xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 1eb4c977)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 #include <linux/interrupt.h>
13 #include <linux/kallsyms.h>
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/kgdb.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/ptrace.h>
22 #include <linux/string.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/kexec.h>
26 #include <linux/sched.h>
27 #include <linux/timer.h>
28 #include <linux/init.h>
29 #include <linux/bug.h>
30 #include <linux/nmi.h>
31 #include <linux/mm.h>
32 #include <linux/smp.h>
33 #include <linux/io.h>
34 
35 #ifdef CONFIG_EISA
36 #include <linux/ioport.h>
37 #include <linux/eisa.h>
38 #endif
39 
40 #ifdef CONFIG_MCA
41 #include <linux/mca.h>
42 #endif
43 
44 #if defined(CONFIG_EDAC)
45 #include <linux/edac.h>
46 #endif
47 
48 #include <asm/kmemcheck.h>
49 #include <asm/stacktrace.h>
50 #include <asm/processor.h>
51 #include <asm/debugreg.h>
52 #include <linux/atomic.h>
53 #include <asm/system.h>
54 #include <asm/traps.h>
55 #include <asm/desc.h>
56 #include <asm/i387.h>
57 #include <asm/fpu-internal.h>
58 #include <asm/mce.h>
59 
60 #include <asm/mach_traps.h>
61 
62 #ifdef CONFIG_X86_64
63 #include <asm/x86_init.h>
64 #include <asm/pgalloc.h>
65 #include <asm/proto.h>
66 #else
67 #include <asm/processor-flags.h>
68 #include <asm/setup.h>
69 
70 asmlinkage int system_call(void);
71 
72 /* Do we ignore FPU interrupts ? */
73 char ignore_fpu_irq;
74 
75 /*
76  * The IDT has to be page-aligned to simplify the Pentium
77  * F0 0F bug workaround.
78  */
79 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
80 #endif
81 
82 DECLARE_BITMAP(used_vectors, NR_VECTORS);
83 EXPORT_SYMBOL_GPL(used_vectors);
84 
85 static inline void conditional_sti(struct pt_regs *regs)
86 {
87 	if (regs->flags & X86_EFLAGS_IF)
88 		local_irq_enable();
89 }
90 
91 static inline void preempt_conditional_sti(struct pt_regs *regs)
92 {
93 	inc_preempt_count();
94 	if (regs->flags & X86_EFLAGS_IF)
95 		local_irq_enable();
96 }
97 
98 static inline void conditional_cli(struct pt_regs *regs)
99 {
100 	if (regs->flags & X86_EFLAGS_IF)
101 		local_irq_disable();
102 }
103 
104 static inline void preempt_conditional_cli(struct pt_regs *regs)
105 {
106 	if (regs->flags & X86_EFLAGS_IF)
107 		local_irq_disable();
108 	dec_preempt_count();
109 }
110 
111 static void __kprobes
112 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
113 	long error_code, siginfo_t *info)
114 {
115 	struct task_struct *tsk = current;
116 
117 #ifdef CONFIG_X86_32
118 	if (regs->flags & X86_VM_MASK) {
119 		/*
120 		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
121 		 * On nmi (interrupt 2), do_trap should not be called.
122 		 */
123 		if (trapnr < 6)
124 			goto vm86_trap;
125 		goto trap_signal;
126 	}
127 #endif
128 
129 	if (!user_mode(regs))
130 		goto kernel_trap;
131 
132 #ifdef CONFIG_X86_32
133 trap_signal:
134 #endif
135 	/*
136 	 * We want error_code and trap_no set for userspace faults and
137 	 * kernelspace faults which result in die(), but not
138 	 * kernelspace faults which are fixed up.  die() gives the
139 	 * process no chance to handle the signal and notice the
140 	 * kernel fault information, so that won't result in polluting
141 	 * the information about previously queued, but not yet
142 	 * delivered, faults.  See also do_general_protection below.
