xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 20e2fc42)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
40 
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
44 
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
64 
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
69 #else
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
73 #endif
74 
75 DECLARE_BITMAP(system_vectors, NR_VECTORS);
76 
77 static inline void cond_local_irq_enable(struct pt_regs *regs)
78 {
79 	if (regs->flags & X86_EFLAGS_IF)
80 		local_irq_enable();
81 }
82 
83 static inline void cond_local_irq_disable(struct pt_regs *regs)
84 {
85 	if (regs->flags & X86_EFLAGS_IF)
86 		local_irq_disable();
87 }
88 
89 /*
90  * In IST context, we explicitly disable preemption.  This serves two
91  * purposes: it makes it much less likely that we would accidentally
92  * schedule in IST context and it will force a warning if we somehow
93  * manage to schedule by accident.
94  */
95 void ist_enter(struct pt_regs *regs)
96 {
97 	if (user_mode(regs)) {
98 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
99 	} else {
100 		/*
101 		 * We might have interrupted pretty much anything.  In
102 		 * fact, if we're a machine check, we can even interrupt
103 		 * NMI processing.  We don't want in_nmi() to return true,
104 		 * but we need to notify RCU.
105 		 */
106 		rcu_nmi_enter();
107 	}
108 
109 	preempt_disable();
110 
111 	/* This code is a bit fragile.  Test it. */
112 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
113 }
114 NOKPROBE_SYMBOL(ist_enter);
115 
116 void ist_exit(struct pt_regs *regs)
117 {
118 	preempt_enable_no_resched();
119 
120 	if (!user_mode(regs))
121 		rcu_nmi_exit();
122 }
123 
124 /**
125  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
126  * @regs:	regs passed to the IST exception handler
127  *
128  * IST exception handlers normally cannot schedule.  As a special
129  * exception, if the exception interrupted userspace code (i.e.
130  * user_mode(regs) would return true) and the exception was not
131  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
132  * begins a non-atomic section within an ist_enter()/ist_exit() region.
133  * Callers are responsible for enabling interrupts themselves inside
134  * the non-atomic section, and callers must call ist_end_non_atomic()
135  * before ist_exit().
136  */
137 void ist_begin_non_atomic(struct pt_regs *regs)
138 {
139 	BUG_ON(!user_mode(regs));
140 
141 	/*
142 	 * Sanity check: we need to be on the normal thread stack.  This
143 	 * will catch asm bugs and any attempt to use ist_preempt_enable
144 	 * from double_fault.
145 	 */
146 	BUG_ON(!on_thread_stack());
147 
148 	preempt_enable_no_resched();
149 }
150 
151 /**
152  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153  *
154  * Ends a non-atomic section started with ist_begin_non_atomic().
155  */
156 void ist_end_non_atomic(void)
157 {
158 	preempt_disable();
159 }
160 
161 int is_valid_bugaddr(unsigned long addr)
162 {
163 	unsigned short ud;
164 
165 	if (addr < TASK_SIZE_MAX)
166 		return 0;
167 
168 	if (probe_kernel_address((unsigned short *)addr, ud))
169 		return 0;
170 
171 	return ud == INSN_UD0 || ud == INSN_UD2;
172 }
173 
174 int fixup_bug(struct pt_regs *regs, int trapnr)
175 {
176 	if (trapnr != X86_TRAP_UD)
177 		return 0;
178 
179 	switch (report_bug(regs->ip, regs)) {
180 	case BUG_TRAP_TYPE_NONE:
181 	case BUG_TRAP_TYPE_BUG:
182 		break;
183 
184 	case BUG_TRAP_TYPE_WARN:
185 		regs->ip += LEN_UD2;
186 		return 1;
187 	}
188 
189 	return 0;
190 }
191 
192 static nokprobe_inline int
193 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
194 		  struct pt_regs *regs,	long error_code)
195 {
196 	if (v8086_mode(regs)) {
197 		/*
198 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199 		 * On nmi (interrupt 2), do_trap should not be called.
