xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 23c2b932)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
39 
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
44 
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
48 
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/text-patching.h>
55 #include <asm/ftrace.h>
56 #include <asm/traps.h>
57 #include <asm/desc.h>
58 #include <asm/fpu/internal.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/trace/mpx.h>
65 #include <asm/mpx.h>
66 #include <asm/vm86.h>
67 
68 #ifdef CONFIG_X86_64
69 #include <asm/x86_init.h>
70 #include <asm/pgalloc.h>
71 #include <asm/proto.h>
72 
73 /* No need to be aligned, but done to keep all IDTs defined the same way. */
74 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
75 #else
76 #include <asm/processor-flags.h>
77 #include <asm/setup.h>
78 #include <asm/proto.h>
79 #endif
80 
81 /* Must be page-aligned because the real IDT is used in a fixmap. */
82 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
83 
84 DECLARE_BITMAP(used_vectors, NR_VECTORS);
85 EXPORT_SYMBOL_GPL(used_vectors);
86 
87 static inline void cond_local_irq_enable(struct pt_regs *regs)
88 {
89 	if (regs->flags & X86_EFLAGS_IF)
90 		local_irq_enable();
91 }
92 
93 static inline void cond_local_irq_disable(struct pt_regs *regs)
94 {
95 	if (regs->flags & X86_EFLAGS_IF)
96 		local_irq_disable();
97 }
98 
99 /*
100  * In IST context, we explicitly disable preemption.  This serves two
101  * purposes: it makes it much less likely that we would accidentally
102  * schedule in IST context and it will force a warning if we somehow
103  * manage to schedule by accident.
104  */
105 void ist_enter(struct pt_regs *regs)
106 {
107 	if (user_mode(regs)) {
108 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
109 	} else {
110 		/*
111 		 * We might have interrupted pretty much anything.  In
112 		 * fact, if we're a machine check, we can even interrupt
113 		 * NMI processing.  We don't want in_nmi() to return true,
114 		 * but we need to notify RCU.
115 		 */
116 		rcu_nmi_enter();
117 	}
118 
119 	preempt_disable();
120 
121 	/* This code is a bit fragile.  Test it. */
122 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
123 }
124 
125 void ist_exit(struct pt_regs *regs)
126 {
127 	preempt_enable_no_resched();
128 
129 	if (!user_mode(regs))
130 		rcu_nmi_exit();
131 }
132 
133 /**
134  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
135  * @regs:	regs passed to the IST exception handler
136  *
137  * IST exception handlers normally cannot schedule.  As a special
138  * exception, if the exception interrupted userspace code (i.e.
139  * user_mode(regs) would return true) and the exception was not
140  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
141  * begins a non-atomic section within an ist_enter()/ist_exit() region.
142  * Callers are responsible for enabling interrupts themselves inside
143  * the non-atomic section, and callers must call ist_end_non_atomic()
144  * before ist_exit().
145  */
146 void ist_begin_non_atomic(struct pt_regs *regs)
147 {
148 	BUG_ON(!user_mode(regs));
149 
150 	/*
151 	 * Sanity check: we need to be on the normal thread stack.  This
152 	 * will catch asm bugs and any attempt to use ist_preempt_enable
153 	 * from double_fault.
154 	 */
155 	BUG_ON((unsigned long)(current_top_of_stack() -
156 			       current_stack_pointer()) >= THREAD_SIZE);
157 
158 	preempt_enable_no_resched();
159 }
160 
161 /**
162  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
163  *
164  * Ends a non-atomic section started with ist_begin_non_atomic().
165  */
166 void ist_end_non_atomic(void)
167 {
168 	preempt_disable();
169 }
170 
171 static nokprobe_inline int
172 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
173 		  struct pt_regs *regs,	long error_code)
174 {
175 	if (v8086_mode(regs)) {
176 		/*
177 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
178 		 * On nmi (interrupt 2), do_trap should not be called.
