1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 41 #if defined(CONFIG_EDAC) 42 #include <linux/edac.h> 43 #endif 44 45 #include <asm/stacktrace.h> 46 #include <asm/processor.h> 47 #include <asm/debugreg.h> 48 #include <linux/atomic.h> 49 #include <asm/text-patching.h> 50 #include <asm/ftrace.h> 51 #include <asm/traps.h> 52 #include <asm/desc.h> 53 #include <asm/fpu/internal.h> 54 #include <asm/cpu_entry_area.h> 55 #include <asm/mce.h> 56 #include <asm/fixmap.h> 57 #include <asm/mach_traps.h> 58 #include <asm/alternative.h> 59 #include <asm/fpu/xstate.h> 60 #include <asm/trace/mpx.h> 61 #include <asm/mpx.h> 62 #include <asm/vm86.h> 63 #include <asm/umip.h> 64 65 #ifdef CONFIG_X86_64 66 #include <asm/x86_init.h> 67 #include <asm/pgalloc.h> 68 #include <asm/proto.h> 69 #else 70 #include <asm/processor-flags.h> 71 #include <asm/setup.h> 72 #include <asm/proto.h> 73 #endif 74 75 DECLARE_BITMAP(system_vectors, NR_VECTORS); 76 77 static inline void cond_local_irq_enable(struct pt_regs *regs) 78 { 79 if (regs->flags & X86_EFLAGS_IF) 80 local_irq_enable(); 81 } 82 83 static inline void cond_local_irq_disable(struct pt_regs *regs) 84 { 85 if (regs->flags & X86_EFLAGS_IF) 86 local_irq_disable(); 87 } 88 89 /* 90 * In IST context, we explicitly disable preemption. This serves two 91 * purposes: it makes it much less likely that we would accidentally 92 * schedule in IST context and it will force a warning if we somehow 93 * manage to schedule by accident. 94 */ 95 void ist_enter(struct pt_regs *regs) 96 { 97 if (user_mode(regs)) { 98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 99 } else { 100 /* 101 * We might have interrupted pretty much anything. In 102 * fact, if we're a machine check, we can even interrupt 103 * NMI processing. We don't want in_nmi() to return true, 104 * but we need to notify RCU. 105 */ 106 rcu_nmi_enter(); 107 } 108 109 preempt_disable(); 110 111 /* This code is a bit fragile. Test it. */ 112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 113 } 114 115 void ist_exit(struct pt_regs *regs) 116 { 117 preempt_enable_no_resched(); 118 119 if (!user_mode(regs)) 120 rcu_nmi_exit(); 121 } 122 123 /** 124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 125 * @regs: regs passed to the IST exception handler 126 * 127 * IST exception handlers normally cannot schedule. As a special 128 * exception, if the exception interrupted userspace code (i.e. 129 * user_mode(regs) would return true) and the exception was not 130 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 131 * begins a non-atomic section within an ist_enter()/ist_exit() region. 132 * Callers are responsible for enabling interrupts themselves inside 133 * the non-atomic section, and callers must call ist_end_non_atomic() 134 * before ist_exit(). 135 */ 136 void ist_begin_non_atomic(struct pt_regs *regs) 137 { 138 BUG_ON(!user_mode(regs)); 139 140 /* 141 * Sanity check: we need to be on the normal thread stack. This 142 * will catch asm bugs and any attempt to use ist_preempt_enable 143 * from double_fault. 144 */ 145 BUG_ON(!on_thread_stack()); 146 147 preempt_enable_no_resched(); 148 } 149 150 /** 151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 152 * 153 * Ends a non-atomic section started with ist_begin_non_atomic(). 154 */ 155 void ist_end_non_atomic(void) 156 { 157 preempt_disable(); 158 } 159 160 int is_valid_bugaddr(unsigned long addr) 161 { 162 unsigned short ud; 163 164 if (addr < TASK_SIZE_MAX) 165 return 0; 166 167 if (probe_kernel_address((unsigned short *)addr, ud)) 168 return 0; 169 170 return ud == INSN_UD0 || ud == INSN_UD2; 171 } 172 173 int fixup_bug(struct pt_regs *regs, int trapnr) 174 { 175 if (trapnr != X86_TRAP_UD) 176 return 0; 177 178 switch (report_bug(regs->ip, regs)) { 179 case BUG_TRAP_TYPE_NONE: 180 case BUG_TRAP_TYPE_BUG: 181 break; 182 183 case BUG_TRAP_TYPE_WARN: 184 regs->ip += LEN_UD2; 185 return 1; 186 } 187 188 return 0; 189 } 190 191 static nokprobe_inline int 192 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, 193 struct pt_regs *regs, long error_code) 194 { 195 if (v8086_mode(regs)) { 196 /* 197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 198 * On nmi (interrupt 2), do_trap should not be called. 