xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/atomic.h>
42 
43 #include <asm/stacktrace.h>
44 #include <asm/processor.h>
45 #include <asm/debugreg.h>
46 #include <asm/text-patching.h>
47 #include <asm/ftrace.h>
48 #include <asm/traps.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/internal.h>
51 #include <asm/cpu.h>
52 #include <asm/cpu_entry_area.h>
53 #include <asm/mce.h>
54 #include <asm/fixmap.h>
55 #include <asm/mach_traps.h>
56 #include <asm/alternative.h>
57 #include <asm/fpu/xstate.h>
58 #include <asm/vm86.h>
59 #include <asm/umip.h>
60 #include <asm/insn.h>
61 #include <asm/insn-eval.h>
62 
63 #ifdef CONFIG_X86_64
64 #include <asm/x86_init.h>
65 #include <asm/pgalloc.h>
66 #include <asm/proto.h>
67 #else
68 #include <asm/processor-flags.h>
69 #include <asm/setup.h>
70 #include <asm/proto.h>
71 #endif
72 
73 DECLARE_BITMAP(system_vectors, NR_VECTORS);
74 
75 static inline void cond_local_irq_enable(struct pt_regs *regs)
76 {
77 	if (regs->flags & X86_EFLAGS_IF)
78 		local_irq_enable();
79 }
80 
81 static inline void cond_local_irq_disable(struct pt_regs *regs)
82 {
83 	if (regs->flags & X86_EFLAGS_IF)
84 		local_irq_disable();
85 }
86 
87 int is_valid_bugaddr(unsigned long addr)
88 {
89 	unsigned short ud;
90 
91 	if (addr < TASK_SIZE_MAX)
92 		return 0;
93 
94 	if (get_kernel_nofault(ud, (unsigned short *)addr))
95 		return 0;
96 
97 	return ud == INSN_UD0 || ud == INSN_UD2;
98 }
99 
100 static nokprobe_inline int
101 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
102 		  struct pt_regs *regs,	long error_code)
103 {
104 	if (v8086_mode(regs)) {
105 		/*
106 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
107 		 * On nmi (interrupt 2), do_trap should not be called.
108 		 */
109 		if (trapnr < X86_TRAP_UD) {
110 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
111 						error_code, trapnr))
112 				return 0;
113 		}
114 	} else if (!user_mode(regs)) {
115 		if (fixup_exception(regs, trapnr, error_code, 0))
116 			return 0;
117 
118 		tsk->thread.error_code = error_code;
119 		tsk->thread.trap_nr = trapnr;
120 		die(str, regs, error_code);
121 	}
122 
123 	/*
124 	 * We want error_code and trap_nr set for userspace faults and
125 	 * kernelspace faults which result in die(), but not
126 	 * kernelspace faults which are fixed up.  die() gives the
127 	 * process no chance to handle the signal and notice the
128 	 * kernel fault information, so that won't result in polluting
129 	 * the information about previously queued, but not yet
130 	 * delivered, faults.  See also exc_general_protection below.
131 	 */
132 	tsk->thread.error_code = error_code;
133 	tsk->thread.trap_nr = trapnr;
134 
135 	return -1;
136 }
137 
138 static void show_signal(struct task_struct *tsk, int signr,
139 			const char *type, const char *desc,
140 			struct pt_regs *regs, long error_code)
141 {
142 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
143 	    printk_ratelimit()) {
144 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
145 			tsk->comm, task_pid_nr(tsk), type, desc,
146 			regs->ip, regs->sp, error_code);
147 		print_vma_addr(KERN_CONT " in ", regs->ip);
148 		pr_cont("\n");
149 	}
150 }
151 
152 static void
153 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
154 	long error_code, int sicode, void __user *addr)
155 {
156 	struct task_struct *tsk = current;
157 
158 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
159 		return;
160 
161 	show_signal(tsk, signr, "trap ", str, regs, error_code);
162 
163 	if (!sicode)
164 		force_sig(signr);
165 	else
166 		force_sig_fault(signr, sicode, addr);
167 }
168 NOKPROBE_SYMBOL(do_trap);
169 
170 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
171 	unsigned long trapnr, int signr, int sicode, void __user *addr)
172 {
173 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
174 
175 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
176 			NOTIFY_STOP) {
177 		cond_local_irq_enable(regs);
178 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
179 		cond_local_irq_disable(regs);
180 	}
181 }
182 
183 /*
184  * Posix requires to provide the address of the faulting instruction for
185  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
186  *
187  * This address is usually regs->ip, but when an uprobe moved the code out
188  * of line then regs->ip points to the XOL code which would confuse
189  * anything which analyzes the fault address vs. the unmodified binary. If
190  * a trap happened in XOL code then uprobe maps regs->ip back to the
191  * original instruction address.
