt_disable(); 111 112 /* This code is a bit fragile. Test it. */ 113 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 114 } 115 NOKPROBE_SYMBOL(ist_enter); 116 117 void ist_exit(struct pt_regs *regs) 118 { 119 preempt_enable_no_resched(); 120 121 if (!user_mode(regs)) 122 rcu_nmi_exit(); 123 } 124 125 /** 126 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 127 * @regs: regs passed to the IST exception handler 128 * 129 * IST exception handlers normally cannot schedule. As a special 130 * exception, if the exception interrupted userspace code (i.e. 131 * user_mode(regs) would return true) and the exception was not 132 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 133 * begins a non-atomic section within an ist_enter()/ist_exit() region. 134 * Callers are responsible for enabling interrupts themselves inside 135 * the non-atomic section, and callers must call ist_end_non_atomic() 136 * before ist_exit(). 137 */ 138 void ist_begin_non_atomic(struct pt_regs *regs) 139 { 140 BUG_ON(!user_mode(regs)); 141 142 /* 143 * Sanity check: we need to be on the normal thread stack. This 144 * will catch asm bugs and any attempt to use ist_preempt_enable 145 * from double_fault. 146 */ 147 BUG_ON(!on_thread_stack()); 148 149 preempt_enable_no_resched(); 150 } 151 152 /** 153 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 154 * 155 * Ends a non-atomic section started with ist_begin_non_atomic(). 156 */ 157 void ist_end_non_atomic(void) 158 { 159 preempt_disable(); 160 } 161 162 int is_valid_bugaddr(unsigned long addr) 163 { 164 unsigned short ud; 165 166 if (addr < TASK_SIZE_MAX) 167 return 0; 168 169 if (probe_kernel_address((unsigned short *)addr, ud)) 170 return 0; 171 172 return ud == INSN_UD0 || ud == INSN_UD2; 173 } 174 175 int fixup_bug(struct pt_regs *regs, int trapnr) 176 { 177 if (trapnr != X86_TRAP_UD) 178 return 0; 179 180 switch (report_bug(regs->ip, regs)) { 181 case BUG_TRAP_TYPE_NONE: 182 case BUG_TRAP_TYPE_BUG: 183 break; 184 185 case BUG_TRAP_TYPE_WARN: 186 regs->ip += LEN_UD2; 187 return 1; 188 } 189 190 return 0; 191 } 192 193 static nokprobe_inline int 194 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 195 struct pt_regs *regs, long error_code) 196 { 197 if (v8086_mode(regs)) { 198 /* 199 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 200 * On nmi (interrupt 2), do_trap should not be called. 201 */ 202 if (trapnr < X86_TRAP_UD) { 203 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 204 error_code, trapnr)) 205 return 0; 206 } 207 } else if (!user_mode(regs)) { 208 if (fixup_exception(regs, trapnr, error_code, 0)) 209 return 0; 210 211 tsk->thread.error_code = error_code; 212 tsk->thread.trap_nr = trapnr; 213 die(str, regs, error_code); 214 } 215 216 /* 217 * We want error_code and trap_nr set for userspace faults and 218 * kernelspace faults which result in die(), but not 219 * kernelspace faults which are fixed up. die() gives the 220 * process no chance to handle the signal and notice the 221 * kernel fault information, so that won't result in polluting 222 * the information about previously queued, but not yet 223 * delivered, faults. See also do_general_protection below. 224 */ 225 tsk->thread.error_code = error_code; 226 tsk->thread.trap_nr = trapnr; 227 228 return -1; 229 } 230 231 static void show_signal(struct task_struct *tsk, int signr, 232 const char *type, const char *desc, 233 struct pt_regs *regs, long error_code) 234 { 235 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 236 printk_ratelimit()) { 237 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 238 tsk->comm, task_pid_nr(tsk), type, desc, 239 regs->ip, regs->sp, error_code); 240 print_vma_addr(KERN_CONT " in ", regs->ip); 241 pr_cont("\n"); 242 } 243 } 244 245 static void 246 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 247 long error_code, int sicode, void __user *addr) 248 { 249 struct task_struct *tsk = current; 250 251 252 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 253 return; 254 255 show_signal(tsk, signr, "trap ", str, regs, error_code); 256 257 if (!sicode) 258 force_sig(signr, tsk); 259 else 260 force_sig_fault(signr, sicode, addr, tsk); 261 } 262 NOKPROBE_SYMBOL(do_trap); 263 264 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 265 unsigned long trapnr, int signr, int sicode, void __user *addr) 266 { 267 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 268 269 /* 270 * WARN*()s end up here; fix them up before we call the 271 * notifier chain. 