xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 18afb028)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/kmsan.h>
19 #include <linux/spinlock.h>
20 #include <linux/kprobes.h>
21 #include <linux/uaccess.h>
22 #include <linux/kdebug.h>
23 #include <linux/kgdb.h>
24 #include <linux/kernel.h>
25 #include <linux/export.h>
26 #include <linux/ptrace.h>
27 #include <linux/uprobes.h>
28 #include <linux/string.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <linux/kexec.h>
32 #include <linux/sched.h>
33 #include <linux/sched/task_stack.h>
34 #include <linux/timer.h>
35 #include <linux/init.h>
36 #include <linux/bug.h>
37 #include <linux/nmi.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/io.h>
41 #include <linux/hardirq.h>
42 #include <linux/atomic.h>
43 #include <linux/iommu.h>
44 
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <asm/realmode.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/api.h>
54 #include <asm/cpu.h>
55 #include <asm/cpu_entry_area.h>
56 #include <asm/mce.h>
57 #include <asm/fixmap.h>
58 #include <asm/mach_traps.h>
59 #include <asm/alternative.h>
60 #include <asm/fpu/xstate.h>
61 #include <asm/vm86.h>
62 #include <asm/umip.h>
63 #include <asm/insn.h>
64 #include <asm/insn-eval.h>
65 #include <asm/vdso.h>
66 #include <asm/tdx.h>
67 #include <asm/cfi.h>
68 
69 #ifdef CONFIG_X86_64
70 #include <asm/x86_init.h>
71 #else
72 #include <asm/processor-flags.h>
73 #include <asm/setup.h>
74 #endif
75 
76 #include <asm/proto.h>
77 
78 DECLARE_BITMAP(system_vectors, NR_VECTORS);
79 
80 __always_inline int is_valid_bugaddr(unsigned long addr)
81 {
82 	if (addr < TASK_SIZE_MAX)
83 		return 0;
84 
85 	/*
86 	 * We got #UD, if the text isn't readable we'd have gotten
87 	 * a different exception.
88 	 */
89 	return *(unsigned short *)addr == INSN_UD2;
90 }
91 
92 static nokprobe_inline int
93 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
94 		  struct pt_regs *regs,	long error_code)
95 {
96 	if (v8086_mode(regs)) {
97 		/*
98 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
99 		 * On nmi (interrupt 2), do_trap should not be called.
100 		 */
101 		if (trapnr < X86_TRAP_UD) {
102 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
103 						error_code, trapnr))
104 				return 0;
105 		}
106 	} else if (!user_mode(regs)) {
107 		if (fixup_exception(regs, trapnr, error_code, 0))
108 			return 0;
109 
110 		tsk->thread.error_code = error_code;
111 		tsk->thread.trap_nr = trapnr;
112 		die(str, regs, error_code);
113 	} else {
114 		if (fixup_vdso_exception(regs, trapnr, error_code, 0))
115 			return 0;
116 	}
117 
118 	/*
119 	 * We want error_code and trap_nr set for userspace faults and
120 	 * kernelspace faults which result in die(), but not
121 	 * kernelspace faults which are fixed up.  die() gives the
122 	 * process no chance to handle the signal and notice the
123 	 * kernel fault information, so that won't result in polluting
124 	 * the information about previously queued, but not yet
125 	 * delivered, faults.  See also exc_general_protection below.
126 	 */
127 	tsk->thread.error_code = error_code;
128 	tsk->thread.trap_nr = trapnr;
129 
130 	return -1;
131 }
132 
133 static void show_signal(struct task_struct *tsk, int signr,
134 			const char *type, const char *desc,
135 			struct pt_regs *regs, long error_code)
136 {
137 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
138 	    printk_ratelimit()) {
139 		pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
140 			tsk->comm, task_pid_nr(tsk), type, desc,
141 			regs->ip, regs->sp, error_code);
142 		print_vma_addr(KERN_CONT " in ", regs->ip);
143 		pr_cont("\n");
144 	}
145 }
146 
147 static void
148 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
149 	long error_code, int sicode, void __user *addr)
150 {
151 	struct task_struct *tsk = current;
152 
153 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
154 		return;
155 
156 	show_signal(tsk, signr, "trap ", str, regs, error_code);
157 
158 	if (!sicode)
159 		force_sig(signr);
160 	else
161 		force_sig_fault(signr, sicode, addr);
162 }
163 NOKPROBE_SYMBOL(do_trap);
164 
165 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
166 	unsigned long trapnr, int signr, int sicode, void __user *addr)
167 {
168 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
169 
170 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
171 			NOTIFY_STOP) {
172 		cond_local_irq_enable(regs);
173 		do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
174 		cond_local_irq_disable(regs);
175 	}
176 }
177 
178 /*
179  * Posix requires to provide the address of the faulting instruction for
180  * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
181  *
182  * This address is usually regs->ip, but when an uprobe moved the code out
183  * of line then regs->ip points to the XOL code which would confuse
184  * anything which analyzes the fault address vs. the unmodified binary. If
185  * a trap happened in XOL code then uprobe maps regs->ip back to the
186  * original instruction address.