192  */
193 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
194 {
195 	return (void __user *)uprobe_get_trap_addr(regs);
196 }
197 
198 DEFINE_IDTENTRY(exc_divide_error)
199 {
200 	do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
201 		      FPE_INTDIV, error_get_trap_addr(regs));
202 }
203 
204 DEFINE_IDTENTRY(exc_overflow)
205 {
206 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
207 }
208 
209 #ifdef CONFIG_X86_F00F_BUG
210 void handle_invalid_op(struct pt_regs *regs)
211 #else
212 static inline void handle_invalid_op(struct pt_regs *regs)
213 #endif
214 {
215 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
216 		      ILL_ILLOPN, error_get_trap_addr(regs));
217 }
218 
219 DEFINE_IDTENTRY_RAW(exc_invalid_op)
220 {
221 	bool rcu_exit;
222 
223 	/*
224 	 * Handle BUG/WARN like NMIs instead of like normal idtentries:
225 	 * if we bugged/warned in a bad RCU context, for example, the last
226 	 * thing we want is to BUG/WARN again in the idtentry code, ad
227 	 * infinitum.
228 	 */
229 	if (!user_mode(regs) && is_valid_bugaddr(regs->ip)) {
230 		enum bug_trap_type type;
231 
232 		nmi_enter();
233 		instrumentation_begin();
234 		trace_hardirqs_off_finish();
235 		type = report_bug(regs->ip, regs);
236 		if (regs->flags & X86_EFLAGS_IF)
237 			trace_hardirqs_on_prepare();
238 		instrumentation_end();
239 		nmi_exit();
240 
241 		if (type == BUG_TRAP_TYPE_WARN) {
242 			/* Skip the ud2. */
243 			regs->ip += LEN_UD2;
244 			return;
245 		}
246 
247 		/*
248 		 * Else, if this was a BUG and report_bug returns or if this
249 		 * was just a normal #UD, we want to continue onward and
250 		 * crash.
251 		 */
252 	}
253 
254 	rcu_exit = idtentry_enter_cond_rcu(regs);
255 	instrumentation_begin();
256 	handle_invalid_op(regs);
257 	instrumentation_end();
258 	idtentry_exit_cond_rcu(regs, rcu_exit);
259 }
260 
261 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
262 {
263 	do_error_trap(regs, 0, "coprocessor segment overrun",
264 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
265 }
266 
267 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
268 {
269 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
270 		      0, NULL);
271 }
272 
273 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
274 {
275 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
276 		      SIGBUS, 0, NULL);
277 }
278 
279 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
280 {
281 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
282 		      0, NULL);
283 }
284 
285 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
286 {
287 	char *str = "alignment check";
288 
289 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
290 		return;
291 
292 	if (!user_mode(regs))
293 		die("Split lock detected\n", regs, error_code);
294 
295 	local_irq_enable();
296 
297 	if (handle_user_split_lock(regs, error_code))
298 		return;
299 
300 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
301 		error_code, BUS_ADRALN, NULL);
302 }
303 
304 #ifdef CONFIG_VMAP_STACK
305 __visible void __noreturn handle_stack_overflow(const char *message,
306 						struct pt_regs *regs,
307 						unsigned long fault_address)
308 {
309 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
310 		 (void *)fault_address, current->stack,
311 		 (char *)current->stack + THREAD_SIZE - 1);
312 	die(message, regs, 0);
313 
314 	/* Be absolutely certain we don't return. */
315 	panic("%s", message);
316 }
317 #endif
318 
319 /*
320  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
321  *
322  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
323  * SDM's warnings about double faults being unrecoverable, returning works as
324  * expected.  Presumably what the SDM actually means is that the CPU may get
325  * the register state wrong on entry, so returning could be a bad idea.