199 */ 200 if (trapnr < X86_TRAP_UD) { 201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 202 error_code, trapnr)) 203 return 0; 204 } 205 return -1; 206 } 207 208 if (!user_mode(regs)) { 209 if (fixup_exception(regs, trapnr)) 210 return 0; 211 212 tsk->thread.error_code = error_code; 213 tsk->thread.trap_nr = trapnr; 214 die(str, regs, error_code); 215 } 216 217 return -1; 218 } 219 220 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, 221 siginfo_t *info) 222 { 223 unsigned long siaddr; 224 int sicode; 225 226 switch (trapnr) { 227 default: 228 return SEND_SIG_PRIV; 229 230 case X86_TRAP_DE: 231 sicode = FPE_INTDIV; 232 siaddr = uprobe_get_trap_addr(regs); 233 break; 234 case X86_TRAP_UD: 235 sicode = ILL_ILLOPN; 236 siaddr = uprobe_get_trap_addr(regs); 237 break; 238 case X86_TRAP_AC: 239 sicode = BUS_ADRALN; 240 siaddr = 0; 241 break; 242 } 243 244 info->si_signo = signr; 245 info->si_errno = 0; 246 info->si_code = sicode; 247 info->si_addr = (void __user *)siaddr; 248 return info; 249 } 250 251 static void 252 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 253 long error_code, siginfo_t *info) 254 { 255 struct task_struct *tsk = current; 256 257 258 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 259 return; 260 /* 261 * We want error_code and trap_nr set for userspace faults and 262 * kernelspace faults which result in die(), but not 263 * kernelspace faults which are fixed up. die() gives the 264 * process no chance to handle the signal and notice the 265 * kernel fault information, so that won't result in polluting 266 * the information about previously queued, but not yet 267 * delivered, faults. See also do_general_protection below. 268 */ 269 tsk->thread.error_code = error_code; 270 tsk->thread.trap_nr = trapnr; 271 272 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 273 printk_ratelimit()) { 274 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", 275 tsk->comm, tsk->pid, str, 276 regs->ip, regs->sp, error_code); 277 print_vma_addr(KERN_CONT " in ", regs->ip); 278 pr_cont("\n"); 279 } 280 281 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); 282 } 283 NOKPROBE_SYMBOL(do_trap); 284 285 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 286 unsigned long trapnr, int signr) 287 { 288 siginfo_t info; 289 290 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 291 292 /* 293 * WARN*()s end up here; fix them up before we call the 294 * notifier chain. 295 */ 296 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 297 return; 298 299 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 300 NOTIFY_STOP) { 301 cond_local_irq_enable(regs); 302 do_trap(trapnr, signr, str, regs, error_code, 303 fill_trap_info(regs, signr, trapnr, &info)); 304 } 305 } 306 307 #define DO_ERROR(trapnr, signr, str, name) \ 308 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 309 { \ 310 do_error_trap(regs, error_code, str, trapnr, signr); \ 311 } 312 313 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) 314 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) 315 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) 316 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) 317 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) 318 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) 319 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) 320 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) 321 322 #ifdef CONFIG_VMAP_STACK 323 __visible void __noreturn handle_stack_overflow(const char *message, 324 struct pt_regs *regs, 325 unsigned long fault_address) 326 { 327 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 328 (void *)fault_address, current->stack, 329 (char *)current->stack + THREAD_SIZE - 1); 330 die(message, regs, 0); 331 332 /* Be absolutely certain we don't return. */ 333 panic(message); 