187  */
188 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
189 {
190 	return (void __user *)uprobe_get_trap_addr(regs);
191 }
192 
193 DEFINE_IDTENTRY(exc_divide_error)
194 {
195 	do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
196 		      FPE_INTDIV, error_get_trap_addr(regs));
197 }
198 
199 DEFINE_IDTENTRY(exc_overflow)
200 {
201 	do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
202 }
203 
204 #ifdef CONFIG_X86_F00F_BUG
205 void handle_invalid_op(struct pt_regs *regs)
206 #else
207 static inline void handle_invalid_op(struct pt_regs *regs)
208 #endif
209 {
210 	do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
211 		      ILL_ILLOPN, error_get_trap_addr(regs));
212 }
213 
214 static noinstr bool handle_bug(struct pt_regs *regs)
215 {
216 	bool handled = false;
217 
218 	/*
219 	 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
220 	 * is a rare case that uses @regs without passing them to
221 	 * irqentry_enter().
222 	 */
223 	kmsan_unpoison_entry_regs(regs);
224 	if (!is_valid_bugaddr(regs->ip))
225 		return handled;
226 
227 	/*
228 	 * All lies, just get the WARN/BUG out.
229 	 */
230 	instrumentation_begin();
231 	/*
232 	 * Since we're emulating a CALL with exceptions, restore the interrupt
233 	 * state to what it was at the exception site.
234 	 */
235 	if (regs->flags & X86_EFLAGS_IF)
236 		raw_local_irq_enable();
237 	if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
238 	    handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
239 		regs->ip += LEN_UD2;
240 		handled = true;
241 	}
242 	if (regs->flags & X86_EFLAGS_IF)
243 		raw_local_irq_disable();
244 	instrumentation_end();
245 
246 	return handled;
247 }
248 
249 DEFINE_IDTENTRY_RAW(exc_invalid_op)
250 {
251 	irqentry_state_t state;
252 
253 	/*
254 	 * We use UD2 as a short encoding for 'CALL __WARN', as such
255 	 * handle it before exception entry to avoid recursive WARN
256 	 * in case exception entry is the one triggering WARNs.
257 	 */
258 	if (!user_mode(regs) && handle_bug(regs))
259 		return;
260 
261 	state = irqentry_enter(regs);
262 	instrumentation_begin();
263 	handle_invalid_op(regs);
264 	instrumentation_end();
265 	irqentry_exit(regs, state);
266 }
267 
268 DEFINE_IDTENTRY(exc_coproc_segment_overrun)
269 {
270 	do_error_trap(regs, 0, "coprocessor segment overrun",
271 		      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
272 }
273 
274 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
275 {
276 	do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
277 		      0, NULL);
278 }
279 
280 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
281 {
282 	do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
283 		      SIGBUS, 0, NULL);
284 }
285 
286 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
287 {
288 	do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
289 		      0, NULL);
290 }
291 
292 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
293 {
294 	char *str = "alignment check";
295 
296 	if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
297 		return;
298 
299 	if (!user_mode(regs))
300 		die("Split lock detected\n", regs, error_code);
301 
302 	local_irq_enable();
303 
304 	if (handle_user_split_lock(regs, error_code))
305 		goto out;
306 
307 	do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
308 		error_code, BUS_ADRALN, NULL);
309 
310 out:
311 	local_irq_disable();
312 }
313 
314 #ifdef CONFIG_VMAP_STACK
315 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
316 						unsigned long fault_address,
317 						struct stack_info *info)
318 {
319 	const char *name = stack_type_name(info->type);
320 
321 	printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
322 	       name, (void *)fault_address, info->begin, info->end);
323 
324 	die("stack guard page", regs, 0);
325 
326 	/* Be absolutely certain we don't return. */
327 	panic("%s stack guard hit", name);
328 }
329 #endif
330 
331 /*
332  * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
333  *
334  * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
335  * SDM's warnings about double faults being unrecoverable, returning works as
336  * expected.  Presumably what the SDM actually means is that the CPU may get
337  * the register state wrong on entry, so returning could be a bad idea.
338  *
339  * Various CPU engineers have promised that double faults due to an IRET fault
340  * while the stack is read-only are, in fact, recoverable.
341  *
342  * On x86_32, this is entered through a task gate, and regs are synthesized
343  * from the TSS.  Returning is, in principle, okay, but changes to regs will
344  * be lost.  If, for some reason, we need to return to a context with modified
345  * regs, the shim code could be adjusted to synchronize the registers.