326  *
327  * Various CPU engineers have promised that double faults due to an IRET fault
328  * while the stack is read-only are, in fact, recoverable.
329  *
330  * On x86_32, this is entered through a task gate, and regs are synthesized
331  * from the TSS.  Returning is, in principle, okay, but changes to regs will
332  * be lost.  If, for some reason, we need to return to a context with modified
333  * regs, the shim code could be adjusted to synchronize the registers.
334  *
335  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
336  * to be read before doing anything else.
337  */
338 DEFINE_IDTENTRY_DF(exc_double_fault)
339 {
340 	static const char str[] = "double fault";
341 	struct task_struct *tsk = current;
342 
343 #ifdef CONFIG_VMAP_STACK
344 	unsigned long address = read_cr2();
345 #endif
346 
347 #ifdef CONFIG_X86_ESPFIX64
348 	extern unsigned char native_irq_return_iret[];
349 
350 	/*
351 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
352 	 * end up promoting it to a doublefault.  In that case, take
353 	 * advantage of the fact that we're not using the normal (TSS.sp0)
354 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
355 	 * and then modify our own IRET frame so that, when we return,
356 	 * we land directly at the #GP(0) vector with the stack already
357 	 * set up according to its expectations.
358 	 *
359 	 * The net result is that our #GP handler will think that we
360 	 * entered from usermode with the bad user context.
361 	 *
362 	 * No need for nmi_enter() here because we don't use RCU.
363 	 */
364 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
365 		regs->cs == __KERNEL_CS &&
366 		regs->ip == (unsigned long)native_irq_return_iret)
367 	{
368 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
369 		unsigned long *p = (unsigned long *)regs->sp;
370 
371 		/*
372 		 * regs->sp points to the failing IRET frame on the
373 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
374 		 * in gpregs->ss through gpregs->ip.
375 		 *
376 		 */
377 		gpregs->ip	= p[0];
378 		gpregs->cs	= p[1];
379 		gpregs->flags	= p[2];
380 		gpregs->sp	= p[3];
381 		gpregs->ss	= p[4];
382 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
383 
384 		/*
385 		 * Adjust our frame so that we return straight to the #GP
386 		 * vector with the expected RSP value.  This is safe because
387 		 * we won't enable interupts or schedule before we invoke
388 		 * general_protection, so nothing will clobber the stack
389 		 * frame we just set up.
390 		 *
391 		 * We will enter general_protection with kernel GSBASE,
392 		 * which is what the stub expects, given that the faulting
393 		 * RIP will be the IRET instruction.
394 		 */
395 		regs->ip = (unsigned long)asm_exc_general_protection;
396 		regs->sp = (unsigned long)&gpregs->orig_ax;
397 
398 		return;
399 	}
400 #endif
401 
402 	nmi_enter();
403 	instrumentation_begin();
404 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
405 
406 	tsk->thread.error_code = error_code;
407 	tsk->thread.trap_nr = X86_TRAP_DF;
408 
409 #ifdef CONFIG_VMAP_STACK
410 	/*
411 	 * If we overflow the stack into a guard page, the CPU will fail
412 	 * to deliver #PF and will send #DF instead.  Similarly, if we
413 	 * take any non-IST exception while too close to the bottom of
414 	 * the stack, the processor will get a page fault while
415 	 * delivering the exception and will generate a double fault.
416 	 *
417 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
418 	 * Page-Fault Exception (#PF):
419 	 *
420 	 *   Processors update CR2 whenever a page fault is detected. If a
421 	 *   second page fault occurs while an earlier page fault is being
422 	 *   delivered, the faulting linear address of the second fault will
423 	 *   overwrite the contents of CR2 (replacing the previous
424 	 *   address). These updates to CR2 occur even if the page fault
425 	 *   results in a double fault or occurs during the delivery of a
426 	 *   double fault.