179 		 */
180 		if (trapnr < X86_TRAP_UD) {
181 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
182 						error_code, trapnr))
183 				return 0;
184 		}
185 		return -1;
186 	}
187 
188 	if (!user_mode(regs)) {
189 		if (!fixup_exception(regs, trapnr)) {
190 			tsk->thread.error_code = error_code;
191 			tsk->thread.trap_nr = trapnr;
192 			die(str, regs, error_code);
193 		}
194 		return 0;
195 	}
196 
197 	return -1;
198 }
199 
200 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
201 				siginfo_t *info)
202 {
203 	unsigned long siaddr;
204 	int sicode;
205 
206 	switch (trapnr) {
207 	default:
208 		return SEND_SIG_PRIV;
209 
210 	case X86_TRAP_DE:
211 		sicode = FPE_INTDIV;
212 		siaddr = uprobe_get_trap_addr(regs);
213 		break;
214 	case X86_TRAP_UD:
215 		sicode = ILL_ILLOPN;
216 		siaddr = uprobe_get_trap_addr(regs);
217 		break;
218 	case X86_TRAP_AC:
219 		sicode = BUS_ADRALN;
220 		siaddr = 0;
221 		break;
222 	}
223 
224 	info->si_signo = signr;
225 	info->si_errno = 0;
226 	info->si_code = sicode;
227 	info->si_addr = (void __user *)siaddr;
228 	return info;
229 }
230 
231 static void
232 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
233 	long error_code, siginfo_t *info)
234 {
235 	struct task_struct *tsk = current;
236 
237 
238 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
239 		return;
240 	/*
241 	 * We want error_code and trap_nr set for userspace faults and
242 	 * kernelspace faults which result in die(), but not
243 	 * kernelspace faults which are fixed up.  die() gives the
244 	 * process no chance to handle the signal and notice the
245 	 * kernel fault information, so that won't result in polluting
246 	 * the information about previously queued, but not yet
247 	 * delivered, faults.  See also do_general_protection below.
248 	 */
249 	tsk->thread.error_code = error_code;
250 	tsk->thread.trap_nr = trapnr;
251 
252 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
253 	    printk_ratelimit()) {
254 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
255 			tsk->comm, tsk->pid, str,
256 			regs->ip, regs->sp, error_code);
257 		print_vma_addr(" in ", regs->ip);
258 		pr_cont("\n");
259 	}
260 
261 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
262 }
263 NOKPROBE_SYMBOL(do_trap);
264 
265 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
266 			  unsigned long trapnr, int signr)
267 {
268 	siginfo_t info;
269 
270 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
271 
272 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
273 			NOTIFY_STOP) {
274 		cond_local_irq_enable(regs);
275 		do_trap(trapnr, signr, str, regs, error_code,
276 			fill_trap_info(regs, signr, trapnr, &info));
277 	}
278 }
279 
280 #define DO_ERROR(trapnr, signr, str, name)				\
281 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
282 {									\
283 	do_error_trap(regs, error_code, str, trapnr, signr);		\
284 }
285 
286 DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
287 DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
288 DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
289 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
290 DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
291 DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
292 DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
293 DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
294 
295 #ifdef CONFIG_X86_64
296 /* Runs on IST stack */
297 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
298 {
299 	static const char str[] = "double fault";
300 	struct task_struct *tsk = current;
301 
302 #ifdef CONFIG_X86_ESPFIX64
303 	extern unsigned char native_irq_return_iret[];
304 
305 	/*
306 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
307 	 * end up promoting it to a doublefault.  In that case, modify
308 	 * the stack to make it look like we just entered the #GP
309 	 * handler from user space, similar to bad_iret.
310 	 *
311 	 * No need for ist_enter here because we don't use RCU.