200 		 */
201 		if (trapnr < X86_TRAP_UD) {
202 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
203 						error_code, trapnr))
204 				return 0;
205 		}
206 	} else if (!user_mode(regs)) {
207 		if (fixup_exception(regs, trapnr, error_code, 0))
208 			return 0;
209 
210 		tsk->thread.error_code = error_code;
211 		tsk->thread.trap_nr = trapnr;
212 		die(str, regs, error_code);
213 	}
214 
215 	/*
216 	 * We want error_code and trap_nr set for userspace faults and
217 	 * kernelspace faults which result in die(), but not
218 	 * kernelspace faults which are fixed up.  die() gives the
219 	 * process no chance to handle the signal and notice the
220 	 * kernel fault information, so that won't result in polluting
221 	 * the information about previously queued, but not yet
222 	 * delivered, faults.  See also do_general_protection below.
223 	 */
224 	tsk->thread.error_code = error_code;
225 	tsk->thread.trap_nr = trapnr;
226 
227 	return -1;
228 }
229 
230 static void show_signal(struct task_struct *tsk, int signr,
231 			const char *type, const char *desc,
232 			struct pt_regs *regs, long error_code)
233 {
234 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
235 	    printk_ratelimit()) {
236 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
237 			tsk->comm, task_pid_nr(tsk), type, desc,
238 			regs->ip, regs->sp, error_code);
239 		print_vma_addr(KERN_CONT " in ", regs->ip);
240 		pr_cont("\n");
241 	}
242 }
243 
244 static void
245 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
246 	long error_code, int sicode, void __user *addr)
247 {
248 	struct task_struct *tsk = current;
249 
250 
251 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
252 		return;
253 
254 	show_signal(tsk, signr, "trap ", str, regs, error_code);
255 
256 	if (!sicode)
257 		force_sig(signr);
258 	else
259 		force_sig_fault(signr, sicode, addr);
260 }
261 NOKPROBE_SYMBOL(do_trap);
262 
263 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
264 	unsigned long trapnr, int signr, int sicode, void __user *addr)
265 {
266 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
267 
268 	/*
269 	 * WARN*()s end up here; fix them up before we call the
270 	 * notifier chain.
271 	 */
272 	if (!user_mode(regs) && fixup_bug(regs, trapnr))
273 		return;
274 
275 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
276 			NOTIFY_STOP) {
277 		cond_local_irq_enable(regs);
278 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
279 	}
280 }
281 
282 #define IP ((void __user *)uprobe_get_trap_addr(regs))
283 #define DO_ERROR(trapnr, signr, sicode, addr, str, name)		   \
284 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	   \
285 {									   \
286 	do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
287 }
288 
289 DO_ERROR(X86_TRAP_DE,     SIGFPE,  FPE_INTDIV,   IP, "divide error",        divide_error)
290 DO_ERROR(X86_TRAP_OF,     SIGSEGV,          0, NULL, "overflow",            overflow)
291 DO_ERROR(X86_TRAP_UD,     SIGILL,  ILL_ILLOPN,   IP, "invalid opcode",      invalid_op)
292 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,           0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
293 DO_ERROR(X86_TRAP_TS,     SIGSEGV,          0, NULL, "invalid TSS",         invalid_TSS)
294 DO_ERROR(X86_TRAP_NP,     SIGBUS,           0, NULL, "segment not present", segment_not_present)
295 DO_ERROR(X86_TRAP_SS,     SIGBUS,           0, NULL, "stack segment",       stack_segment)
296 DO_ERROR(X86_TRAP_AC,     SIGBUS,  BUS_ADRALN, NULL, "alignment check",     alignment_check)
297 #undef IP
298 
299 #ifdef CONFIG_VMAP_STACK
300 __visible void __noreturn handle_stack_overflow(const char *message,
301 						struct pt_regs *regs,
302 						unsigned long fault_address)
303 {
304 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
305 		 (void *)fault_address, current->stack,
306 		 (char *)current->stack + THREAD_SIZE - 1);
307 	die(message, regs, 0);
308 
309 	/* Be absolutely certain we don't return. */
310 	panic("%s", message);
311 }
312 #endif
313 
314 #ifdef CONFIG_X86_64
315 /* Runs on IST stack */
316 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2)
317 {
318 	static const char str[] = "double fault";
319 	struct task_struct *tsk = current;
320 
321 #ifdef CONFIG_X86_ESPFIX64
322 	extern unsigned char native_irq_return_iret[];
323 
324 	/*
325 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
326 	 * end up promoting it to a doublefault.  In that case, take
327 	 * advantage of the fact that we're not using the normal (TSS.sp0)
328 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
329 	 * and then modify our own IRET frame so that, when we return,
330 	 * we land directly at the #GP(0) vector with the stack already
331 	 * set up according to its expectations.