427 	 *
428 	 * The logic below has a small possibility of incorrectly diagnosing
429 	 * some errors as stack overflows.  For example, if the IDT or GDT
430 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
431 	 * causing #GP and we hit this condition while CR2 coincidentally
432 	 * points to the stack guard page, we'll think we overflowed the
433 	 * stack.  Given that we're going to panic one way or another
434 	 * if this happens, this isn't necessarily worth fixing.
435 	 *
436 	 * If necessary, we could improve the test by only diagnosing
437 	 * a stack overflow if the saved RSP points within 47 bytes of
438 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
439 	 * take an exception, the stack is already aligned and there
440 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
441 	 * possible error code, so a stack overflow would *not* double
442 	 * fault.  With any less space left, exception delivery could
443 	 * fail, and, as a practical matter, we've overflowed the
444 	 * stack even if the actual trigger for the double fault was
445 	 * something else.
446 	 */
447 	if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
448 		handle_stack_overflow("kernel stack overflow (double-fault)",
449 				      regs, address);
450 	}
451 #endif
452 
453 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
454 	die("double fault", regs, error_code);
455 	panic("Machine halted.");
456 	instrumentation_end();
457 }
458 
459 DEFINE_IDTENTRY(exc_bounds)
460 {
461 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
462 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
463 		return;
464 	cond_local_irq_enable(regs);
465 
466 	if (!user_mode(regs))
467 		die("bounds", regs, 0);
468 
469 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
470 
471 	cond_local_irq_disable(regs);
472 }
473 
474 enum kernel_gp_hint {
475 	GP_NO_HINT,
476 	GP_NON_CANONICAL,
477 	GP_CANONICAL
478 };
479 
480 /*
481  * When an uncaught #GP occurs, try to determine the memory address accessed by
482  * the instruction and return that address to the caller. Also, try to figure
483  * out whether any part of the access to that address was non-canonical.
484  */
485 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
486 						 unsigned long *addr)
487 {
488 	u8 insn_buf[MAX_INSN_SIZE];
489 	struct insn insn;
490 
491 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
492 			MAX_INSN_SIZE))
493 		return GP_NO_HINT;
494 
495 	kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
496 	insn_get_modrm(&insn);
497 	insn_get_sib(&insn);
498 
499 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
500 	if (*addr == -1UL)
501 		return GP_NO_HINT;
502 
503 #ifdef CONFIG_X86_64
504 	/*
505 	 * Check that:
506 	 *  - the operand is not in the kernel half
507 	 *  - the last byte of the operand is not in the user canonical half
508 	 */
509 	if (*addr < ~__VIRTUAL_MASK &&
510 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
511 		return GP_NON_CANONICAL;
512 #endif
513 
514 	return GP_CANONICAL;
515 }
516 
517 #define GPFSTR "general protection fault"
518 
519 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
520 {
521 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
522 	enum kernel_gp_hint hint = GP_NO_HINT;
523 	struct task_struct *tsk;
524 	unsigned long gp_addr;
525 	int ret;
526 
527 	cond_local_irq_enable(regs);
528 
529 	if (static_cpu_has(X86_FEATURE_UMIP)) {
530 		if (user_mode(regs) && fixup_umip_exception(regs))
531 			goto exit;
532 	}
533 
534 	if (v8086_mode(regs)) {
535 		local_irq_enable();
536 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
537 		local_irq_disable();
538 		return;
539 	}
540 
541 	tsk = current;
542 
543 	if (user_mode(regs)) {
544 		tsk->thread.error_code = error_code;
545 		tsk->thread.trap_nr = X86_TRAP_GP;
546 
547 		show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
548 		force_sig(SIGSEGV);
549 		goto exit;
550 	}
551 
552 	if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
553 		goto exit;
554 
555 	tsk->thread.error_code = error_code;
556 	tsk->thread.trap_nr = X86_TRAP_GP;
557 
558 	/*
559 	 * To be potentially processing a kprobe fault and to trust the result
560 	 * from kprobe_running(), we have to be non-preemptible.