312 	 */
313 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
314 		regs->cs == __KERNEL_CS &&
315 		regs->ip == (unsigned long)native_irq_return_iret)
316 	{
317 		struct pt_regs *normal_regs = task_pt_regs(current);
318 
319 		/* Fake a #GP(0) from userspace. */
320 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
321 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
322 		regs->ip = (unsigned long)general_protection;
323 		regs->sp = (unsigned long)&normal_regs->orig_ax;
324 
325 		return;
326 	}
327 #endif
328 
329 	ist_enter(regs);
330 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
331 
332 	tsk->thread.error_code = error_code;
333 	tsk->thread.trap_nr = X86_TRAP_DF;
334 
335 #ifdef CONFIG_DOUBLEFAULT
336 	df_debug(regs, error_code);
337 #endif
338 	/*
339 	 * This is always a kernel trap and never fixable (and thus must
340 	 * never return).
341 	 */
342 	for (;;)
343 		die(str, regs, error_code);
344 }
345 #endif
346 
347 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
348 {
349 	const struct mpx_bndcsr *bndcsr;
350 	siginfo_t *info;
351 
352 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
353 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
354 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
355 		return;
356 	cond_local_irq_enable(regs);
357 
358 	if (!user_mode(regs))
359 		die("bounds", regs, error_code);
360 
361 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
362 		/* The exception is not from Intel MPX */
363 		goto exit_trap;
364 	}
365 
366 	/*
367 	 * We need to look at BNDSTATUS to resolve this exception.
368 	 * A NULL here might mean that it is in its 'init state',
369 	 * which is all zeros which indicates MPX was not
370 	 * responsible for the exception.
371 	 */
372 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
373 	if (!bndcsr)
374 		goto exit_trap;
375 
376 	trace_bounds_exception_mpx(bndcsr);
377 	/*
378 	 * The error code field of the BNDSTATUS register communicates status
379 	 * information of a bound range exception #BR or operation involving
380 	 * bound directory.
381 	 */
382 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
383 	case 2:	/* Bound directory has invalid entry. */
384 		if (mpx_handle_bd_fault())
385 			goto exit_trap;
386 		break; /* Success, it was handled */
387 	case 1: /* Bound violation. */
388 		info = mpx_generate_siginfo(regs);
389 		if (IS_ERR(info)) {
390 			/*
391 			 * We failed to decode the MPX instruction.  Act as if
392 			 * the exception was not caused by MPX.
393 			 */
394 			goto exit_trap;
395 		}
396 		/*
397 		 * Success, we decoded the instruction and retrieved
398 		 * an 'info' containing the address being accessed
399 		 * which caused the exception.  This information
400 		 * allows and application to possibly handle the
401 		 * #BR exception itself.
402 		 */
403 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
404 		kfree(info);
405 		break;
406 	case 0: /* No exception caused by Intel MPX operations. */
407 		goto exit_trap;
408 	default:
409 		die("bounds", regs, error_code);
410 	}
411 
412 	return;
413 
414 exit_trap:
415 	/*
416 	 * This path out is for all the cases where we could not
417 	 * handle the exception in some way (like allocating a
418 	 * table or telling userspace about it.  We will also end
419 	 * up here if the kernel has MPX turned off at compile
420 	 * time..
421 	 */
422 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
423 }
424 
425 dotraplinkage void
426 do_general_protection(struct pt_regs *regs, long error_code)
427 {
428 	struct task_struct *tsk;
429 
430 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
431 	cond_local_irq_enable(regs);
432 
433 	if (v8086_mode(regs)) {
434 		local_irq_enable();
435 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
436 		return;
437 	}
438 
439 	tsk = current;
440 	if (!user_mode(regs)) {
441 		if (fixup_exception(regs, X86_TRAP_GP))
442 			return;
443 
444 		tsk->thread.error_code = error_code;
445 		tsk->thread.trap_nr = X86_TRAP_GP;
446 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
447 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
448 			die("general protection fault", regs, error_code);
449 		return;
450 	}
451 
452 	tsk->thread.error_code = error_code;
453 	tsk->thread.trap_nr = X86_TRAP_GP;
454 
455 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
456 			printk_ratelimit()) {
457 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
458 			tsk->comm, task_pid_nr(tsk),
459 			regs->ip, regs->sp, error_code);
460 		print_vma_addr(" in ", regs->ip);
461 		pr_cont("\n");
462 	}
463 
464 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
465 }
466 NOKPROBE_SYMBOL(do_general_protection);
467 
468 /* May run on IST stack. */
469 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
470 {
471 #ifdef CONFIG_DYNAMIC_FTRACE
472 	/*
473 	 * ftrace must be first, everything else may cause a recursive crash.