143 	 */
144 	tsk->thread.error_code = error_code;
145 	tsk->thread.trap_no = trapnr;
146 
147 #ifdef CONFIG_X86_64
148 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
149 	    printk_ratelimit()) {
150 		printk(KERN_INFO
151 		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
152 		       tsk->comm, tsk->pid, str,
153 		       regs->ip, regs->sp, error_code);
154 		print_vma_addr(" in ", regs->ip);
155 		printk("\n");
156 	}
157 #endif
158 
159 	if (info)
160 		force_sig_info(signr, info, tsk);
161 	else
162 		force_sig(signr, tsk);
163 	return;
164 
165 kernel_trap:
166 	if (!fixup_exception(regs)) {
167 		tsk->thread.error_code = error_code;
168 		tsk->thread.trap_no = trapnr;
169 		die(str, regs, error_code);
170 	}
171 	return;
172 
173 #ifdef CONFIG_X86_32
174 vm86_trap:
175 	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
176 						error_code, trapnr))
177 		goto trap_signal;
178 	return;
179 #endif
180 }
181 
182 #define DO_ERROR(trapnr, signr, str, name)				\
183 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
184 {									\
185 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
186 							== NOTIFY_STOP)	\
187 		return;							\
188 	conditional_sti(regs);						\
189 	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
190 }
191 
192 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
193 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
194 {									\
195 	siginfo_t info;							\
196 	info.si_signo = signr;						\
197 	info.si_errno = 0;						\
198 	info.si_code = sicode;						\
199 	info.si_addr = (void __user *)siaddr;				\
200 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
201 							== NOTIFY_STOP)	\
202 		return;							\
203 	conditional_sti(regs);						\
204 	do_trap(trapnr, signr, str, regs, error_code, &info);		\
205 }
206 
207 DO_ERROR_INFO(0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
208 DO_ERROR(4, SIGSEGV, "overflow", overflow)
209 DO_ERROR(5, SIGSEGV, "bounds", bounds)
210 DO_ERROR_INFO(6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
211 DO_ERROR(9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
212 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
213 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
214 #ifdef CONFIG_X86_32
215 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
216 #endif
217 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
218 
219 #ifdef CONFIG_X86_64
220 /* Runs on IST stack */
221 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
222 {
223 	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
224 			12, SIGBUS) == NOTIFY_STOP)
225 		return;
226 	preempt_conditional_sti(regs);
227 	do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
228 	preempt_conditional_cli(regs);
229 }
230 
231 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
232 {
233 	static const char str[] = "double fault";
234 	struct task_struct *tsk = current;
235 
236 	/* Return not checked because double check cannot be ignored */
237 	notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
238 
239 	tsk->thread.error_code = error_code;
240 	tsk->thread.trap_no = 8;
241 
242 	/*
243 	 * This is always a kernel trap and never fixable (and thus must
244 	 * never return).
245 	 */
246 	for (;;)
247 		die(str, regs, error_code);
248 }
249 #endif
250 
251 dotraplinkage void __kprobes
252 do_general_protection(struct pt_regs *regs, long error_code)
253 {
254 	struct task_struct *tsk;
255 
256 	conditional_sti(regs);
257 
258 #ifdef CONFIG_X86_32
259 	if (regs->flags & X86_VM_MASK)
260 		goto gp_in_vm86;
261 #endif
262 
263 	tsk = current;
264 	if (!user_mode(regs))
265 		goto gp_in_kernel;
266 
267 	tsk->thread.error_code = error_code;
268 	tsk->thread.trap_no = 13;
269 
270 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
271 			printk_ratelimit()) {
272 		printk(KERN_INFO
273 			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
274 			tsk->comm, task_pid_nr(tsk),
275 			regs->ip, regs->sp, error_code);
276 		print_vma_addr(" in ", regs->ip);
277 		printk("\n");
278 	}
279 
280 	force_sig(SIGSEGV, tsk);
281 	return;
282 
283 #ifdef CONFIG_X86_32
284 gp_in_vm86:
285 	local_irq_enable();
286 	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
287 	return;
288 #endif
289 
290 gp_in_kernel:
291 	if (fixup_exception(regs))
292 		return;
293 
294 	tsk->thread.error_code = error_code;
295 	tsk->thread.trap_no = 13;
296 	if (notify_die(DIE_GPF, "general protection fault", regs,
297 				error_code, 13, SIGSEGV) == NOTIFY_STOP)
298 		return;
299 	die("general protection fault", regs, error_code);
300 }
301 
302 /* May run on IST stack. */
303 dotraplinkage void __kprobes do_int3(struct pt_regs *regs, long error_code)
304 {
305 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
306 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
307 			== NOTIFY_STOP)
308 		return;
309 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
310 
311 	if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
312 			== NOTIFY_STOP)
313 		return;
314 
315 	/*
316 	 * Let others (NMI) know that the debug stack is in use
317 	 * as we may switch to the interrupt stack.