561 	 */
562 	if (!preemptible() &&
563 	    kprobe_running() &&
564 	    kprobe_fault_handler(regs, X86_TRAP_GP))
565 		goto exit;
566 
567 	ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
568 	if (ret == NOTIFY_STOP)
569 		goto exit;
570 
571 	if (error_code)
572 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
573 	else
574 		hint = get_kernel_gp_address(regs, &gp_addr);
575 
576 	if (hint != GP_NO_HINT)
577 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
578 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
579 						    : "maybe for address",
580 			 gp_addr);
581 
582 	/*
583 	 * KASAN is interested only in the non-canonical case, clear it
584 	 * otherwise.
585 	 */
586 	if (hint != GP_NON_CANONICAL)
587 		gp_addr = 0;
588 
589 	die_addr(desc, regs, error_code, gp_addr);
590 
591 exit:
592 	cond_local_irq_disable(regs);
593 }
594 
595 static bool do_int3(struct pt_regs *regs)
596 {
597 	int res;
598 
599 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
600 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
601 			 SIGTRAP) == NOTIFY_STOP)
602 		return true;
603 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
604 
605 #ifdef CONFIG_KPROBES
606 	if (kprobe_int3_handler(regs))
607 		return true;
608 #endif
609 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
610 
611 	return res == NOTIFY_STOP;
612 }
613 
614 static void do_int3_user(struct pt_regs *regs)
615 {
616 	if (do_int3(regs))
617 		return;
618 
619 	cond_local_irq_enable(regs);
620 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
621 	cond_local_irq_disable(regs);
622 }
623 
624 DEFINE_IDTENTRY_RAW(exc_int3)
625 {
626 	/*
627 	 * poke_int3_handler() is completely self contained code; it does (and
628 	 * must) *NOT* call out to anything, lest it hits upon yet another
629 	 * INT3.
630 	 */
631 	if (poke_int3_handler(regs))
632 		return;
633 
634 	/*
635 	 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore
636 	 * can trigger INT3, hence poke_int3_handler() must be done
637 	 * before. If the entry came from kernel mode, then use nmi_enter()
638 	 * because the INT3 could have been hit in any context including
639 	 * NMI.
640 	 */
641 	if (user_mode(regs)) {
642 		idtentry_enter_user(regs);
643 		instrumentation_begin();
644 		do_int3_user(regs);
645 		instrumentation_end();
646 		idtentry_exit_user(regs);
647 	} else {
648 		nmi_enter();
649 		instrumentation_begin();
650 		trace_hardirqs_off_finish();
651 		if (!do_int3(regs))
652 			die("int3", regs, 0);
653 		if (regs->flags & X86_EFLAGS_IF)
654 			trace_hardirqs_on_prepare();
655 		instrumentation_end();
656 		nmi_exit();
657 	}
658 }
659 
660 #ifdef CONFIG_X86_64
661 /*
662  * Help handler running on a per-cpu (IST or entry trampoline) stack
663  * to switch to the normal thread stack if the interrupted code was in
664  * user mode. The actual stack switch is done in entry_64.S
665  */
666 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
667 {
668 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
669 	if (regs != eregs)
670 		*regs = *eregs;
671 	return regs;
672 }
673 
674 struct bad_iret_stack {
675 	void *error_entry_ret;
676 	struct pt_regs regs;
677 };
678 
679 asmlinkage __visible noinstr
680 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
681 {
682 	/*
683 	 * This is called from entry_64.S early in handling a fault
684 	 * caused by a bad iret to user mode.  To handle the fault
685 	 * correctly, we want to move our stack frame to where it would
686 	 * be had we entered directly on the entry stack (rather than
687 	 * just below the IRET frame) and we want to pretend that the
688 	 * exception came from the IRET target.