346  *
347  * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
348  * to be read before doing anything else.
349  */
350 DEFINE_IDTENTRY_DF(exc_double_fault)
351 {
352 	static const char str[] = "double fault";
353 	struct task_struct *tsk = current;
354 
355 #ifdef CONFIG_VMAP_STACK
356 	unsigned long address = read_cr2();
357 	struct stack_info info;
358 #endif
359 
360 #ifdef CONFIG_X86_ESPFIX64
361 	extern unsigned char native_irq_return_iret[];
362 
363 	/*
364 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
365 	 * end up promoting it to a doublefault.  In that case, take
366 	 * advantage of the fact that we're not using the normal (TSS.sp0)
367 	 * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
368 	 * and then modify our own IRET frame so that, when we return,
369 	 * we land directly at the #GP(0) vector with the stack already
370 	 * set up according to its expectations.
371 	 *
372 	 * The net result is that our #GP handler will think that we
373 	 * entered from usermode with the bad user context.
374 	 *
375 	 * No need for nmi_enter() here because we don't use RCU.
376 	 */
377 	if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
378 		regs->cs == __KERNEL_CS &&
379 		regs->ip == (unsigned long)native_irq_return_iret)
380 	{
381 		struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
382 		unsigned long *p = (unsigned long *)regs->sp;
383 
384 		/*
385 		 * regs->sp points to the failing IRET frame on the
386 		 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
387 		 * in gpregs->ss through gpregs->ip.
388 		 *
389 		 */
390 		gpregs->ip	= p[0];
391 		gpregs->cs	= p[1];
392 		gpregs->flags	= p[2];
393 		gpregs->sp	= p[3];
394 		gpregs->ss	= p[4];
395 		gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
396 
397 		/*
398 		 * Adjust our frame so that we return straight to the #GP
399 		 * vector with the expected RSP value.  This is safe because
400 		 * we won't enable interrupts or schedule before we invoke
401 		 * general_protection, so nothing will clobber the stack
402 		 * frame we just set up.
403 		 *
404 		 * We will enter general_protection with kernel GSBASE,
405 		 * which is what the stub expects, given that the faulting
406 		 * RIP will be the IRET instruction.
407 		 */
408 		regs->ip = (unsigned long)asm_exc_general_protection;
409 		regs->sp = (unsigned long)&gpregs->orig_ax;
410 
411 		return;
412 	}
413 #endif
414 
415 	irqentry_nmi_enter(regs);
416 	instrumentation_begin();
417 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
418 
419 	tsk->thread.error_code = error_code;
420 	tsk->thread.trap_nr = X86_TRAP_DF;
421 
422 #ifdef CONFIG_VMAP_STACK
423 	/*
424 	 * If we overflow the stack into a guard page, the CPU will fail
425 	 * to deliver #PF and will send #DF instead.  Similarly, if we
426 	 * take any non-IST exception while too close to the bottom of
427 	 * the stack, the processor will get a page fault while
428 	 * delivering the exception and will generate a double fault.
429 	 *
430 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
431 	 * Page-Fault Exception (#PF):
432 	 *
433 	 *   Processors update CR2 whenever a page fault is detected. If a
434 	 *   second page fault occurs while an earlier page fault is being
435 	 *   delivered, the faulting linear address of the second fault will
436 	 *   overwrite the contents of CR2 (replacing the previous
437 	 *   address). These updates to CR2 occur even if the page fault
438 	 *   results in a double fault or occurs during the delivery of a
439 	 *   double fault.
440 	 *
441 	 * The logic below has a small possibility of incorrectly diagnosing
442 	 * some errors as stack overflows.  For example, if the IDT or GDT
443 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
444 	 * causing #GP and we hit this condition while CR2 coincidentally
445 	 * points to the stack guard page, we'll think we overflowed the
446 	 * stack.  Given that we're going to panic one way or another
447 	 * if this happens, this isn't necessarily worth fixing.
448 	 *
449 	 * If necessary, we could improve the test by only diagnosing
450 	 * a stack overflow if the saved RSP points within 47 bytes of
451 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
452 	 * take an exception, the stack is already aligned and there
453 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
454 	 * possible error code, so a stack overflow would *not* double
455 	 * fault.  With any less space left, exception delivery could
456 	 * fail, and, as a practical matter, we've overflowed the
457 	 * stack even if the actual trigger for the double fault was
458 	 * something else.