332 	 *
333 	 * The net result is that our #GP handler will think that we
334 	 * entered from usermode with the bad user context.
335 	 *
336 	 * No need for ist_enter here because we don't use RCU.
337 	 */
338 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
339 		regs->cs == __KERNEL_CS &&
340 		regs->ip == (unsigned long)native_irq_return_iret)
341 	{
342 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
343 
344 		/*
345 		 * regs->sp points to the failing IRET frame on the
346 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
347 		 * in gpregs->ss through gpregs->ip.
348 		 *
349 		 */
350 		memmove(&gpregs->ip, (void *)regs->sp, 5*8);
351 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
352 
353 		/*
354 		 * Adjust our frame so that we return straight to the #GP
355 		 * vector with the expected RSP value.  This is safe because
356 		 * we won't enable interupts or schedule before we invoke
357 		 * general_protection, so nothing will clobber the stack
358 		 * frame we just set up.
359 		 *
360 		 * We will enter general_protection with kernel GSBASE,
361 		 * which is what the stub expects, given that the faulting
362 		 * RIP will be the IRET instruction.
363 		 */
364 		regs->ip = (unsigned long)general_protection;
365 		regs->sp = (unsigned long)&gpregs->orig_ax;
366 
367 		return;
368 	}
369 #endif
370 
371 	ist_enter(regs);
372 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
373 
374 	tsk->thread.error_code = error_code;
375 	tsk->thread.trap_nr = X86_TRAP_DF;
376 
377 #ifdef CONFIG_VMAP_STACK
378 	/*
379 	 * If we overflow the stack into a guard page, the CPU will fail
380 	 * to deliver #PF and will send #DF instead.  Similarly, if we
381 	 * take any non-IST exception while too close to the bottom of
382 	 * the stack, the processor will get a page fault while
383 	 * delivering the exception and will generate a double fault.
384 	 *
385 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
386 	 * Page-Fault Exception (#PF):
387 	 *
388 	 *   Processors update CR2 whenever a page fault is detected. If a
389 	 *   second page fault occurs while an earlier page fault is being
390 	 *   delivered, the faulting linear address of the second fault will
391 	 *   overwrite the contents of CR2 (replacing the previous
392 	 *   address). These updates to CR2 occur even if the page fault
393 	 *   results in a double fault or occurs during the delivery of a
394 	 *   double fault.
395 	 *
396 	 * The logic below has a small possibility of incorrectly diagnosing
397 	 * some errors as stack overflows.  For example, if the IDT or GDT
398 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
399 	 * causing #GP and we hit this condition while CR2 coincidentally
400 	 * points to the stack guard page, we'll think we overflowed the
401 	 * stack.  Given that we're going to panic one way or another
402 	 * if this happens, this isn't necessarily worth fixing.
403 	 *
404 	 * If necessary, we could improve the test by only diagnosing
405 	 * a stack overflow if the saved RSP points within 47 bytes of
406 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
407 	 * take an exception, the stack is already aligned and there
408 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
409 	 * possible error code, so a stack overflow would *not* double
410 	 * fault.  With any less space left, exception delivery could
411 	 * fail, and, as a practical matter, we've overflowed the
412 	 * stack even if the actual trigger for the double fault was
413 	 * something else.