272 */ 273 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 274 return; 275 276 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 277 NOTIFY_STOP) { 278 cond_local_irq_enable(regs); 279 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 280 } 281 } 282 283 #define IP ((void __user *)uprobe_get_trap_addr(regs)) 284 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ 285 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 286 { \ 287 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ 288 } 289 290 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) 291 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) 292 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) 293 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) 294 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) 295 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) 296 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) 297 DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check) 298 #undef IP 299 300 #ifdef CONFIG_VMAP_STACK 301 __visible void __noreturn handle_stack_overflow(const char *message, 302 struct pt_regs *regs, 303 unsigned long fault_address) 304 { 305 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 306 (void *)fault_address, current->stack, 307 (char *)current->stack + THREAD_SIZE - 1); 308 die(message, regs, 0); 309 310 /* Be absolutely certain we don't return. */ 311 panic("%s", message); 312 } 313 #endif 314 315 #ifdef CONFIG_X86_64 316 /* Runs on IST stack */ 317 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 318 { 319 static const char str[] = "double fault"; 320 struct task_struct *tsk = current; 321 #ifdef CONFIG_VMAP_STACK 322 unsigned long cr2; 323 #endif 324 325 #ifdef CONFIG_X86_ESPFIX64 326 extern unsigned char native_irq_return_iret[]; 327 328 /* 329 * If IRET takes a non-IST fault on the espfix64 stack, then we 330 * end up promoting it to a doublefault. In that case, take 331 * advantage of the fact that we're not using the normal (TSS.sp0) 332 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 333 * and then modify our own IRET frame so that, when we return, 334 * we land directly at the #GP(0) vector with the stack already 335 * set up according to its expectations. 336 * 337 * The net result is that our #GP handler will think that we 338 * entered from usermode with the bad user context. 339 * 340 * No need for ist_enter here because we don't use RCU. 341 */ 342 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 343 regs->cs == __KERNEL_CS && 344 regs->ip == (unsigned long)native_irq_return_iret) 345 { 346 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 347 348 /* 349 * regs->sp points to the failing IRET frame on the 350 * ESPFIX64 stack. Copy it to the entry stack. This fills 351 * in gpregs->ss through gpregs->ip. 352 * 353 */ 354 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 355 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 356 357 /* 358 * Adjust our frame so that we return straight to the #GP 359 * vector with the expected RSP value. This is safe because 360 * we won't enable interupts or schedule before we invoke 361 * general_protection, so nothing will clobber the stack 362 * frame we just set up. 363 * 364 * We will enter general_protection with kernel GSBASE, 365 * which is what the stub expects, given that the faulting 366 * RIP will be the IRET instruction. 367 */ 368 regs->ip = (unsigned long)general_protection; 369 regs->sp = (unsigned long)&gpregs->orig_ax; 370 371 /* 372 * This situation can be triggered by userspace via 373 * modify_ldt(2) and the return does not take the regular 374 * user space exit, so a CPU buffer clear is required when 375 * MDS mitigation is enabled. 376 */ 377 mds_user_clear_cpu_buffers(); 378 return; 379 } 380 #endif 381 382 ist_enter(regs); 383 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 384 385 tsk->thread.error_code = error_code; 386 tsk->thread.trap_nr = X86_TRAP_DF; 387 388 #ifdef CONFIG_VMAP_STACK 389 /* 390 * If we overflow the stack into a guard page, the CPU will fail 391 * to deliver #PF and will send #DF instead. Similarly, if we 392 * take any non-IST exception while too close to the bottom of 393 * the stack, the processor will get a page fault while 394 * delivering the exception and will generate a double fault. 