459 	 */
460 	if (get_stack_guard_info((void *)address, &info))
461 		handle_stack_overflow(regs, address, &info);
462 #endif
463 
464 	pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
465 	die("double fault", regs, error_code);
466 	panic("Machine halted.");
467 	instrumentation_end();
468 }
469 
470 DEFINE_IDTENTRY(exc_bounds)
471 {
472 	if (notify_die(DIE_TRAP, "bounds", regs, 0,
473 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
474 		return;
475 	cond_local_irq_enable(regs);
476 
477 	if (!user_mode(regs))
478 		die("bounds", regs, 0);
479 
480 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
481 
482 	cond_local_irq_disable(regs);
483 }
484 
485 enum kernel_gp_hint {
486 	GP_NO_HINT,
487 	GP_NON_CANONICAL,
488 	GP_CANONICAL
489 };
490 
491 /*
492  * When an uncaught #GP occurs, try to determine the memory address accessed by
493  * the instruction and return that address to the caller. Also, try to figure
494  * out whether any part of the access to that address was non-canonical.
495  */
496 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
497 						 unsigned long *addr)
498 {
499 	u8 insn_buf[MAX_INSN_SIZE];
500 	struct insn insn;
501 	int ret;
502 
503 	if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
504 			MAX_INSN_SIZE))
505 		return GP_NO_HINT;
506 
507 	ret = insn_decode_kernel(&insn, insn_buf);
508 	if (ret < 0)
509 		return GP_NO_HINT;
510 
511 	*addr = (unsigned long)insn_get_addr_ref(&insn, regs);
512 	if (*addr == -1UL)
513 		return GP_NO_HINT;
514 
515 #ifdef CONFIG_X86_64
516 	/*
517 	 * Check that:
518 	 *  - the operand is not in the kernel half
519 	 *  - the last byte of the operand is not in the user canonical half
520 	 */
521 	if (*addr < ~__VIRTUAL_MASK &&
522 	    *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
523 		return GP_NON_CANONICAL;
524 #endif
525 
526 	return GP_CANONICAL;
527 }
528 
529 #define GPFSTR "general protection fault"
530 
531 static bool fixup_iopl_exception(struct pt_regs *regs)
532 {
533 	struct thread_struct *t = &current->thread;
534 	unsigned char byte;
535 	unsigned long ip;
536 
537 	if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
538 		return false;
539 
540 	if (insn_get_effective_ip(regs, &ip))
541 		return false;
542 
543 	if (get_user(byte, (const char __user *)ip))
544 		return false;
545 
546 	if (byte != 0xfa && byte != 0xfb)
547 		return false;
548 
549 	if (!t->iopl_warn && printk_ratelimit()) {
550 		pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
551 		       current->comm, task_pid_nr(current), ip);
552 		print_vma_addr(KERN_CONT " in ", ip);
553 		pr_cont("\n");
554 		t->iopl_warn = 1;
555 	}
556 
557 	regs->ip += 1;
558 	return true;
559 }
560 
561 /*
562  * The unprivileged ENQCMD instruction generates #GPs if the
563  * IA32_PASID MSR has not been populated.  If possible, populate
564  * the MSR from a PASID previously allocated to the mm.
565  */
566 static bool try_fixup_enqcmd_gp(void)
567 {
568 #ifdef CONFIG_IOMMU_SVA
569 	u32 pasid;
570 
571 	/*
572 	 * MSR_IA32_PASID is managed using XSAVE.  Directly
573 	 * writing to the MSR is only possible when fpregs
574 	 * are valid and the fpstate is not.  This is
575 	 * guaranteed when handling a userspace exception
576 	 * in *before* interrupts are re-enabled.
577 	 */
578 	lockdep_assert_irqs_disabled();
579 
580 	/*
581 	 * Hardware without ENQCMD will not generate
582 	 * #GPs that can be fixed up here.
583 	 */
584 	if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
585 		return false;
586 
587 	/*
588 	 * If the mm has not been allocated a
589 	 * PASID, the #GP can not be fixed up.
590 	 */
591 	if (!mm_valid_pasid(current->mm))
592 		return false;
593 
594 	pasid = current->mm->pasid;
595 
596 	/*
597 	 * Did this thread already have its PASID activated?
598 	 * If so, the #GP must be from something else.
599 	 */
600 	if (current->pasid_activated)
601 		return false;
602 
603 	wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
604 	current->pasid_activated = 1;
605 
606 	return true;
607 #else
608 	return false;
609 #endif
610 }
611 
612 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
613 				    unsigned long error_code, const char *str,
614 				    unsigned long address)
615 {
616 	if (fixup_exception(regs, trapnr, error_code, address))
617 		return true;
618 
619 	current->thread.error_code = error_code;
620 	current->thread.trap_nr = trapnr;
621 
622 	/*
623 	 * To be potentially processing a kprobe fault and to trust the result
624 	 * from kprobe_running(), we have to be non-preemptible.