474 	 * See note by declaration of modifying_ftrace_code in ftrace.c
475 	 */
476 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
477 	    ftrace_int3_handler(regs))
478 		return;
479 #endif
480 	if (poke_int3_handler(regs))
481 		return;
482 
483 	ist_enter(regs);
484 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
485 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
486 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
487 				SIGTRAP) == NOTIFY_STOP)
488 		goto exit;
489 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
490 
491 #ifdef CONFIG_KPROBES
492 	if (kprobe_int3_handler(regs))
493 		goto exit;
494 #endif
495 
496 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
497 			SIGTRAP) == NOTIFY_STOP)
498 		goto exit;
499 
500 	/*
501 	 * Let others (NMI) know that the debug stack is in use
502 	 * as we may switch to the interrupt stack.
503 	 */
504 	debug_stack_usage_inc();
505 	preempt_disable();
506 	cond_local_irq_enable(regs);
507 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
508 	cond_local_irq_disable(regs);
509 	preempt_enable_no_resched();
510 	debug_stack_usage_dec();
511 exit:
512 	ist_exit(regs);
513 }
514 NOKPROBE_SYMBOL(do_int3);
515 
516 #ifdef CONFIG_X86_64
517 /*
518  * Help handler running on IST stack to switch off the IST stack if the
519  * interrupted code was in user mode. The actual stack switch is done in
520  * entry_64.S
521  */
522 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
523 {
524 	struct pt_regs *regs = task_pt_regs(current);
525 	*regs = *eregs;
526 	return regs;
527 }
528 NOKPROBE_SYMBOL(sync_regs);
529 
530 struct bad_iret_stack {
531 	void *error_entry_ret;
532 	struct pt_regs regs;
533 };
534 
535 asmlinkage __visible notrace
536 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
537 {
538 	/*
539 	 * This is called from entry_64.S early in handling a fault
540 	 * caused by a bad iret to user mode.  To handle the fault
541 	 * correctly, we want move our stack frame to task_pt_regs
542 	 * and we want to pretend that the exception came from the
543 	 * iret target.
544 	 */
545 	struct bad_iret_stack *new_stack =
546 		container_of(task_pt_regs(current),
547 			     struct bad_iret_stack, regs);
548 
549 	/* Copy the IRET target to the new stack. */
550 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
551 
552 	/* Copy the remainder of the stack from the current stack. */
553 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
554 
555 	BUG_ON(!user_mode(&new_stack->regs));
556 	return new_stack;
557 }
558 NOKPROBE_SYMBOL(fixup_bad_iret);
559 #endif
560 
561 static bool is_sysenter_singlestep(struct pt_regs *regs)
562 {
563 	/*
564 	 * We don't try for precision here.  If we're anywhere in the region of
565 	 * code that can be single-stepped in the SYSENTER entry path, then
566 	 * assume that this is a useless single-step trap due to SYSENTER
567 	 * being invoked with TF set.  (We don't know in advance exactly
568 	 * which instructions will be hit because BTF could plausibly
569 	 * be set.)