395 * 396 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 397 * Page-Fault Exception (#PF): 398 * 399 * Processors update CR2 whenever a page fault is detected. If a 400 * second page fault occurs while an earlier page fault is being 401 * delivered, the faulting linear address of the second fault will 402 * overwrite the contents of CR2 (replacing the previous 403 * address). These updates to CR2 occur even if the page fault 404 * results in a double fault or occurs during the delivery of a 405 * double fault. 406 * 407 * The logic below has a small possibility of incorrectly diagnosing 408 * some errors as stack overflows. For example, if the IDT or GDT 409 * gets corrupted such that #GP delivery fails due to a bad descriptor 410 * causing #GP and we hit this condition while CR2 coincidentally 411 * points to the stack guard page, we'll think we overflowed the 412 * stack. Given that we're going to panic one way or another 413 * if this happens, this isn't necessarily worth fixing. 414 * 415 * If necessary, we could improve the test by only diagnosing 416 * a stack overflow if the saved RSP points within 47 bytes of 417 * the bottom of the stack: if RSP == tsk_stack + 48 and we 418 * take an exception, the stack is already aligned and there 419 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 420 * possible error code, so a stack overflow would *not* double 421 * fault. With any less space left, exception delivery could 422 * fail, and, as a practical matter, we've overflowed the 423 * stack even if the actual trigger for the double fault was 424 * something else. 425 */ 426 cr2 = read_cr2(); 427 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 428 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 429 #endif 430 431 #ifdef CONFIG_DOUBLEFAULT 432 df_debug(regs, error_code); 433 #endif 434 /* 435 * This is always a kernel trap and never fixable (and thus must 436 * never return). 437 */ 438 for (;;) 439 die(str, regs, error_code); 440 } 441 #endif 442 443 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 444 { 445 const struct mpx_bndcsr *bndcsr; 446 447 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 448 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 449 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 450 return; 451 cond_local_irq_enable(regs); 452 453 if (!user_mode(regs)) 454 die("bounds", regs, error_code); 455 456 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 457 /* The exception is not from Intel MPX */ 458 goto exit_trap; 459 } 460 461 /* 462 * We need to look at BNDSTATUS to resolve this exception. 463 * A NULL here might mean that it is in its 'init state', 464 * which is all zeros which indicates MPX was not 465 * responsible for the exception. 466 */ 467 bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR); 468 if (!bndcsr) 469 goto exit_trap; 470 471 trace_bounds_exception_mpx(bndcsr); 472 /* 473 * The error code field of the BNDSTATUS register communicates status 474 * information of a bound range exception #BR or operation involving 475 * bound directory. 476 */ 477 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 478 case 2: /* Bound directory has invalid entry. */ 479 if (mpx_handle_bd_fault()) 480 goto exit_trap; 481 break; /* Success, it was handled */ 482 case 1: /* Bound violation. */ 483 { 484 struct task_struct *tsk = current; 485 struct mpx_fault_info mpx; 486 487 if (mpx_fault_info(&mpx, regs)) { 488 /* 489 * We failed to decode the MPX instruction. Act as if 490 * the exception was not caused by MPX. 491 */ 492 goto exit_trap; 493 } 494 /* 495 * Success, we decoded the instruction and retrieved 496 * an 'mpx' containing the address being accessed 497 * which caused the exception. This information 498 * allows and application to possibly handle the 499 * #BR exception itself. 