414 	 */
415 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
416 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
417 #endif
418 
419 #ifdef CONFIG_DOUBLEFAULT
420 	df_debug(regs, error_code);
421 #endif
422 	/*
423 	 * This is always a kernel trap and never fixable (and thus must
424 	 * never return).
425 	 */
426 	for (;;)
427 		die(str, regs, error_code);
428 }
429 #endif
430 
431 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
432 {
433 	const struct mpx_bndcsr *bndcsr;
434 
435 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
436 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
437 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
438 		return;
439 	cond_local_irq_enable(regs);
440 
441 	if (!user_mode(regs))
442 		die("bounds", regs, error_code);
443 
444 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
445 		/* The exception is not from Intel MPX */
446 		goto exit_trap;
447 	}
448 
449 	/*
450 	 * We need to look at BNDSTATUS to resolve this exception.
451 	 * A NULL here might mean that it is in its 'init state',
452 	 * which is all zeros which indicates MPX was not
453 	 * responsible for the exception.
454 	 */
455 	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
456 	if (!bndcsr)
457 		goto exit_trap;
458 
459 	trace_bounds_exception_mpx(bndcsr);
460 	/*
461 	 * The error code field of the BNDSTATUS register communicates status
462 	 * information of a bound range exception #BR or operation involving
463 	 * bound directory.
464 	 */
465 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
466 	case 2:	/* Bound directory has invalid entry. */
467 		if (mpx_handle_bd_fault())
468 			goto exit_trap;
469 		break; /* Success, it was handled */
470 	case 1: /* Bound violation. */
471 	{
472 		struct task_struct *tsk = current;
473 		struct mpx_fault_info mpx;
474 
475 		if (mpx_fault_info(&mpx, regs)) {
476 			/*
477 			 * We failed to decode the MPX instruction.  Act as if
478 			 * the exception was not caused by MPX.
479 			 */
480 			goto exit_trap;
481 		}
482 		/*
483 		 * Success, we decoded the instruction and retrieved
484 		 * an 'mpx' containing the address being accessed
485 		 * which caused the exception.  This information
486 		 * allows and application to possibly handle the
487 		 * #BR exception itself.
488 		 */
489 		if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
490 				       error_code))
491 			break;
492 
493 		show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
494 
495 		force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
496 		break;
497 	}
498 	case 0: /* No exception caused by Intel MPX operations. */
499 		goto exit_trap;
500 	default:
501 		die("bounds", regs, error_code);
502 	}
503 
504 	return;
505 
506 exit_trap:
507 	/*
508 	 * This path out is for all the cases where we could not
509 	 * handle the exception in some way (like allocating a
510 	 * table or telling userspace about it.  We will also end
511 	 * up here if the kernel has MPX turned off at compile
512 	 * time..
513 	 */
514 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
515 }
516 
517 dotraplinkage void
518 do_general_protection(struct pt_regs *regs, long error_code)
519 {
520 	const char *desc = "general protection fault";
521 	struct task_struct *tsk;
522 
523 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
524 	cond_local_irq_enable(regs);
525 
526 	if (static_cpu_has(X86_FEATURE_UMIP)) {
527 		if (user_mode(regs) && fixup_umip_exception(regs))
528 			return;
529 	}
530 
531 	if (v8086_mode(regs)) {
532 		local_irq_enable();
533 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
534 		return;
535 	}
536 
537 	tsk = current;
538 	if (!user_mode(regs)) {
539 		if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
540 			return;
541 
542 		tsk->thread.error_code = error_code;
543 		tsk->thread.trap_nr = X86_TRAP_GP;
544 
545 		/*
546 		 * To be potentially processing a kprobe fault and to
547 		 * trust the result from kprobe_running(), we have to
548 		 * be non-preemptible.