334 } 335 #endif 336 337 #ifdef CONFIG_X86_64 338 /* Runs on IST stack */ 339 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 340 { 341 static const char str[] = "double fault"; 342 struct task_struct *tsk = current; 343 #ifdef CONFIG_VMAP_STACK 344 unsigned long cr2; 345 #endif 346 347 #ifdef CONFIG_X86_ESPFIX64 348 extern unsigned char native_irq_return_iret[]; 349 350 /* 351 * If IRET takes a non-IST fault on the espfix64 stack, then we 352 * end up promoting it to a doublefault. In that case, take 353 * advantage of the fact that we're not using the normal (TSS.sp0) 354 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 355 * and then modify our own IRET frame so that, when we return, 356 * we land directly at the #GP(0) vector with the stack already 357 * set up according to its expectations. 358 * 359 * The net result is that our #GP handler will think that we 360 * entered from usermode with the bad user context. 361 * 362 * No need for ist_enter here because we don't use RCU. 363 */ 364 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 365 regs->cs == __KERNEL_CS && 366 regs->ip == (unsigned long)native_irq_return_iret) 367 { 368 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 369 370 /* 371 * regs->sp points to the failing IRET frame on the 372 * ESPFIX64 stack. Copy it to the entry stack. This fills 373 * in gpregs->ss through gpregs->ip. 374 * 375 */ 376 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 377 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 378 379 /* 380 * Adjust our frame so that we return straight to the #GP 381 * vector with the expected RSP value. This is safe because 382 * we won't enable interupts or schedule before we invoke 383 * general_protection, so nothing will clobber the stack 384 * frame we just set up. 385 */ 386 regs->ip = (unsigned long)general_protection; 387 regs->sp = (unsigned long)&gpregs->orig_ax; 388 389 return; 390 } 391 #endif 392 393 ist_enter(regs); 394 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 395 396 tsk->thread.error_code = error_code; 397 tsk->thread.trap_nr = X86_TRAP_DF; 398 399 #ifdef CONFIG_VMAP_STACK 400 /* 401 * If we overflow the stack into a guard page, the CPU will fail 402 * to deliver #PF and will send #DF instead. Similarly, if we 403 * take any non-IST exception while too close to the bottom of 404 * the stack, the processor will get a page fault while 405 * delivering the exception and will generate a double fault. 406 * 407 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 408 * Page-Fault Exception (#PF): 409 * 410 * Processors update CR2 whenever a page fault is detected. If a 411 * second page fault occurs while an earlier page fault is being 412 * delivered, the faulting linear address of the second fault will 413 * overwrite the contents of CR2 (replacing the previous 414 * address). These updates to CR2 occur even if the page fault 415 * results in a double fault or occurs during the delivery of a 416 * double fault. 417 * 418 * The logic below has a small possibility of incorrectly diagnosing 419 * some errors as stack overflows. For example, if the IDT or GDT 420 * gets corrupted such that #GP delivery fails due to a bad descriptor 421 * causing #GP and we hit this condition while CR2 coincidentally 422 * points to the stack guard page, we'll think we overflowed the 423 * stack. Given that we're going to panic one way or another 424 * if this happens, this isn't necessarily worth fixing. 425 * 426 * If necessary, we could improve the test by only diagnosing 427 * a stack overflow if the saved RSP points within 47 bytes of 428 * the bottom of the stack: if RSP == tsk_stack + 48 and we 429 * take an exception, the stack is already aligned and there 430 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 431 * possible error code, so a stack overflow would *not* double 432 * fault. With any less space left, exception delivery could 433 * fail, and, as a practical matter, we've overflowed the 434 * stack even if the actual trigger for the double fault was 435 * something else. 436 */ 437 cr2 = read_cr2(); 438 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 439 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 440 #endif 441 442 #ifdef CONFIG_DOUBLEFAULT 443 df_debug(regs, error_code); 444 #endif 445 /* 446 * This is always a kernel trap and never fixable (and thus must 447 * never return). 