500 */ 501 if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs, 502 error_code)) 503 break; 504 505 show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code); 506 507 force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper); 508 break; 509 } 510 case 0: /* No exception caused by Intel MPX operations. */ 511 goto exit_trap; 512 default: 513 die("bounds", regs, error_code); 514 } 515 516 return; 517 518 exit_trap: 519 /* 520 * This path out is for all the cases where we could not 521 * handle the exception in some way (like allocating a 522 * table or telling userspace about it. We will also end 523 * up here if the kernel has MPX turned off at compile 524 * time.. 525 */ 526 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); 527 } 528 529 dotraplinkage void 530 do_general_protection(struct pt_regs *regs, long error_code) 531 { 532 const char *desc = "general protection fault"; 533 struct task_struct *tsk; 534 535 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 536 cond_local_irq_enable(regs); 537 538 if (static_cpu_has(X86_FEATURE_UMIP)) { 539 if (user_mode(regs) && fixup_umip_exception(regs)) 540 return; 541 } 542 543 if (v8086_mode(regs)) { 544 local_irq_enable(); 545 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 546 return; 547 } 548 549 tsk = current; 550 if (!user_mode(regs)) { 551 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 552 return; 553 554 tsk->thread.error_code = error_code; 555 tsk->thread.trap_nr = X86_TRAP_GP; 556 557 /* 558 * To be potentially processing a kprobe fault and to 559 * trust the result from kprobe_running(), we have to 560 * be non-preemptible. 561 */ 562 if (!preemptible() && kprobe_running() && 563 kprobe_fault_handler(regs, X86_TRAP_GP)) 564 return; 565 566 if (notify_die(DIE_GPF, desc, regs, error_code, 567 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 568 die(desc, regs, error_code); 569 return; 570 } 571 572 tsk->thread.error_code = error_code; 573 tsk->thread.trap_nr = X86_TRAP_GP; 574 575 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 576 577 force_sig(SIGSEGV, tsk); 578 } 579 NOKPROBE_SYMBOL(do_general_protection); 580 581 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 582 { 583 #ifdef CONFIG_DYNAMIC_FTRACE 584 /* 585 * ftrace must be first, everything else may cause a recursive crash. 586 * See note by declaration of modifying_ftrace_code in ftrace.c 587 */ 588 if (unlikely(atomic_read(&modifying_ftrace_code)) && 589 ftrace_int3_handler(regs)) 590 return; 591 #endif 592 if (poke_int3_handler(regs)) 593 return; 594 595 /* 596 * Use ist_enter despite the fact that we don't use an IST stack. 597 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel 598 * mode or even during context tracking state changes. 599 * 600 * This means that we can't schedule. That's okay. 601 */ 602 ist_enter(regs); 603 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 604 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 605 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 606 SIGTRAP) == NOTIFY_STOP) 607 goto exit; 608 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 609 610 #ifdef CONFIG_KPROBES 611 if (kprobe_int3_handler(regs)) 612 goto exit; 613 #endif 614 615 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 616 SIGTRAP) == NOTIFY_STOP) 617 goto exit; 618 619 cond_local_irq_enable(regs); 620 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); 621 cond_local_irq_disable(regs); 622 623 exit: 624 ist_exit(regs); 625 } 626 NOKPROBE_SYMBOL(do_int3); 627 628 #ifdef CONFIG_X86_64 629 /* 630 * Help handler running on a per-cpu (IST or entry trampoline) stack 631 * to switch to the normal thread stack if the interrupted code was in 632 * user mode. The actual stack switch is done in entry_64.S 633 */ 634 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 635 { 636 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 637 if (regs != eregs) 638 *regs = *eregs; 639 return regs; 640 } 641 NOKPROBE_SYMBOL(sync_regs); 642 643 struct bad_iret_stack { 644 void *error_entry_ret; 645 struct pt_regs regs; 646 }; 647 648 asmlinkage __visible notrace 649 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 650 { 651 /* 652 * This is called from entry_64.S early in handling a fault 653 * caused by a bad iret to user mode. To handle the fault 654 * correctly, we want to move our stack frame to where it would 655 * be had we entered directly on the entry stack (rather than 656 * just below the IRET frame) and we want to pretend that the 657 * exception came from the IRET target. 