625 	 */
626 	if (!preemptible() && kprobe_running() &&
627 	    kprobe_fault_handler(regs, trapnr))
628 		return true;
629 
630 	return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
631 }
632 
633 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
634 				   unsigned long error_code, const char *str)
635 {
636 	current->thread.error_code = error_code;
637 	current->thread.trap_nr = trapnr;
638 	show_signal(current, SIGSEGV, "", str, regs, error_code);
639 	force_sig(SIGSEGV);
640 }
641 
642 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
643 {
644 	char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
645 	enum kernel_gp_hint hint = GP_NO_HINT;
646 	unsigned long gp_addr;
647 
648 	if (user_mode(regs) && try_fixup_enqcmd_gp())
649 		return;
650 
651 	cond_local_irq_enable(regs);
652 
653 	if (static_cpu_has(X86_FEATURE_UMIP)) {
654 		if (user_mode(regs) && fixup_umip_exception(regs))
655 			goto exit;
656 	}
657 
658 	if (v8086_mode(regs)) {
659 		local_irq_enable();
660 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
661 		local_irq_disable();
662 		return;
663 	}
664 
665 	if (user_mode(regs)) {
666 		if (fixup_iopl_exception(regs))
667 			goto exit;
668 
669 		if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
670 			goto exit;
671 
672 		gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
673 		goto exit;
674 	}
675 
676 	if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
677 		goto exit;
678 
679 	if (error_code)
680 		snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
681 	else
682 		hint = get_kernel_gp_address(regs, &gp_addr);
683 
684 	if (hint != GP_NO_HINT)
685 		snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
686 			 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
687 						    : "maybe for address",
688 			 gp_addr);
689 
690 	/*
691 	 * KASAN is interested only in the non-canonical case, clear it
692 	 * otherwise.
693 	 */
694 	if (hint != GP_NON_CANONICAL)
695 		gp_addr = 0;
696 
697 	die_addr(desc, regs, error_code, gp_addr);
698 
699 exit:
700 	cond_local_irq_disable(regs);
701 }
702 
703 static bool do_int3(struct pt_regs *regs)
704 {
705 	int res;
706 
707 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
708 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
709 			 SIGTRAP) == NOTIFY_STOP)
710 		return true;
711 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
712 
713 #ifdef CONFIG_KPROBES
714 	if (kprobe_int3_handler(regs))
715 		return true;
716 #endif
717 	res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
718 
719 	return res == NOTIFY_STOP;
720 }
721 NOKPROBE_SYMBOL(do_int3);
722 
723 static void do_int3_user(struct pt_regs *regs)
724 {
725 	if (do_int3(regs))
726 		return;
727 
728 	cond_local_irq_enable(regs);
729 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
730 	cond_local_irq_disable(regs);
731 }
732 
733 DEFINE_IDTENTRY_RAW(exc_int3)
734 {
735 	/*
736 	 * poke_int3_handler() is completely self contained code; it does (and
737 	 * must) *NOT* call out to anything, lest it hits upon yet another
738 	 * INT3.
739 	 */
740 	if (poke_int3_handler(regs))
741 		return;
742 
743 	/*
744 	 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
745 	 * and therefore can trigger INT3, hence poke_int3_handler() must
746 	 * be done before. If the entry came from kernel mode, then use
747 	 * nmi_enter() because the INT3 could have been hit in any context
748 	 * including NMI.
749 	 */
750 	if (user_mode(regs)) {
751 		irqentry_enter_from_user_mode(regs);
752 		instrumentation_begin();
753 		do_int3_user(regs);
754 		instrumentation_end();
755 		irqentry_exit_to_user_mode(regs);
756 	} else {
757 		irqentry_state_t irq_state = irqentry_nmi_enter(regs);
758 
759 		instrumentation_begin();
760 		if (!do_int3(regs))
761 			die("int3", regs, 0);
762 		instrumentation_end();
763 		irqentry_nmi_exit(regs, irq_state);
764 	}
765 }
766 
767 #ifdef CONFIG_X86_64
768 /*
769  * Help handler running on a per-cpu (IST or entry trampoline) stack
770  * to switch to the normal thread stack if the interrupted code was in
771  * user mode. The actual stack switch is done in entry_64.S
772  */
773 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
774 {
775 	struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
776 	if (regs != eregs)
777 		*regs = *eregs;
778 	return regs;
779 }
780 
781 #ifdef CONFIG_AMD_MEM_ENCRYPT
782 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
783 {
784 	unsigned long sp, *stack;
785 	struct stack_info info;
786 	struct pt_regs *regs_ret;
787 
788 	/*
789 	 * In the SYSCALL entry path the RSP value comes from user-space - don't
790 	 * trust it and switch to the current kernel stack
791 	 */
792 	if (ip_within_syscall_gap(regs)) {
793 		sp = this_cpu_read(pcpu_hot.top_of_stack);
794 		goto sync;
795 	}
796 
797 	/*
798 	 * From here on the RSP value is trusted. Now check whether entry
799 	 * happened from a safe stack. Not safe are the entry or unknown stacks,
800 	 * use the fall-back stack instead in this case.