318 	 */
319 	debug_stack_usage_inc();
320 	preempt_conditional_sti(regs);
321 	do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
322 	preempt_conditional_cli(regs);
323 	debug_stack_usage_dec();
324 }
325 
326 #ifdef CONFIG_X86_64
327 /*
328  * Help handler running on IST stack to switch back to user stack
329  * for scheduling or signal handling. The actual stack switch is done in
330  * entry.S
331  */
332 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
333 {
334 	struct pt_regs *regs = eregs;
335 	/* Did already sync */
336 	if (eregs == (struct pt_regs *)eregs->sp)
337 		;
338 	/* Exception from user space */
339 	else if (user_mode(eregs))
340 		regs = task_pt_regs(current);
341 	/*
342 	 * Exception from kernel and interrupts are enabled. Move to
343 	 * kernel process stack.
344 	 */
345 	else if (eregs->flags & X86_EFLAGS_IF)
346 		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
347 	if (eregs != regs)
348 		*regs = *eregs;
349 	return regs;
350 }
351 #endif
352 
353 /*
354  * Our handling of the processor debug registers is non-trivial.
355  * We do not clear them on entry and exit from the kernel. Therefore
356  * it is possible to get a watchpoint trap here from inside the kernel.
357  * However, the code in ./ptrace.c has ensured that the user can
358  * only set watchpoints on userspace addresses. Therefore the in-kernel
359  * watchpoint trap can only occur in code which is reading/writing
360  * from user space. Such code must not hold kernel locks (since it
361  * can equally take a page fault), therefore it is safe to call
362  * force_sig_info even though that claims and releases locks.
363  *
364  * Code in ./signal.c ensures that the debug control register
365  * is restored before we deliver any signal, and therefore that
366  * user code runs with the correct debug control register even though
367  * we clear it here.
368  *
369  * Being careful here means that we don't have to be as careful in a
370  * lot of more complicated places (task switching can be a bit lazy
371  * about restoring all the debug state, and ptrace doesn't have to
372  * find every occurrence of the TF bit that could be saved away even
373  * by user code)
374  *
375  * May run on IST stack.
376  */
377 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
378 {
379 	struct task_struct *tsk = current;
380 	int user_icebp = 0;
381 	unsigned long dr6;
382 	int si_code;
383 
384 	get_debugreg(dr6, 6);
385 
386 	/* Filter out all the reserved bits which are preset to 1 */
387 	dr6 &= ~DR6_RESERVED;
388 
389 	/*
390 	 * If dr6 has no reason to give us about the origin of this trap,
391 	 * then it's very likely the result of an icebp/int01 trap.
392 	 * User wants a sigtrap for that.
393 	 */
394 	if (!dr6 && user_mode(regs))
395 		user_icebp = 1;
396 
397 	/* Catch kmemcheck conditions first of all! */
398 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
399 		return;
400 
401 	/* DR6 may or may not be cleared by the CPU */
402 	set_debugreg(0, 6);
403 
404 	/*
405 	 * The processor cleared BTF, so don't mark that we need it set.
406 	 */
407 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
408 
409 	/* Store the virtualized DR6 value */
410 	tsk->thread.debugreg6 = dr6;
411 
412 	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
413 							SIGTRAP) == NOTIFY_STOP)
414 		return;
415 
416 	/*
417 	 * Let others (NMI) know that the debug stack is in use
418 	 * as we may switch to the interrupt stack.
419 	 */
420 	debug_stack_usage_inc();
421 
422 	/* It's safe to allow irq's after DR6 has been saved */
423 	preempt_conditional_sti(regs);
424 
425 	if (regs->flags & X86_VM_MASK) {
426 		handle_vm86_trap((struct kernel_vm86_regs *) regs,
427 				error_code, 1);
428 		preempt_conditional_cli(regs);
429 		debug_stack_usage_dec();
430 		return;
431 	}
432 
433 	/*
434 	 * Single-stepping through system calls: ignore any exceptions in
435 	 * kernel space, but re-enable TF when returning to user mode.
436 	 *
437 	 * We already checked v86 mode above, so we can check for kernel mode
438 	 * by just checking the CPL of CS.