549 		 */
550 		if (!preemptible() && kprobe_running() &&
551 		    kprobe_fault_handler(regs, X86_TRAP_GP))
552 			return;
553 
554 		if (notify_die(DIE_GPF, desc, regs, error_code,
555 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
556 			die(desc, regs, error_code);
557 		return;
558 	}
559 
560 	tsk->thread.error_code = error_code;
561 	tsk->thread.trap_nr = X86_TRAP_GP;
562 
563 	show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
564 
565 	force_sig(SIGSEGV);
566 }
567 NOKPROBE_SYMBOL(do_general_protection);
568 
569 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
570 {
571 #ifdef CONFIG_DYNAMIC_FTRACE
572 	/*
573 	 * ftrace must be first, everything else may cause a recursive crash.
574 	 * See note by declaration of modifying_ftrace_code in ftrace.c
575 	 */
576 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
577 	    ftrace_int3_handler(regs))
578 		return;
579 #endif
580 	if (poke_int3_handler(regs))
581 		return;
582 
583 	/*
584 	 * Use ist_enter despite the fact that we don't use an IST stack.
585 	 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
586 	 * mode or even during context tracking state changes.
587 	 *
588 	 * This means that we can't schedule.  That's okay.
589 	 */
590 	ist_enter(regs);
591 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
592 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
593 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
594 				SIGTRAP) == NOTIFY_STOP)
595 		goto exit;
596 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
597 
598 #ifdef CONFIG_KPROBES
599 	if (kprobe_int3_handler(regs))
600 		goto exit;
601 #endif
602 
603 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
604 			SIGTRAP) == NOTIFY_STOP)
605 		goto exit;
606 
607 	cond_local_irq_enable(regs);
608 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
609 	cond_local_irq_disable(regs);
610 
611 exit:
612 	ist_exit(regs);
613 }
614 NOKPROBE_SYMBOL(do_int3);
615 
616 #ifdef CONFIG_X86_64
617 /*
618  * Help handler running on a per-cpu (IST or entry trampoline) stack
619  * to switch to the normal thread stack if the interrupted code was in
620  * user mode. The actual stack switch is done in entry_64.S
621  */
622 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
623 {
624 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
625 	if (regs != eregs)
626 		*regs = *eregs;
627 	return regs;
628 }
629 NOKPROBE_SYMBOL(sync_regs);
630 
631 struct bad_iret_stack {
632 	void *error_entry_ret;
633 	struct pt_regs regs;
634 };
635 
636 asmlinkage __visible notrace
637 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
638 {
639 	/*
640 	 * This is called from entry_64.S early in handling a fault
641 	 * caused by a bad iret to user mode.  To handle the fault
642 	 * correctly, we want to move our stack frame to where it would
643 	 * be had we entered directly on the entry stack (rather than
644 	 * just below the IRET frame) and we want to pretend that the
645 	 * exception came from the IRET target.
646 	 */
647 	struct bad_iret_stack *new_stack =
648 		(struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
649 
650 	/* Copy the IRET target to the new stack. */
651 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
652 
653 	/* Copy the remainder of the stack from the current stack. */
654 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
655 
656 	BUG_ON(!user_mode(&new_stack->regs));
657 	return new_stack;
658 }
659 NOKPROBE_SYMBOL(fixup_bad_iret);
660 #endif
661 
662 static bool is_sysenter_singlestep(struct pt_regs *regs)
663 {
664 	/*
665 	 * We don't try for precision here.  If we're anywhere in the region of
666 	 * code that can be single-stepped in the SYSENTER entry path, then
667 	 * assume that this is a useless single-step trap due to SYSENTER
668 	 * being invoked with TF set.  (We don't know in advance exactly
669 	 * which instructions will be hit because BTF could plausibly
670 	 * be set.)
671 	 */
672 #ifdef CONFIG_X86_32
673 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
674 		(unsigned long)__end_SYSENTER_singlestep_region -
675 		(unsigned long)__begin_SYSENTER_singlestep_region;
676 #elif defined(CONFIG_IA32_EMULATION)
677 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
678 		(unsigned long)__end_entry_SYSENTER_compat -
679 		(unsigned long)entry_SYSENTER_compat;
680 #else
681 	return false;
682 #endif
683 }
684 
685 /*
686  * Our handling of the processor debug registers is non-trivial.
687  * We do not clear them on entry and exit from the kernel. Therefore
688  * it is possible to get a watchpoint trap here from inside the kernel.