801 	 */
802 	sp    = regs->sp;
803 	stack = (unsigned long *)sp;
804 
805 	if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
806 	    info.type > STACK_TYPE_EXCEPTION_LAST)
807 		sp = __this_cpu_ist_top_va(VC2);
808 
809 sync:
810 	/*
811 	 * Found a safe stack - switch to it as if the entry didn't happen via
812 	 * IST stack. The code below only copies pt_regs, the real switch happens
813 	 * in assembly code.
814 	 */
815 	sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
816 
817 	regs_ret = (struct pt_regs *)sp;
818 	*regs_ret = *regs;
819 
820 	return regs_ret;
821 }
822 #endif
823 
824 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
825 {
826 	struct pt_regs tmp, *new_stack;
827 
828 	/*
829 	 * This is called from entry_64.S early in handling a fault
830 	 * caused by a bad iret to user mode.  To handle the fault
831 	 * correctly, we want to move our stack frame to where it would
832 	 * be had we entered directly on the entry stack (rather than
833 	 * just below the IRET frame) and we want to pretend that the
834 	 * exception came from the IRET target.
835 	 */
836 	new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
837 
838 	/* Copy the IRET target to the temporary storage. */
839 	__memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
840 
841 	/* Copy the remainder of the stack from the current stack. */
842 	__memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
843 
844 	/* Update the entry stack */
845 	__memcpy(new_stack, &tmp, sizeof(tmp));
846 
847 	BUG_ON(!user_mode(new_stack));
848 	return new_stack;
849 }
850 #endif
851 
852 static bool is_sysenter_singlestep(struct pt_regs *regs)
853 {
854 	/*
855 	 * We don't try for precision here.  If we're anywhere in the region of
856 	 * code that can be single-stepped in the SYSENTER entry path, then
857 	 * assume that this is a useless single-step trap due to SYSENTER
858 	 * being invoked with TF set.  (We don't know in advance exactly
859 	 * which instructions will be hit because BTF could plausibly
860 	 * be set.)
861 	 */
862 #ifdef CONFIG_X86_32
863 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
864 		(unsigned long)__end_SYSENTER_singlestep_region -
865 		(unsigned long)__begin_SYSENTER_singlestep_region;
866 #elif defined(CONFIG_IA32_EMULATION)
867 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
868 		(unsigned long)__end_entry_SYSENTER_compat -
869 		(unsigned long)entry_SYSENTER_compat;
870 #else
871 	return false;
872 #endif
873 }
874 
875 static __always_inline unsigned long debug_read_clear_dr6(void)
876 {
877 	unsigned long dr6;
878 
879 	/*
880 	 * The Intel SDM says:
881 	 *
882 	 *   Certain debug exceptions may clear bits 0-3. The remaining
883 	 *   contents of the DR6 register are never cleared by the
884 	 *   processor. To avoid confusion in identifying debug
885 	 *   exceptions, debug handlers should clear the register before
886 	 *   returning to the interrupted task.
887 	 *
888 	 * Keep it simple: clear DR6 immediately.
889 	 */
890 	get_debugreg(dr6, 6);
891 	set_debugreg(DR6_RESERVED, 6);
892 	dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
893 
894 	return dr6;
895 }
896 
897 /*
898  * Our handling of the processor debug registers is non-trivial.
899  * We do not clear them on entry and exit from the kernel. Therefore
900  * it is possible to get a watchpoint trap here from inside the kernel.
901  * However, the code in ./ptrace.c has ensured that the user can
902  * only set watchpoints on userspace addresses. Therefore the in-kernel
903  * watchpoint trap can only occur in code which is reading/writing
904  * from user space. Such code must not hold kernel locks (since it
905  * can equally take a page fault), therefore it is safe to call
906  * force_sig_info even though that claims and releases locks.
907  *
908  * Code in ./signal.c ensures that the debug control register
909  * is restored before we deliver any signal, and therefore that
910  * user code runs with the correct debug control register even though
911  * we clear it here.
912  *
913  * Being careful here means that we don't have to be as careful in a
914  * lot of more complicated places (task switching can be a bit lazy
915  * about restoring all the debug state, and ptrace doesn't have to
916  * find every occurrence of the TF bit that could be saved away even
917  * by user code)
918  *
919  * May run on IST stack.
920  */
921 
922 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
923 {
924 	/*
925 	 * Notifiers will clear bits in @dr6 to indicate the event has been
926 	 * consumed - hw_breakpoint_handler(), single_stop_cont().