448 */ 449 for (;;) 450 die(str, regs, error_code); 451 } 452 #endif 453 454 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 455 { 456 const struct mpx_bndcsr *bndcsr; 457 siginfo_t *info; 458 459 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 460 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 461 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 462 return; 463 cond_local_irq_enable(regs); 464 465 if (!user_mode(regs)) 466 die("bounds", regs, error_code); 467 468 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 469 /* The exception is not from Intel MPX */ 470 goto exit_trap; 471 } 472 473 /* 474 * We need to look at BNDSTATUS to resolve this exception. 475 * A NULL here might mean that it is in its 'init state', 476 * which is all zeros which indicates MPX was not 477 * responsible for the exception. 478 */ 479 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 480 if (!bndcsr) 481 goto exit_trap; 482 483 trace_bounds_exception_mpx(bndcsr); 484 /* 485 * The error code field of the BNDSTATUS register communicates status 486 * information of a bound range exception #BR or operation involving 487 * bound directory. 488 */ 489 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 490 case 2: /* Bound directory has invalid entry. */ 491 if (mpx_handle_bd_fault()) 492 goto exit_trap; 493 break; /* Success, it was handled */ 494 case 1: /* Bound violation. */ 495 info = mpx_generate_siginfo(regs); 496 if (IS_ERR(info)) { 497 /* 498 * We failed to decode the MPX instruction. Act as if 499 * the exception was not caused by MPX. 500 */ 501 goto exit_trap; 502 } 503 /* 504 * Success, we decoded the instruction and retrieved 505 * an 'info' containing the address being accessed 506 * which caused the exception. This information 507 * allows and application to possibly handle the 508 * #BR exception itself. 509 */ 510 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); 511 kfree(info); 512 break; 513 case 0: /* No exception caused by Intel MPX operations. */ 514 goto exit_trap; 515 default: 516 die("bounds", regs, error_code); 517 } 518 519 return; 520 521 exit_trap: 522 /* 523 * This path out is for all the cases where we could not 524 * handle the exception in some way (like allocating a 525 * table or telling userspace about it. We will also end 526 * up here if the kernel has MPX turned off at compile 527 * time.. 528 */ 529 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); 530 } 531 532 dotraplinkage void 533 do_general_protection(struct pt_regs *regs, long error_code) 534 { 535 struct task_struct *tsk; 536 537 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 538 cond_local_irq_enable(regs); 539 540 if (static_cpu_has(X86_FEATURE_UMIP)) { 541 if (user_mode(regs) && fixup_umip_exception(regs)) 542 return; 543 } 544 545 if (v8086_mode(regs)) { 546 local_irq_enable(); 547 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 548 return; 549 } 550 551 tsk = current; 552 if (!user_mode(regs)) { 553 if (fixup_exception(regs, X86_TRAP_GP)) 554 return; 555 556 tsk->thread.error_code = error_code; 557 tsk->thread.trap_nr = X86_TRAP_GP; 558 if (notify_die(DIE_GPF, "general protection fault", regs, error_code, 559 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 560 die("general protection fault", regs, error_code); 561 return; 562 } 563 564 tsk->thread.error_code = error_code; 565 tsk->thread.trap_nr = X86_TRAP_GP; 566 567 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 568 printk_ratelimit()) { 569 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", 570 tsk->comm, task_pid_nr(tsk), 571 regs->ip, regs->sp, error_code); 572 print_vma_addr(KERN_CONT " in ", regs->ip); 573 pr_cont("\n"); 574 } 575 576 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); 577 } 578 NOKPROBE_SYMBOL(do_general_protection); 579 580 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 581 { 582 #ifdef CONFIG_DYNAMIC_FTRACE 583 /* 584 * ftrace must be first, everything else may cause a recursive crash. 