689 	 */
690 	struct bad_iret_stack tmp, *new_stack =
691 		(struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
692 
693 	/* Copy the IRET target to the temporary storage. */
694 	memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
695 
696 	/* Copy the remainder of the stack from the current stack. */
697 	memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
698 
699 	/* Update the entry stack */
700 	memcpy(new_stack, &tmp, sizeof(tmp));
701 
702 	BUG_ON(!user_mode(&new_stack->regs));
703 	return new_stack;
704 }
705 #endif
706 
707 static bool is_sysenter_singlestep(struct pt_regs *regs)
708 {
709 	/*
710 	 * We don't try for precision here.  If we're anywhere in the region of
711 	 * code that can be single-stepped in the SYSENTER entry path, then
712 	 * assume that this is a useless single-step trap due to SYSENTER
713 	 * being invoked with TF set.  (We don't know in advance exactly
714 	 * which instructions will be hit because BTF could plausibly
715 	 * be set.)
716 	 */
717 #ifdef CONFIG_X86_32
718 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
719 		(unsigned long)__end_SYSENTER_singlestep_region -
720 		(unsigned long)__begin_SYSENTER_singlestep_region;
721 #elif defined(CONFIG_IA32_EMULATION)
722 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
723 		(unsigned long)__end_entry_SYSENTER_compat -
724 		(unsigned long)entry_SYSENTER_compat;
725 #else
726 	return false;
727 #endif
728 }
729 
730 static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
731 {
732 	/*
733 	 * Disable breakpoints during exception handling; recursive exceptions
734 	 * are exceedingly 'fun'.
735 	 *
736 	 * Since this function is NOKPROBE, and that also applies to
737 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
738 	 * HW_BREAKPOINT_W on our stack)
739 	 *
740 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
741 	 * includes the entry stack is excluded for everything.
742 	 */
743 	*dr7 = local_db_save();
744 
745 	/*
746 	 * The Intel SDM says:
747 	 *
748 	 *   Certain debug exceptions may clear bits 0-3. The remaining
749 	 *   contents of the DR6 register are never cleared by the
750 	 *   processor. To avoid confusion in identifying debug
751 	 *   exceptions, debug handlers should clear the register before
752 	 *   returning to the interrupted task.
753 	 *
754 	 * Keep it simple: clear DR6 immediately.
755 	 */
756 	get_debugreg(*dr6, 6);
757 	set_debugreg(0, 6);
758 	/* Filter out all the reserved bits which are preset to 1 */
759 	*dr6 &= ~DR6_RESERVED;
760 }
761 
762 static __always_inline void debug_exit(unsigned long dr7)
763 {
764 	local_db_restore(dr7);
765 }
766 
767 /*
768  * Our handling of the processor debug registers is non-trivial.
769  * We do not clear them on entry and exit from the kernel. Therefore
770  * it is possible to get a watchpoint trap here from inside the kernel.
771  * However, the code in ./ptrace.c has ensured that the user can
772  * only set watchpoints on userspace addresses. Therefore the in-kernel
773  * watchpoint trap can only occur in code which is reading/writing
774  * from user space. Such code must not hold kernel locks (since it
775  * can equally take a page fault), therefore it is safe to call
776  * force_sig_info even though that claims and releases locks.
777  *
778  * Code in ./signal.c ensures that the debug control register
779  * is restored before we deliver any signal, and therefore that
780  * user code runs with the correct debug control register even though
781  * we clear it here.
782  *
783  * Being careful here means that we don't have to be as careful in a
784  * lot of more complicated places (task switching can be a bit lazy
785  * about restoring all the debug state, and ptrace doesn't have to
786  * find every occurrence of the TF bit that could be saved away even
787  * by user code)
788  *
789  * May run on IST stack.
790  */
791 static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
792 {
793 	struct task_struct *tsk = current;
794 	bool user_icebp;
795 	int si_code;
796 
797 	/*
798 	 * The SDM says "The processor clears the BTF flag when it
799 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
800 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
801 	 */
802 	clear_thread_flag(TIF_BLOCKSTEP);
803 
804 	/*
805 	 * If DR6 is zero, no point in trying to handle it. The kernel is
806 	 * not using INT1.