439 	 */
440 	if ((dr6 & DR_STEP) && !user_mode(regs)) {
441 		tsk->thread.debugreg6 &= ~DR_STEP;
442 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
443 		regs->flags &= ~X86_EFLAGS_TF;
444 	}
445 	si_code = get_si_code(tsk->thread.debugreg6);
446 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
447 		send_sigtrap(tsk, regs, error_code, si_code);
448 	preempt_conditional_cli(regs);
449 	debug_stack_usage_dec();
450 
451 	return;
452 }
453 
454 /*
455  * Note that we play around with the 'TS' bit in an attempt to get
456  * the correct behaviour even in the presence of the asynchronous
457  * IRQ13 behaviour
458  */
459 void math_error(struct pt_regs *regs, int error_code, int trapnr)
460 {
461 	struct task_struct *task = current;
462 	siginfo_t info;
463 	unsigned short err;
464 	char *str = (trapnr == 16) ? "fpu exception" : "simd exception";
465 
466 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
467 		return;
468 	conditional_sti(regs);
469 
470 	if (!user_mode_vm(regs))
471 	{
472 		if (!fixup_exception(regs)) {
473 			task->thread.error_code = error_code;
474 			task->thread.trap_no = trapnr;
475 			die(str, regs, error_code);
476 		}
477 		return;
478 	}
479 
480 	/*
481 	 * Save the info for the exception handler and clear the error.
482 	 */
483 	save_init_fpu(task);
484 	task->thread.trap_no = trapnr;
485 	task->thread.error_code = error_code;
486 	info.si_signo = SIGFPE;
487 	info.si_errno = 0;
488 	info.si_addr = (void __user *)regs->ip;
489 	if (trapnr == 16) {
490 		unsigned short cwd, swd;
491 		/*
492 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
493 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
494 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
495 		 * fault bit.  We should only be taking one exception at a time,
496 		 * so if this combination doesn't produce any single exception,
497 		 * then we have a bad program that isn't synchronizing its FPU usage
498 		 * and it will suffer the consequences since we won't be able to
499 		 * fully reproduce the context of the exception
500 		 */
501 		cwd = get_fpu_cwd(task);
502 		swd = get_fpu_swd(task);
503 
504 		err = swd & ~cwd;
505 	} else {
506 		/*
507 		 * The SIMD FPU exceptions are handled a little differently, as there
508 		 * is only a single status/control register.  Thus, to determine which
509 		 * unmasked exception was caught we must mask the exception mask bits
510 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
511 		 */
512 		unsigned short mxcsr = get_fpu_mxcsr(task);
513 		err = ~(mxcsr >> 7) & mxcsr;
514 	}
515 
516 	if (err & 0x001) {	/* Invalid op */
517 		/*
518 		 * swd & 0x240 == 0x040: Stack Underflow
519 		 * swd & 0x240 == 0x240: Stack Overflow
520 		 * User must clear the SF bit (0x40) if set
521 		 */
522 		info.si_code = FPE_FLTINV;
523 	} else if (err & 0x004) { /* Divide by Zero */
524 		info.si_code = FPE_FLTDIV;
525 	} else if (err & 0x008) { /* Overflow */
526 		info.si_code = FPE_FLTOVF;
527 	} else if (err & 0x012) { /* Denormal, Underflow */
528 		info.si_code = FPE_FLTUND;
529 	} else if (err & 0x020) { /* Precision */
530 		info.si_code = FPE_FLTRES;
531 	} else {
532 		/*
533 		 * If we're using IRQ 13, or supposedly even some trap 16
534 		 * implementations, it's possible we get a spurious trap...
535 		 */
536 		return;		/* Spurious trap, no error */
537 	}
538 	force_sig_info(SIGFPE, &info, task);
539 }
540 
541 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
542 {
543 #ifdef CONFIG_X86_32
544 	ignore_fpu_irq = 1;
545 #endif
546 
547 	math_error(regs, error_code, 16);
548 }
549 
550 dotraplinkage void
551 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
552 {
553 	math_error(regs, error_code, 19);
554 }
555 
556 dotraplinkage void
557 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
558 {
559 	conditional_sti(regs);
560 #if 0
561 	/* No need to warn about this any longer. */
562 	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
563 #endif
564 }
565 
566 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
567 {
568 }
569 
570 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
571 {
572 }
573 
574 /*
575  * 'math_state_restore()' saves the current math information in the
576  * old math state array, and gets the new ones from the current task
577  *
578  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
579  * Don't touch unless you *really* know how it works.
580  *
581  * Must be called with kernel preemption disabled (eg with local
582  * local interrupts as in the case of do_device_not_available).
583  */
584 void math_state_restore(void)
585 {
586 	struct task_struct *tsk = current;
587 
588 	if (!tsk_used_math(tsk)) {
589 		local_irq_enable();
590 		/*
591 		 * does a slab alloc which can sleep
592 		 */
593 		if (init_fpu(tsk)) {
594 			/*
595 			 * ran out of memory!