570 	 */
571 #ifdef CONFIG_X86_32
572 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
573 		(unsigned long)__end_SYSENTER_singlestep_region -
574 		(unsigned long)__begin_SYSENTER_singlestep_region;
575 #elif defined(CONFIG_IA32_EMULATION)
576 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
577 		(unsigned long)__end_entry_SYSENTER_compat -
578 		(unsigned long)entry_SYSENTER_compat;
579 #else
580 	return false;
581 #endif
582 }
583 
584 /*
585  * Our handling of the processor debug registers is non-trivial.
586  * We do not clear them on entry and exit from the kernel. Therefore
587  * it is possible to get a watchpoint trap here from inside the kernel.
588  * However, the code in ./ptrace.c has ensured that the user can
589  * only set watchpoints on userspace addresses. Therefore the in-kernel
590  * watchpoint trap can only occur in code which is reading/writing
591  * from user space. Such code must not hold kernel locks (since it
592  * can equally take a page fault), therefore it is safe to call
593  * force_sig_info even though that claims and releases locks.
594  *
595  * Code in ./signal.c ensures that the debug control register
596  * is restored before we deliver any signal, and therefore that
597  * user code runs with the correct debug control register even though
598  * we clear it here.
599  *
600  * Being careful here means that we don't have to be as careful in a
601  * lot of more complicated places (task switching can be a bit lazy
602  * about restoring all the debug state, and ptrace doesn't have to
603  * find every occurrence of the TF bit that could be saved away even
604  * by user code)
605  *
606  * May run on IST stack.
607  */
608 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
609 {
610 	struct task_struct *tsk = current;
611 	int user_icebp = 0;
612 	unsigned long dr6;
613 	int si_code;
614 
615 	ist_enter(regs);
616 
617 	get_debugreg(dr6, 6);
618 	/*
619 	 * The Intel SDM says:
620 	 *
621 	 *   Certain debug exceptions may clear bits 0-3. The remaining
622 	 *   contents of the DR6 register are never cleared by the
623 	 *   processor. To avoid confusion in identifying debug
624 	 *   exceptions, debug handlers should clear the register before
625 	 *   returning to the interrupted task.
626 	 *
627 	 * Keep it simple: clear DR6 immediately.
628 	 */
629 	set_debugreg(0, 6);
630 
631 	/* Filter out all the reserved bits which are preset to 1 */
632 	dr6 &= ~DR6_RESERVED;
633 
634 	/*
635 	 * The SDM says "The processor clears the BTF flag when it
636 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
637 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
638 	 */
639 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
640 
641 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
642 		     is_sysenter_singlestep(regs))) {
643 		dr6 &= ~DR_STEP;
644 		if (!dr6)
645 			goto exit;
646 		/*
647 		 * else we might have gotten a single-step trap and hit a
648 		 * watchpoint at the same time, in which case we should fall
649 		 * through and handle the watchpoint.
650 		 */
651 	}
652 
653 	/*
654 	 * If dr6 has no reason to give us about the origin of this trap,
655 	 * then it's very likely the result of an icebp/int01 trap.
656 	 * User wants a sigtrap for that.
657 	 */
658 	if (!dr6 && user_mode(regs))
659 		user_icebp = 1;
660 
661 	/* Catch kmemcheck conditions! */
662 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
663 		goto exit;
664 
665 	/* Store the virtualized DR6 value */
666 	tsk->thread.debugreg6 = dr6;
667 
668 #ifdef CONFIG_KPROBES
669 	if (kprobe_debug_handler(regs))
670 		goto exit;
671 #endif
672 
673 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
674 							SIGTRAP) == NOTIFY_STOP)
675 		goto exit;
676 
677 	/*
678 	 * Let others (NMI) know that the debug stack is in use
679 	 * as we may switch to the interrupt stack.
680 	 */
681 	debug_stack_usage_inc();
682 
683 	/* It's safe to allow irq's after DR6 has been saved */
684 	preempt_disable();
685 	cond_local_irq_enable(regs);
686 
687 	if (v8086_mode(regs)) {
688 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
689 					X86_TRAP_DB);
690 		cond_local_irq_disable(regs);
691 		preempt_enable_no_resched();
692 		debug_stack_usage_dec();
693 		goto exit;
694 	}
695 
696 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
697 		/*
698 		 * Historical junk that used to handle SYSENTER single-stepping.