585 * See note by declaration of modifying_ftrace_code in ftrace.c 586 */ 587 if (unlikely(atomic_read(&modifying_ftrace_code)) && 588 ftrace_int3_handler(regs)) 589 return; 590 #endif 591 if (poke_int3_handler(regs)) 592 return; 593 594 /* 595 * Use ist_enter despite the fact that we don't use an IST stack. 596 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel 597 * mode or even during context tracking state changes. 598 * 599 * This means that we can't schedule. That's okay. 600 */ 601 ist_enter(regs); 602 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 603 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 604 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 605 SIGTRAP) == NOTIFY_STOP) 606 goto exit; 607 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 608 609 #ifdef CONFIG_KPROBES 610 if (kprobe_int3_handler(regs)) 611 goto exit; 612 #endif 613 614 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 615 SIGTRAP) == NOTIFY_STOP) 616 goto exit; 617 618 cond_local_irq_enable(regs); 619 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); 620 cond_local_irq_disable(regs); 621 622 exit: 623 ist_exit(regs); 624 } 625 NOKPROBE_SYMBOL(do_int3); 626 627 #ifdef CONFIG_X86_64 628 /* 629 * Help handler running on a per-cpu (IST or entry trampoline) stack 630 * to switch to the normal thread stack if the interrupted code was in 631 * user mode. The actual stack switch is done in entry_64.S 632 */ 633 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 634 { 635 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 636 if (regs != eregs) 637 *regs = *eregs; 638 return regs; 639 } 640 NOKPROBE_SYMBOL(sync_regs); 641 642 struct bad_iret_stack { 643 void *error_entry_ret; 644 struct pt_regs regs; 645 }; 646 647 asmlinkage __visible notrace 648 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 649 { 650 /* 651 * This is called from entry_64.S early in handling a fault 652 * caused by a bad iret to user mode. To handle the fault 653 * correctly, we want to move our stack frame to where it would 654 * be had we entered directly on the entry stack (rather than 655 * just below the IRET frame) and we want to pretend that the 656 * exception came from the IRET target. 657 */ 658 struct bad_iret_stack *new_stack = 659 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 660 661 /* Copy the IRET target to the new stack. */ 662 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 663 664 /* Copy the remainder of the stack from the current stack. */ 665 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 666 667 BUG_ON(!user_mode(&new_stack->regs)); 668 return new_stack; 669 } 670 NOKPROBE_SYMBOL(fixup_bad_iret); 671 #endif 672 673 static bool is_sysenter_singlestep(struct pt_regs *regs) 674 { 675 /* 676 * We don't try for precision here. If we're anywhere in the region of 677 * code that can be single-stepped in the SYSENTER entry path, then 678 * assume that this is a useless single-step trap due to SYSENTER 679 * being invoked with TF set. (We don't know in advance exactly 680 * which instructions will be hit because BTF could plausibly 681 * be set.) 682 */ 683 #ifdef CONFIG_X86_32 684 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 685 (unsigned long)__end_SYSENTER_singlestep_region - 686 (unsigned long)__begin_SYSENTER_singlestep_region; 687 #elif defined(CONFIG_IA32_EMULATION) 688 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 689 (unsigned long)__end_entry_SYSENTER_compat - 690 (unsigned long)entry_SYSENTER_compat; 691 #else 692 return false; 693 #endif 694 } 695 696 /* 697 * Our handling of the processor debug registers is non-trivial. 