596 			 */
597 			do_group_exit(SIGKILL);
598 			return;
599 		}
600 		local_irq_disable();
601 	}
602 
603 	__thread_fpu_begin(tsk);
604 	/*
605 	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
606 	 */
607 	if (unlikely(restore_fpu_checking(tsk))) {
608 		__thread_fpu_end(tsk);
609 		force_sig(SIGSEGV, tsk);
610 		return;
611 	}
612 
613 	tsk->fpu_counter++;
614 }
615 EXPORT_SYMBOL_GPL(math_state_restore);
616 
617 dotraplinkage void __kprobes
618 do_device_not_available(struct pt_regs *regs, long error_code)
619 {
620 #ifdef CONFIG_MATH_EMULATION
621 	if (read_cr0() & X86_CR0_EM) {
622 		struct math_emu_info info = { };
623 
624 		conditional_sti(regs);
625 
626 		info.regs = regs;
627 		math_emulate(&info);
628 		return;
629 	}
630 #endif
631 	math_state_restore(); /* interrupts still off */
632 #ifdef CONFIG_X86_32
633 	conditional_sti(regs);
634 #endif
635 }
636 
637 #ifdef CONFIG_X86_32
638 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
639 {
640 	siginfo_t info;
641 	local_irq_enable();
642 
643 	info.si_signo = SIGILL;
644 	info.si_errno = 0;
645 	info.si_code = ILL_BADSTK;
646 	info.si_addr = NULL;
647 	if (notify_die(DIE_TRAP, "iret exception",
648 			regs, error_code, 32, SIGILL) == NOTIFY_STOP)
649 		return;
650 	do_trap(32, SIGILL, "iret exception", regs, error_code, &info);
651 }
652 #endif
653 
654 /* Set of traps needed for early debugging. */
655 void __init early_trap_init(void)
656 {
657 	set_intr_gate_ist(1, &debug, DEBUG_STACK);
658 	/* int3 can be called from all */
659 	set_system_intr_gate_ist(3, &int3, DEBUG_STACK);
660 	set_intr_gate(14, &page_fault);
661 	load_idt(&idt_descr);
662 }
663 
664 void __init trap_init(void)
665 {
666 	int i;
667 
668 #ifdef CONFIG_EISA
669 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
670 
671 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
672 		EISA_bus = 1;
673 	early_iounmap(p, 4);
674 #endif
675 
676 	set_intr_gate(0, &divide_error);
677 	set_intr_gate_ist(2, &nmi, NMI_STACK);
678 	/* int4 can be called from all */
679 	set_system_intr_gate(4, &overflow);
680 	set_intr_gate(5, &bounds);
681 	set_intr_gate(6, &invalid_op);
682 	set_intr_gate(7, &device_not_available);
683 #ifdef CONFIG_X86_32
684 	set_task_gate(8, GDT_ENTRY_DOUBLEFAULT_TSS);
685 #else
686 	set_intr_gate_ist(8, &double_fault, DOUBLEFAULT_STACK);
687 #endif
688 	set_intr_gate(9, &coprocessor_segment_overrun);
689 	set_intr_gate(10, &invalid_TSS);
690 	set_intr_gate(11, &segment_not_present);
691 	set_intr_gate_ist(12, &stack_segment, STACKFAULT_STACK);
692 	set_intr_gate(13, &general_protection);
693 	set_intr_gate(15, &spurious_interrupt_bug);
694 	set_intr_gate(16, &coprocessor_error);
695 	set_intr_gate(17, &alignment_check);
696 #ifdef CONFIG_X86_MCE
697 	set_intr_gate_ist(18, &machine_check, MCE_STACK);
698 #endif
699 	set_intr_gate(19, &simd_coprocessor_error);
700 
701 	/* Reserve all the builtin and the syscall vector: */
702 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
703 		set_bit(i, used_vectors);
704 
705 #ifdef CONFIG_IA32_EMULATION
706 	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
707 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
708 #endif
709 
710 #ifdef CONFIG_X86_32
711 	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
712 	set_bit(SYSCALL_VECTOR, used_vectors);
713 #endif
714 
715 	/*
716 	 * Should be a barrier for any external CPU state:
717 	 */
718 	cpu_init();
719 
720 	x86_init.irqs.trap_init();
721 
722 #ifdef CONFIG_X86_64
723 	memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16);
724 	set_nmi_gate(1, &debug);
725 	set_nmi_gate(3, &int3);
726 #endif
727 }
728