689  * However, the code in ./ptrace.c has ensured that the user can
690  * only set watchpoints on userspace addresses. Therefore the in-kernel
691  * watchpoint trap can only occur in code which is reading/writing
692  * from user space. Such code must not hold kernel locks (since it
693  * can equally take a page fault), therefore it is safe to call
694  * force_sig_info even though that claims and releases locks.
695  *
696  * Code in ./signal.c ensures that the debug control register
697  * is restored before we deliver any signal, and therefore that
698  * user code runs with the correct debug control register even though
699  * we clear it here.
700  *
701  * Being careful here means that we don't have to be as careful in a
702  * lot of more complicated places (task switching can be a bit lazy
703  * about restoring all the debug state, and ptrace doesn't have to
704  * find every occurrence of the TF bit that could be saved away even
705  * by user code)
706  *
707  * May run on IST stack.
708  */
709 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
710 {
711 	struct task_struct *tsk = current;
712 	int user_icebp = 0;
713 	unsigned long dr6;
714 	int si_code;
715 
716 	ist_enter(regs);
717 
718 	get_debugreg(dr6, 6);
719 	/*
720 	 * The Intel SDM says:
721 	 *
722 	 *   Certain debug exceptions may clear bits 0-3. The remaining
723 	 *   contents of the DR6 register are never cleared by the
724 	 *   processor. To avoid confusion in identifying debug
725 	 *   exceptions, debug handlers should clear the register before
726 	 *   returning to the interrupted task.
727 	 *
728 	 * Keep it simple: clear DR6 immediately.
729 	 */
730 	set_debugreg(0, 6);
731 
732 	/* Filter out all the reserved bits which are preset to 1 */
733 	dr6 &= ~DR6_RESERVED;
734 
735 	/*
736 	 * The SDM says "The processor clears the BTF flag when it
737 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
738 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
739 	 */
740 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
741 
742 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
743 		     is_sysenter_singlestep(regs))) {
744 		dr6 &= ~DR_STEP;
745 		if (!dr6)
746 			goto exit;
747 		/*
748 		 * else we might have gotten a single-step trap and hit a
749 		 * watchpoint at the same time, in which case we should fall
750 		 * through and handle the watchpoint.
751 		 */
752 	}
753 
754 	/*
755 	 * If dr6 has no reason to give us about the origin of this trap,
756 	 * then it's very likely the result of an icebp/int01 trap.
757 	 * User wants a sigtrap for that.
758 	 */
759 	if (!dr6 && user_mode(regs))
760 		user_icebp = 1;
761 
762 	/* Store the virtualized DR6 value */
763 	tsk->thread.debugreg6 = dr6;
764 
765 #ifdef CONFIG_KPROBES
766 	if (kprobe_debug_handler(regs))
767 		goto exit;
768 #endif
769 
770 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
771 							SIGTRAP) == NOTIFY_STOP)
772 		goto exit;
773 
774 	/*
775 	 * Let others (NMI) know that the debug stack is in use
776 	 * as we may switch to the interrupt stack.
777 	 */
778 	debug_stack_usage_inc();
779 
780 	/* It's safe to allow irq's after DR6 has been saved */
781 	cond_local_irq_enable(regs);
782 
783 	if (v8086_mode(regs)) {
784 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
785 					X86_TRAP_DB);
786 		cond_local_irq_disable(regs);
787 		debug_stack_usage_dec();
788 		goto exit;
789 	}
790 
791 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
792 		/*
793 		 * Historical junk that used to handle SYSENTER single-stepping.
794 		 * This should be unreachable now.  If we survive for a while
795 		 * without anyone hitting this warning, we'll turn this into
796 		 * an oops.