807 	 */
808 	if (!user && !dr6)
809 		return;
810 
811 	/*
812 	 * If dr6 has no reason to give us about the origin of this trap,
813 	 * then it's very likely the result of an icebp/int01 trap.
814 	 * User wants a sigtrap for that.
815 	 */
816 	user_icebp = user && !dr6;
817 
818 	/* Store the virtualized DR6 value */
819 	tsk->thread.debugreg6 = dr6;
820 
821 #ifdef CONFIG_KPROBES
822 	if (kprobe_debug_handler(regs)) {
823 		return;
824 	}
825 #endif
826 
827 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
828 		       SIGTRAP) == NOTIFY_STOP) {
829 		return;
830 	}
831 
832 	/* It's safe to allow irq's after DR6 has been saved */
833 	cond_local_irq_enable(regs);
834 
835 	if (v8086_mode(regs)) {
836 		handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
837 				 X86_TRAP_DB);
838 		goto out;
839 	}
840 
841 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
842 		/*
843 		 * Historical junk that used to handle SYSENTER single-stepping.
844 		 * This should be unreachable now.  If we survive for a while
845 		 * without anyone hitting this warning, we'll turn this into
846 		 * an oops.
847 		 */
848 		tsk->thread.debugreg6 &= ~DR_STEP;
849 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
850 		regs->flags &= ~X86_EFLAGS_TF;
851 	}
852 
853 	si_code = get_si_code(tsk->thread.debugreg6);
854 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
855 		send_sigtrap(regs, 0, si_code);
856 
857 out:
858 	cond_local_irq_disable(regs);
859 }
860 
861 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
862 					     unsigned long dr6)
863 {
864 	nmi_enter();
865 	instrumentation_begin();
866 	trace_hardirqs_off_finish();
867 
868 	/*
869 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
870 	 * watchpoint at the same time then that will still be handled.
871 	 */
872 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
873 		dr6 &= ~DR_STEP;
874 
875 	handle_debug(regs, dr6, false);
876 
877 	if (regs->flags & X86_EFLAGS_IF)
878 		trace_hardirqs_on_prepare();
879 	instrumentation_end();
880 	nmi_exit();
881 }
882 
883 static __always_inline void exc_debug_user(struct pt_regs *regs,
884 					   unsigned long dr6)
885 {
886 	idtentry_enter_user(regs);
887 	instrumentation_begin();
888 
889 	handle_debug(regs, dr6, true);
890 	instrumentation_end();
891 	idtentry_exit_user(regs);
892 }
893 
894 #ifdef CONFIG_X86_64
895 /* IST stack entry */
896 DEFINE_IDTENTRY_DEBUG(exc_debug)
897 {
898 	unsigned long dr6, dr7;
899 
900 	debug_enter(&dr6, &dr7);
901 	exc_debug_kernel(regs, dr6);
902 	debug_exit(dr7);
903 }
904 
905 /* User entry, runs on regular task stack */
906 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
907 {
908 	unsigned long dr6, dr7;
909 
910 	debug_enter(&dr6, &dr7);
911 	exc_debug_user(regs, dr6);
912 	debug_exit(dr7);
913 }
914 #else
915 /* 32 bit does not have separate entry points. */
916 DEFINE_IDTENTRY_DEBUG(exc_debug)
917 {
918 	unsigned long dr6, dr7;
919 
920 	debug_enter(&dr6, &dr7);
921 
922 	if (user_mode(regs))
923 		exc_debug_user(regs, dr6);
924 	else
925 		exc_debug_kernel(regs, dr6);
926 
927 	debug_exit(dr7);
928 }
929 #endif
930 
931 /*
932  * Note that we play around with the 'TS' bit in an attempt to get
933  * the correct behaviour even in the presence of the asynchronous
934  * IRQ13 behaviour
935  */
936 static void math_error(struct pt_regs *regs, int trapnr)
937 {
938 	struct task_struct *task = current;
939 	struct fpu *fpu = &task->thread.fpu;
940 	int si_code;
941 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
942 						"simd exception";
943 
944 	cond_local_irq_enable(regs);
945 
946 	if (!user_mode(regs)) {
947 		if (fixup_exception(regs, trapnr, 0, 0))
948 			goto exit;
949 
950 		task->thread.error_code = 0;
951 		task->thread.trap_nr = trapnr;
952 
953 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
954 			       SIGFPE) != NOTIFY_STOP)
955 			die(str, regs, 0);
956 		goto exit;
957 	}
958 
959 	/*
960 	 * Save the info for the exception handler and clear the error.