698 * We do not clear them on entry and exit from the kernel. Therefore 699 * it is possible to get a watchpoint trap here from inside the kernel. 700 * However, the code in ./ptrace.c has ensured that the user can 701 * only set watchpoints on userspace addresses. Therefore the in-kernel 702 * watchpoint trap can only occur in code which is reading/writing 703 * from user space. Such code must not hold kernel locks (since it 704 * can equally take a page fault), therefore it is safe to call 705 * force_sig_info even though that claims and releases locks. 706 * 707 * Code in ./signal.c ensures that the debug control register 708 * is restored before we deliver any signal, and therefore that 709 * user code runs with the correct debug control register even though 710 * we clear it here. 711 * 712 * Being careful here means that we don't have to be as careful in a 713 * lot of more complicated places (task switching can be a bit lazy 714 * about restoring all the debug state, and ptrace doesn't have to 715 * find every occurrence of the TF bit that could be saved away even 716 * by user code) 717 * 718 * May run on IST stack. 719 */ 720 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 721 { 722 struct task_struct *tsk = current; 723 int user_icebp = 0; 724 unsigned long dr6; 725 int si_code; 726 727 ist_enter(regs); 728 729 get_debugreg(dr6, 6); 730 /* 731 * The Intel SDM says: 732 * 733 * Certain debug exceptions may clear bits 0-3. The remaining 734 * contents of the DR6 register are never cleared by the 735 * processor. To avoid confusion in identifying debug 736 * exceptions, debug handlers should clear the register before 737 * returning to the interrupted task. 738 * 739 * Keep it simple: clear DR6 immediately. 740 */ 741 set_debugreg(0, 6); 742 743 /* Filter out all the reserved bits which are preset to 1 */ 744 dr6 &= ~DR6_RESERVED; 745 746 /* 747 * The SDM says "The processor clears the BTF flag when it 748 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 749 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 750 */ 751 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 752 753 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 754 is_sysenter_singlestep(regs))) { 755 dr6 &= ~DR_STEP; 756 if (!dr6) 757 goto exit; 758 /* 759 * else we might have gotten a single-step trap and hit a 760 * watchpoint at the same time, in which case we should fall 761 * through and handle the watchpoint. 762 */ 763 } 764 765 /* 766 * If dr6 has no reason to give us about the origin of this trap, 767 * then it's very likely the result of an icebp/int01 trap. 768 * User wants a sigtrap for that. 769 */ 770 if (!dr6 && user_mode(regs)) 771 user_icebp = 1; 772 773 /* Store the virtualized DR6 value */ 774 tsk->thread.debugreg6 = dr6; 775 776 #ifdef CONFIG_KPROBES 777 if (kprobe_debug_handler(regs)) 778 goto exit; 779 #endif 780 781 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 782 SIGTRAP) == NOTIFY_STOP) 783 goto exit; 784 785 /* 786 * Let others (NMI) know that the debug stack is in use 787 * as we may switch to the interrupt stack. 788 */ 789 debug_stack_usage_inc(); 790 791 /* It's safe to allow irq's after DR6 has been saved */ 792 cond_local_irq_enable(regs); 793 794 if (v8086_mode(regs)) { 795 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 796 X86_TRAP_DB); 797 cond_local_irq_disable(regs); 798 debug_stack_usage_dec(); 799 goto exit; 800 } 801 802 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 803 /* 804 * Historical junk that used to handle SYSENTER single-stepping. 