699 		 * This should be unreachable now.  If we survive for a while
700 		 * without anyone hitting this warning, we'll turn this into
701 		 * an oops.
702 		 */
703 		tsk->thread.debugreg6 &= ~DR_STEP;
704 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
705 		regs->flags &= ~X86_EFLAGS_TF;
706 	}
707 	si_code = get_si_code(tsk->thread.debugreg6);
708 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
709 		send_sigtrap(tsk, regs, error_code, si_code);
710 	cond_local_irq_disable(regs);
711 	preempt_enable_no_resched();
712 	debug_stack_usage_dec();
713 
714 exit:
715 #if defined(CONFIG_X86_32)
716 	/*
717 	 * This is the most likely code path that involves non-trivial use
718 	 * of the SYSENTER stack.  Check that we haven't overrun it.
719 	 */
720 	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
721 	     "Overran or corrupted SYSENTER stack\n");
722 #endif
723 	ist_exit(regs);
724 }
725 NOKPROBE_SYMBOL(do_debug);
726 
727 /*
728  * Note that we play around with the 'TS' bit in an attempt to get
729  * the correct behaviour even in the presence of the asynchronous
730  * IRQ13 behaviour
731  */
732 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
733 {
734 	struct task_struct *task = current;
735 	struct fpu *fpu = &task->thread.fpu;
736 	siginfo_t info;
737 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
738 						"simd exception";
739 
740 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
741 		return;
742 	cond_local_irq_enable(regs);
743 
744 	if (!user_mode(regs)) {
745 		if (!fixup_exception(regs, trapnr)) {
746 			task->thread.error_code = error_code;
747 			task->thread.trap_nr = trapnr;
748 			die(str, regs, error_code);
749 		}
750 		return;
751 	}
752 
753 	/*
754 	 * Save the info for the exception handler and clear the error.
755 	 */
756 	fpu__save(fpu);
757 
758 	task->thread.trap_nr	= trapnr;
759 	task->thread.error_code = error_code;
760 	info.si_signo		= SIGFPE;
761 	info.si_errno		= 0;
762 	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
763 
764 	info.si_code = fpu__exception_code(fpu, trapnr);
765 
766 	/* Retry when we get spurious exceptions: */
767 	if (!info.si_code)
768 		return;
769 
770 	force_sig_info(SIGFPE, &info, task);
771 }
772 
773 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
774 {
775 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
776 	math_error(regs, error_code, X86_TRAP_MF);
777 }
778 
779 dotraplinkage void
780 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
781 {
782 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
783 	math_error(regs, error_code, X86_TRAP_XF);
784 }
785 
786 dotraplinkage void
787 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
788 {
789 	cond_local_irq_enable(regs);
790 }
791 
792 dotraplinkage void
793 do_device_not_available(struct pt_regs *regs, long error_code)
794 {
795 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
796 
797 #ifdef CONFIG_MATH_EMULATION
798 	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
799 		struct math_emu_info info = { };
800 
801 		cond_local_irq_enable(regs);
802 
803 		info.regs = regs;
804 		math_emulate(&info);
805 		return;
806 	}
807 #endif
808 	fpu__restore(&current->thread.fpu); /* interrupts still off */
809 #ifdef CONFIG_X86_32
810 	cond_local_irq_enable(regs);
811 #endif
812 }
813 NOKPROBE_SYMBOL(do_device_not_available);
814 
815 #ifdef CONFIG_X86_32
816 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
817 {
818 	siginfo_t info;
819 
820 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
821 	local_irq_enable();
822 
823 	info.si_signo = SIGILL;
824 	info.si_errno = 0;
825 	info.si_code = ILL_BADSTK;
826 	info.si_addr = NULL;
827 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
828 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
829 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
830 			&info);
831 	}
832 }
833 #endif
834 
835 /* Set of traps needed for early debugging. */
836 void __init early_trap_init(void)
837 {
838 	/*
839 	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
840 	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
841 	 * CPU runs at ring 0 so it is impossible to hit an invalid
842 	 * stack.  Using the original stack works well enough at this
843 	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
844 	 * trap_init().