658 */ 659 struct bad_iret_stack *new_stack = 660 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 661 662 /* Copy the IRET target to the new stack. */ 663 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 664 665 /* Copy the remainder of the stack from the current stack. */ 666 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 667 668 BUG_ON(!user_mode(&new_stack->regs)); 669 return new_stack; 670 } 671 NOKPROBE_SYMBOL(fixup_bad_iret); 672 #endif 673 674 static bool is_sysenter_singlestep(struct pt_regs *regs) 675 { 676 /* 677 * We don't try for precision here. If we're anywhere in the region of 678 * code that can be single-stepped in the SYSENTER entry path, then 679 * assume that this is a useless single-step trap due to SYSENTER 680 * being invoked with TF set. (We don't know in advance exactly 681 * which instructions will be hit because BTF could plausibly 682 * be set.) 683 */ 684 #ifdef CONFIG_X86_32 685 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 686 (unsigned long)__end_SYSENTER_singlestep_region - 687 (unsigned long)__begin_SYSENTER_singlestep_region; 688 #elif defined(CONFIG_IA32_EMULATION) 689 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 690 (unsigned long)__end_entry_SYSENTER_compat - 691 (unsigned long)entry_SYSENTER_compat; 692 #else 693 return false; 694 #endif 695 } 696 697 /* 698 * Our handling of the processor debug registers is non-trivial. 699 * We do not clear them on entry and exit from the kernel. Therefore 700 * it is possible to get a watchpoint trap here from inside the kernel. 701 * However, the code in ./ptrace.c has ensured that the user can 702 * only set watchpoints on userspace addresses. Therefore the in-kernel 703 * watchpoint trap can only occur in code which is reading/writing 704 * from user space. Such code must not hold kernel locks (since it 705 * can equally take a page fault), therefore it is safe to call 706 * force_sig_info even though that claims and releases locks. 707 * 708 * Code in ./signal.c ensures that the debug control register 709 * is restored before we deliver any signal, and therefore that 710 * user code runs with the correct debug control register even though 711 * we clear it here. 712 * 713 * Being careful here means that we don't have to be as careful in a 714 * lot of more complicated places (task switching can be a bit lazy 715 * about restoring all the debug state, and ptrace doesn't have to 716 * find every occurrence of the TF bit that could be saved away even 717 * by user code) 718 * 719 * May run on IST stack. 720 */ 721 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 722 { 723 struct task_struct *tsk = current; 724 int user_icebp = 0; 725 unsigned long dr6; 726 int si_code; 727 728 ist_enter(regs); 729 730 get_debugreg(dr6, 6); 731 /* 732 * The Intel SDM says: 733 * 734 * Certain debug exceptions may clear bits 0-3. The remaining 735 * contents of the DR6 register are never cleared by the 736 * processor. To avoid confusion in identifying debug 737 * exceptions, debug handlers should clear the register before 738 * returning to the interrupted task. 739 * 740 * Keep it simple: clear DR6 immediately. 741 */ 742 set_debugreg(0, 6); 743 744 /* Filter out all the reserved bits which are preset to 1 */ 745 dr6 &= ~DR6_RESERVED; 746 747 /* 748 * The SDM says "The processor clears the BTF flag when it 749 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 750 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 751 */ 752 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 753 754 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 755 is_sysenter_singlestep(regs))) { 756 dr6 &= ~DR_STEP; 757 if (!dr6) 758 goto exit; 759 /* 760 * else we might have gotten a single-step trap and hit a 761 * watchpoint at the same time, in which case we should fall 762 * through and handle the watchpoint. 763 */ 764 } 765 766 /* 767 * If dr6 has no reason to give us about the origin of this trap, 768 * then it's very likely the result of an icebp/int01 trap. 769 * User wants a sigtrap for that. 770 */ 771 if (!dr6 && user_mode(regs)) 772 user_icebp = 1; 773 774 /* Store the virtualized DR6 value */ 775 tsk->thread.debugreg6 = dr6; 776 777 #ifdef CONFIG_KPROBES 778 if (kprobe_debug_handler(regs)) 779 goto exit; 780 #endif 781 782 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 783 SIGTRAP) == NOTIFY_STOP) 784 goto exit; 785 786 /* 787 * Let others (NMI) know that the debug stack is in use 788 * as we may switch to the interrupt stack. 789 */ 790 debug_stack_usage_inc(); 791 792 /* It's safe to allow irq's after DR6 has been saved */ 793 cond_local_irq_enable(regs); 794 795 if (v8086_mode(regs)) { 796 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 797 X86_TRAP_DB); 798 cond_local_irq_disable(regs); 799 debug_stack_usage_dec(); 800 goto exit; 801 } 802 803 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 804 /* 805 * Historical junk that used to handle SYSENTER single-stepping. 