797 		 */
798 		tsk->thread.debugreg6 &= ~DR_STEP;
799 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
800 		regs->flags &= ~X86_EFLAGS_TF;
801 	}
802 	si_code = get_si_code(tsk->thread.debugreg6);
803 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
804 		send_sigtrap(regs, error_code, si_code);
805 	cond_local_irq_disable(regs);
806 	debug_stack_usage_dec();
807 
808 exit:
809 	ist_exit(regs);
810 }
811 NOKPROBE_SYMBOL(do_debug);
812 
813 /*
814  * Note that we play around with the 'TS' bit in an attempt to get
815  * the correct behaviour even in the presence of the asynchronous
816  * IRQ13 behaviour
817  */
818 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
819 {
820 	struct task_struct *task = current;
821 	struct fpu *fpu = &task->thread.fpu;
822 	int si_code;
823 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
824 						"simd exception";
825 
826 	cond_local_irq_enable(regs);
827 
828 	if (!user_mode(regs)) {
829 		if (fixup_exception(regs, trapnr, error_code, 0))
830 			return;
831 
832 		task->thread.error_code = error_code;
833 		task->thread.trap_nr = trapnr;
834 
835 		if (notify_die(DIE_TRAP, str, regs, error_code,
836 					trapnr, SIGFPE) != NOTIFY_STOP)
837 			die(str, regs, error_code);
838 		return;
839 	}
840 
841 	/*
842 	 * Save the info for the exception handler and clear the error.
843 	 */
844 	fpu__save(fpu);
845 
846 	task->thread.trap_nr	= trapnr;
847 	task->thread.error_code = error_code;
848 
849 	si_code = fpu__exception_code(fpu, trapnr);
850 	/* Retry when we get spurious exceptions: */
851 	if (!si_code)
852 		return;
853 
854 	force_sig_fault(SIGFPE, si_code,
855 			(void __user *)uprobe_get_trap_addr(regs));
856 }
857 
858 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
859 {
860 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
861 	math_error(regs, error_code, X86_TRAP_MF);
862 }
863 
864 dotraplinkage void
865 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
866 {
867 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
868 	math_error(regs, error_code, X86_TRAP_XF);
869 }
870 
871 dotraplinkage void
872 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
873 {
874 	cond_local_irq_enable(regs);
875 }
876 
877 dotraplinkage void
878 do_device_not_available(struct pt_regs *regs, long error_code)
879 {
880 	unsigned long cr0 = read_cr0();
881 
882 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
883 
884 #ifdef CONFIG_MATH_EMULATION
885 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
886 		struct math_emu_info info = { };
887 
888 		cond_local_irq_enable(regs);
889 
890 		info.regs = regs;
891 		math_emulate(&info);
892 		return;
893 	}
894 #endif
895 
896 	/* This should not happen. */
897 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
898 		/* Try to fix it up and carry on. */
899 		write_cr0(cr0 & ~X86_CR0_TS);
900 	} else {
901 		/*
902 		 * Something terrible happened, and we're better off trying
903 		 * to kill the task than getting stuck in a never-ending
904 		 * loop of #NM faults.
905 		 */
906 		die("unexpected #NM exception", regs, error_code);
907 	}
908 }
909 NOKPROBE_SYMBOL(do_device_not_available);
910 
911 #ifdef CONFIG_X86_32
912 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
913 {
914 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
915 	local_irq_enable();
916 
917 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
918 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
919 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
920 			ILL_BADSTK, (void __user *)NULL);
921 	}
922 }
923 #endif
924 
925 void __init trap_init(void)
926 {
927 	/* Init cpu_entry_area before IST entries are set up */
928 	setup_cpu_entry_areas();
929 
930 	idt_setup_traps();
931 
932 	/*
933 	 * Set the IDT descriptor to a fixed read-only location, so that the
934 	 * "sidt" instruction will not leak the location of the kernel, and
935 	 * to defend the IDT against arbitrary memory write vulnerabilities.
936 	 * It will be reloaded in cpu_init() */
937 	cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
938 		    PAGE_KERNEL_RO);
939 	idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
940 
941 	/*
942 	 * Should be a barrier for any external CPU state:
943 	 */
944 	cpu_init();
945 
946 	idt_setup_ist_traps();
947 
948 	x86_init.irqs.trap_init();
949 
950 	idt_setup_debugidt_traps();
951 }
952