927 	 *
928 	 * Notifiers will set bits in @virtual_dr6 to indicate the desire
929 	 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
930 	 */
931 	if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
932 		return true;
933 
934 	return false;
935 }
936 
937 static __always_inline void exc_debug_kernel(struct pt_regs *regs,
938 					     unsigned long dr6)
939 {
940 	/*
941 	 * Disable breakpoints during exception handling; recursive exceptions
942 	 * are exceedingly 'fun'.
943 	 *
944 	 * Since this function is NOKPROBE, and that also applies to
945 	 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
946 	 * HW_BREAKPOINT_W on our stack)
947 	 *
948 	 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
949 	 * includes the entry stack is excluded for everything.
950 	 */
951 	unsigned long dr7 = local_db_save();
952 	irqentry_state_t irq_state = irqentry_nmi_enter(regs);
953 	instrumentation_begin();
954 
955 	/*
956 	 * If something gets miswired and we end up here for a user mode
957 	 * #DB, we will malfunction.
958 	 */
959 	WARN_ON_ONCE(user_mode(regs));
960 
961 	if (test_thread_flag(TIF_BLOCKSTEP)) {
962 		/*
963 		 * The SDM says "The processor clears the BTF flag when it
964 		 * generates a debug exception." but PTRACE_BLOCKSTEP requested
965 		 * it for userspace, but we just took a kernel #DB, so re-set
966 		 * BTF.
967 		 */
968 		unsigned long debugctl;
969 
970 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
971 		debugctl |= DEBUGCTLMSR_BTF;
972 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
973 	}
974 
975 	/*
976 	 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
977 	 * watchpoint at the same time then that will still be handled.
978 	 */
979 	if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
980 		dr6 &= ~DR_STEP;
981 
982 	/*
983 	 * The kernel doesn't use INT1
984 	 */
985 	if (!dr6)
986 		goto out;
987 
988 	if (notify_debug(regs, &dr6))
989 		goto out;
990 
991 	/*
992 	 * The kernel doesn't use TF single-step outside of:
993 	 *
994 	 *  - Kprobes, consumed through kprobe_debug_handler()
995 	 *  - KGDB, consumed through notify_debug()
996 	 *
997 	 * So if we get here with DR_STEP set, something is wonky.
998 	 *
999 	 * A known way to trigger this is through QEMU's GDB stub,
1000 	 * which leaks #DB into the guest and causes IST recursion.
1001 	 */
1002 	if (WARN_ON_ONCE(dr6 & DR_STEP))
1003 		regs->flags &= ~X86_EFLAGS_TF;
1004 out:
1005 	instrumentation_end();
1006 	irqentry_nmi_exit(regs, irq_state);
1007 
1008 	local_db_restore(dr7);
1009 }
1010 
1011 static __always_inline void exc_debug_user(struct pt_regs *regs,
1012 					   unsigned long dr6)
1013 {
1014 	bool icebp;
1015 
1016 	/*
1017 	 * If something gets miswired and we end up here for a kernel mode
1018 	 * #DB, we will malfunction.
1019 	 */
1020 	WARN_ON_ONCE(!user_mode(regs));
1021 
1022 	/*
1023 	 * NB: We can't easily clear DR7 here because
1024 	 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1025 	 * user memory, etc.  This means that a recursive #DB is possible.  If
1026 	 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1027 	 * Since we're not on the IST stack right now, everything will be
1028 	 * fine.
1029 	 */
1030 
1031 	irqentry_enter_from_user_mode(regs);
1032 	instrumentation_begin();
1033 
1034 	/*
1035 	 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1036 	 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1037 	 *
1038 	 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1039 	 * even if it is not the result of PTRACE_SINGLESTEP.
1040 	 */
1041 	current->thread.virtual_dr6 = (dr6 & DR_STEP);
1042 
1043 	/*
1044 	 * The SDM says "The processor clears the BTF flag when it
1045 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
1046 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1047 	 */
1048 	clear_thread_flag(TIF_BLOCKSTEP);
1049 
1050 	/*
1051 	 * If dr6 has no reason to give us about the origin of this trap,
1052 	 * then it's very likely the result of an icebp/int01 trap.
1053 	 * User wants a sigtrap for that.