961 	 */
962 	fpu__save(fpu);
963 
964 	task->thread.trap_nr	= trapnr;
965 	task->thread.error_code = 0;
966 
967 	si_code = fpu__exception_code(fpu, trapnr);
968 	/* Retry when we get spurious exceptions: */
969 	if (!si_code)
970 		goto exit;
971 
972 	force_sig_fault(SIGFPE, si_code,
973 			(void __user *)uprobe_get_trap_addr(regs));
974 exit:
975 	cond_local_irq_disable(regs);
976 }
977 
978 DEFINE_IDTENTRY(exc_coprocessor_error)
979 {
980 	math_error(regs, X86_TRAP_MF);
981 }
982 
983 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
984 {
985 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
986 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
987 		if (!static_cpu_has(X86_FEATURE_XMM)) {
988 			__exc_general_protection(regs, 0);
989 			return;
990 		}
991 	}
992 	math_error(regs, X86_TRAP_XF);
993 }
994 
995 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
996 {
997 	/*
998 	 * This addresses a Pentium Pro Erratum:
999 	 *
1000 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1001 	 * Virtual Wire mode implemented through the local APIC, an
1002 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1003 	 * generated by the local APIC (Int 15).  This vector may be
1004 	 * generated upon receipt of a spurious interrupt (an interrupt
1005 	 * which is removed before the system receives the INTA sequence)
1006 	 * instead of the programmed 8259 spurious interrupt vector.
1007 	 *
1008 	 * IMPLICATION: The spurious interrupt vector programmed in the
1009 	 * 8259 is normally handled by an operating system's spurious
1010 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1011 	 * operating systems, which would crash if this erratum occurred.
1012 	 *
1013 	 * In theory this could be limited to 32bit, but the handler is not
1014 	 * hurting and who knows which other CPUs suffer from this.
1015 	 */
1016 }
1017 
1018 DEFINE_IDTENTRY(exc_device_not_available)
1019 {
1020 	unsigned long cr0 = read_cr0();
1021 
1022 #ifdef CONFIG_MATH_EMULATION
1023 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1024 		struct math_emu_info info = { };
1025 
1026 		cond_local_irq_enable(regs);
1027 
1028 		info.regs = regs;
1029 		math_emulate(&info);
1030 
1031 		cond_local_irq_disable(regs);
1032 		return;
1033 	}
1034 #endif
1035 
1036 	/* This should not happen. */
1037 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1038 		/* Try to fix it up and carry on. */
1039 		write_cr0(cr0 & ~X86_CR0_TS);
1040 	} else {
1041 		/*
1042 		 * Something terrible happened, and we're better off trying
1043 		 * to kill the task than getting stuck in a never-ending
1044 		 * loop of #NM faults.
1045 		 */
1046 		die("unexpected #NM exception", regs, 0);
1047 	}
1048 }
1049 
1050 #ifdef CONFIG_X86_32
1051 DEFINE_IDTENTRY_SW(iret_error)
1052 {
1053 	local_irq_enable();
1054 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1055 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1056 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1057 			ILL_BADSTK, (void __user *)NULL);
1058 	}
1059 	local_irq_disable();
1060 }
1061 #endif
1062 
1063 void __init trap_init(void)
1064 {
1065 	/* Init cpu_entry_area before IST entries are set up */
1066 	setup_cpu_entry_areas();
1067 
1068 	idt_setup_traps();
1069 
1070 	/*
1071 	 * Should be a barrier for any external CPU state:
1072 	 */
1073 	cpu_init();
1074 
1075 	idt_setup_ist_traps();
1076 }
1077