805 * This should be unreachable now. If we survive for a while 806 * without anyone hitting this warning, we'll turn this into 807 * an oops. 808 */ 809 tsk->thread.debugreg6 &= ~DR_STEP; 810 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 811 regs->flags &= ~X86_EFLAGS_TF; 812 } 813 si_code = get_si_code(tsk->thread.debugreg6); 814 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 815 send_sigtrap(tsk, regs, error_code, si_code); 816 cond_local_irq_disable(regs); 817 debug_stack_usage_dec(); 818 819 exit: 820 ist_exit(regs); 821 } 822 NOKPROBE_SYMBOL(do_debug); 823 824 /* 825 * Note that we play around with the 'TS' bit in an attempt to get 826 * the correct behaviour even in the presence of the asynchronous 827 * IRQ13 behaviour 828 */ 829 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 830 { 831 struct task_struct *task = current; 832 struct fpu *fpu = &task->thread.fpu; 833 siginfo_t info; 834 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 835 "simd exception"; 836 837 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) 838 return; 839 cond_local_irq_enable(regs); 840 841 if (!user_mode(regs)) { 842 if (!fixup_exception(regs, trapnr)) { 843 task->thread.error_code = error_code; 844 task->thread.trap_nr = trapnr; 845 die(str, regs, error_code); 846 } 847 return; 848 } 849 850 /* 851 * Save the info for the exception handler and clear the error. 852 */ 853 fpu__save(fpu); 854 855 task->thread.trap_nr = trapnr; 856 task->thread.error_code = error_code; 857 info.si_signo = SIGFPE; 858 info.si_errno = 0; 859 info.si_addr = (void __user *)uprobe_get_trap_addr(regs); 860 861 info.si_code = fpu__exception_code(fpu, trapnr); 862 863 /* Retry when we get spurious exceptions: */ 864 if (!info.si_code) 865 return; 866 867 force_sig_info(SIGFPE, &info, task); 868 } 869 870 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 871 { 872 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 873 math_error(regs, error_code, X86_TRAP_MF); 874 } 875 876 dotraplinkage void 877 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 878 { 879 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 880 math_error(regs, error_code, X86_TRAP_XF); 881 } 882 883 dotraplinkage void 884 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 885 { 886 cond_local_irq_enable(regs); 887 } 888 889 dotraplinkage void 890 do_device_not_available(struct pt_regs *regs, long error_code) 891 { 892 unsigned long cr0; 893 894 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 895 896 #ifdef CONFIG_MATH_EMULATION 897 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { 898 struct math_emu_info info = { }; 899 900 cond_local_irq_enable(regs); 901 902 info.regs = regs; 903 math_emulate(&info); 904 return; 905 } 906 #endif 907 908 /* This should not happen. */ 909 cr0 = read_cr0(); 910 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 911 /* Try to fix it up and carry on. */ 912 write_cr0(cr0 & ~X86_CR0_TS); 913 } else { 914 /* 915 * Something terrible happened, and we're better off trying 916 * to kill the task than getting stuck in a never-ending 917 * loop of #NM faults. 918 */ 919 die("unexpected #NM exception", regs, error_code); 920 } 921 } 922 NOKPROBE_SYMBOL(do_device_not_available); 923 924 #ifdef CONFIG_X86_32 925 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 926 { 927 siginfo_t info; 928 929 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 930 local_irq_enable(); 931 932 info.si_signo = SIGILL; 933 info.si_errno = 0; 934 info.si_code = ILL_BADSTK; 935 info.si_addr = NULL; 936 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 937 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 938 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 939 &info); 940 } 941 } 942 #endif 943 944 void __init trap_init(void) 945 { 946 /* Init cpu_entry_area before IST entries are set up */ 947 setup_cpu_entry_areas(); 948 949 idt_setup_traps(); 950 951 /* 952 * Set the IDT descriptor to a fixed read-only location, so that the 953 * "sidt" instruction will not leak the location of the kernel, and 954 * to defend the IDT against arbitrary memory write vulnerabilities. 955 * It will be reloaded in cpu_init() */ 956 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 957 PAGE_KERNEL_RO); 958 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 959 960 /* 961 * Should be a barrier for any external CPU state: 962 */ 963 cpu_init(); 964 965 idt_setup_ist_traps(); 966 967 x86_init.irqs.trap_init(); 968 969 idt_setup_debugidt_traps(); 970 } 971