845 	 *
846 	 * We don't need to set trace_idt_table like set_intr_gate(),
847 	 * since we don't have trace_debug and it will be reset to
848 	 * 'debug' in trap_init() by set_intr_gate_ist().
849 	 */
850 	set_intr_gate_notrace(X86_TRAP_DB, debug);
851 	/* int3 can be called from all */
852 	set_system_intr_gate(X86_TRAP_BP, &int3);
853 #ifdef CONFIG_X86_32
854 	set_intr_gate(X86_TRAP_PF, page_fault);
855 #endif
856 	load_idt(&idt_descr);
857 }
858 
859 void __init early_trap_pf_init(void)
860 {
861 #ifdef CONFIG_X86_64
862 	set_intr_gate(X86_TRAP_PF, page_fault);
863 #endif
864 }
865 
866 void __init trap_init(void)
867 {
868 	int i;
869 
870 #ifdef CONFIG_EISA
871 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
872 
873 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
874 		EISA_bus = 1;
875 	early_iounmap(p, 4);
876 #endif
877 
878 	set_intr_gate(X86_TRAP_DE, divide_error);
879 	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
880 	/* int4 can be called from all */
881 	set_system_intr_gate(X86_TRAP_OF, &overflow);
882 	set_intr_gate(X86_TRAP_BR, bounds);
883 	set_intr_gate(X86_TRAP_UD, invalid_op);
884 	set_intr_gate(X86_TRAP_NM, device_not_available);
885 #ifdef CONFIG_X86_32
886 	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
887 #else
888 	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
889 #endif
890 	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
891 	set_intr_gate(X86_TRAP_TS, invalid_TSS);
892 	set_intr_gate(X86_TRAP_NP, segment_not_present);
893 	set_intr_gate(X86_TRAP_SS, stack_segment);
894 	set_intr_gate(X86_TRAP_GP, general_protection);
895 	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
896 	set_intr_gate(X86_TRAP_MF, coprocessor_error);
897 	set_intr_gate(X86_TRAP_AC, alignment_check);
898 #ifdef CONFIG_X86_MCE
899 	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
900 #endif
901 	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
902 
903 	/* Reserve all the builtin and the syscall vector: */
904 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
905 		set_bit(i, used_vectors);
906 
907 #ifdef CONFIG_IA32_EMULATION
908 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
909 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
910 #endif
911 
912 #ifdef CONFIG_X86_32
913 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
914 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
915 #endif
916 
917 	/*
918 	 * Set the IDT descriptor to a fixed read-only location, so that the
919 	 * "sidt" instruction will not leak the location of the kernel, and
920 	 * to defend the IDT against arbitrary memory write vulnerabilities.
921 	 * It will be reloaded in cpu_init() */
922 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
923 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
924 
925 	/*
926 	 * Should be a barrier for any external CPU state:
927 	 */
928 	cpu_init();
929 
930 	/*
931 	 * X86_TRAP_DB and X86_TRAP_BP have been set
932 	 * in early_trap_init(). However, ITS works only after
933 	 * cpu_init() loads TSS. See comments in early_trap_init().
934 	 */
935 	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
936 	/* int3 can be called from all */
937 	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
938 
939 	x86_init.irqs.trap_init();
940 
941 #ifdef CONFIG_X86_64
942 	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
943 	set_nmi_gate(X86_TRAP_DB, &debug);
944 	set_nmi_gate(X86_TRAP_BP, &int3);
945 #endif
946 }
947