806 * This should be unreachable now. If we survive for a while 807 * without anyone hitting this warning, we'll turn this into 808 * an oops. 809 */ 810 tsk->thread.debugreg6 &= ~DR_STEP; 811 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 812 regs->flags &= ~X86_EFLAGS_TF; 813 } 814 si_code = get_si_code(tsk->thread.debugreg6); 815 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 816 send_sigtrap(tsk, regs, error_code, si_code); 817 cond_local_irq_disable(regs); 818 debug_stack_usage_dec(); 819 820 exit: 821 ist_exit(regs); 822 } 823 NOKPROBE_SYMBOL(do_debug); 824 825 /* 826 * Note that we play around with the 'TS' bit in an attempt to get 827 * the correct behaviour even in the presence of the asynchronous 828 * IRQ13 behaviour 829 */ 830 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 831 { 832 struct task_struct *task = current; 833 struct fpu *fpu = &task->thread.fpu; 834 int si_code; 835 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 836 "simd exception"; 837 838 cond_local_irq_enable(regs); 839 840 if (!user_mode(regs)) { 841 if (fixup_exception(regs, trapnr, error_code, 0)) 842 return; 843 844 task->thread.error_code = error_code; 845 task->thread.trap_nr = trapnr; 846 847 if (notify_die(DIE_TRAP, str, regs, error_code, 848 trapnr, SIGFPE) != NOTIFY_STOP) 849 die(str, regs, error_code); 850 return; 851 } 852 853 /* 854 * Save the info for the exception handler and clear the error. 855 */ 856 fpu__save(fpu); 857 858 task->thread.trap_nr = trapnr; 859 task->thread.error_code = error_code; 860 861 si_code = fpu__exception_code(fpu, trapnr); 862 /* Retry when we get spurious exceptions: */ 863 if (!si_code) 864 return; 865 866 force_sig_fault(SIGFPE, si_code, 867 (void __user *)uprobe_get_trap_addr(regs), task); 868 } 869 870 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 871 { 872 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 873 math_error(regs, error_code, X86_TRAP_MF); 874 } 875 876 dotraplinkage void 877 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 878 { 879 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 880 math_error(regs, error_code, X86_TRAP_XF); 881 } 882 883 dotraplinkage void 884 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 885 { 886 cond_local_irq_enable(regs); 887 } 888 889 dotraplinkage void 890 do_device_not_available(struct pt_regs *regs, long error_code) 891 { 892 unsigned long cr0 = read_cr0(); 893 894 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 895 896 #ifdef CONFIG_MATH_EMULATION 897 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 898 struct math_emu_info info = { }; 899 900 cond_local_irq_enable(regs); 901 902 info.regs = regs; 903 math_emulate(&info); 904 return; 905 } 906 #endif 907 908 /* This should not happen. */ 909 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 910 /* Try to fix it up and carry on. */ 911 write_cr0(cr0 & ~X86_CR0_TS); 912 } else { 913 /* 914 * Something terrible happened, and we're better off trying 915 * to kill the task than getting stuck in a never-ending 916 * loop of #NM faults. 917 */ 918 die("unexpected #NM exception", regs, error_code); 919 } 920 } 921 NOKPROBE_SYMBOL(do_device_not_available); 922 923 #ifdef CONFIG_X86_32 924 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 925 { 926 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 927 local_irq_enable(); 928 929 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 930 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 931 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 932 ILL_BADSTK, (void __user *)NULL); 933 } 934 } 935 #endif 936 937 void __init trap_init(void) 938 { 939 /* Init cpu_entry_area before IST entries are set up */ 940 setup_cpu_entry_areas(); 941 942 idt_setup_traps(); 943 944 /* 945 * Set the IDT descriptor to a fixed read-only location, so that the 946 * "sidt" instruction will not leak the location of the kernel, and 947 * to defend the IDT against arbitrary memory write vulnerabilities. 948 * It will be reloaded in cpu_init() */ 949 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 950 PAGE_KERNEL_RO); 951 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 952 953 /* 954 * Should be a barrier for any external CPU state: 955 */ 956 cpu_init(); 957 958 idt_setup_ist_traps(); 959 960 x86_init.irqs.trap_init(); 961 962 idt_setup_debugidt_traps(); 963 } 964