1054 	 */
1055 	icebp = !dr6;
1056 
1057 	if (notify_debug(regs, &dr6))
1058 		goto out;
1059 
1060 	/* It's safe to allow irq's after DR6 has been saved */
1061 	local_irq_enable();
1062 
1063 	if (v8086_mode(regs)) {
1064 		handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1065 		goto out_irq;
1066 	}
1067 
1068 	/* #DB for bus lock can only be triggered from userspace. */
1069 	if (dr6 & DR_BUS_LOCK)
1070 		handle_bus_lock(regs);
1071 
1072 	/* Add the virtual_dr6 bits for signals. */
1073 	dr6 |= current->thread.virtual_dr6;
1074 	if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1075 		send_sigtrap(regs, 0, get_si_code(dr6));
1076 
1077 out_irq:
1078 	local_irq_disable();
1079 out:
1080 	instrumentation_end();
1081 	irqentry_exit_to_user_mode(regs);
1082 }
1083 
1084 #ifdef CONFIG_X86_64
1085 /* IST stack entry */
1086 DEFINE_IDTENTRY_DEBUG(exc_debug)
1087 {
1088 	exc_debug_kernel(regs, debug_read_clear_dr6());
1089 }
1090 
1091 /* User entry, runs on regular task stack */
1092 DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1093 {
1094 	exc_debug_user(regs, debug_read_clear_dr6());
1095 }
1096 #else
1097 /* 32 bit does not have separate entry points. */
1098 DEFINE_IDTENTRY_RAW(exc_debug)
1099 {
1100 	unsigned long dr6 = debug_read_clear_dr6();
1101 
1102 	if (user_mode(regs))
1103 		exc_debug_user(regs, dr6);
1104 	else
1105 		exc_debug_kernel(regs, dr6);
1106 }
1107 #endif
1108 
1109 /*
1110  * Note that we play around with the 'TS' bit in an attempt to get
1111  * the correct behaviour even in the presence of the asynchronous
1112  * IRQ13 behaviour
1113  */
1114 static void math_error(struct pt_regs *regs, int trapnr)
1115 {
1116 	struct task_struct *task = current;
1117 	struct fpu *fpu = &task->thread.fpu;
1118 	int si_code;
1119 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1120 						"simd exception";
1121 
1122 	cond_local_irq_enable(regs);
1123 
1124 	if (!user_mode(regs)) {
1125 		if (fixup_exception(regs, trapnr, 0, 0))
1126 			goto exit;
1127 
1128 		task->thread.error_code = 0;
1129 		task->thread.trap_nr = trapnr;
1130 
1131 		if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1132 			       SIGFPE) != NOTIFY_STOP)
1133 			die(str, regs, 0);
1134 		goto exit;
1135 	}
1136 
1137 	/*
1138 	 * Synchronize the FPU register state to the memory register state
1139 	 * if necessary. This allows the exception handler to inspect it.
1140 	 */
1141 	fpu_sync_fpstate(fpu);
1142 
1143 	task->thread.trap_nr	= trapnr;
1144 	task->thread.error_code = 0;
1145 
1146 	si_code = fpu__exception_code(fpu, trapnr);
1147 	/* Retry when we get spurious exceptions: */
1148 	if (!si_code)
1149 		goto exit;
1150 
1151 	if (fixup_vdso_exception(regs, trapnr, 0, 0))
1152 		goto exit;
1153 
1154 	force_sig_fault(SIGFPE, si_code,
1155 			(void __user *)uprobe_get_trap_addr(regs));
1156 exit:
1157 	cond_local_irq_disable(regs);
1158 }
1159 
1160 DEFINE_IDTENTRY(exc_coprocessor_error)
1161 {
1162 	math_error(regs, X86_TRAP_MF);
1163 }
1164 
1165 DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1166 {
1167 	if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1168 		/* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1169 		if (!static_cpu_has(X86_FEATURE_XMM)) {
1170 			__exc_general_protection(regs, 0);
1171 			return;
1172 		}
1173 	}
1174 	math_error(regs, X86_TRAP_XF);
1175 }
1176 
1177 DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1178 {
1179 	/*
1180 	 * This addresses a Pentium Pro Erratum:
1181 	 *
1182 	 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1183 	 * Virtual Wire mode implemented through the local APIC, an
1184 	 * interrupt vector of 0Fh (Intel reserved encoding) may be
1185 	 * generated by the local APIC (Int 15).  This vector may be
1186 	 * generated upon receipt of a spurious interrupt (an interrupt
1187 	 * which is removed before the system receives the INTA sequence)
1188 	 * instead of the programmed 8259 spurious interrupt vector.
1189 	 *
1190 	 * IMPLICATION: The spurious interrupt vector programmed in the
1191 	 * 8259 is normally handled by an operating system's spurious
1192 	 * interrupt handler. However, a vector of 0Fh is unknown to some
1193 	 * operating systems, which would crash if this erratum occurred.
1194 	 *
1195 	 * In theory this could be limited to 32bit, but the handler is not
1196 	 * hurting and who knows which other CPUs suffer from this.
1197 	 */
1198 }
1199 
1200 static bool handle_xfd_event(struct pt_regs *regs)
1201 {
1202 	u64 xfd_err;
1203 	int err;
1204 
1205 	if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1206 		return false;
1207 
1208 	rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1209 	if (!xfd_err)
1210 		return false;
1211 
1212 	wrmsrl(MSR_IA32_XFD_ERR, 0);
1213 
1214 	/* Die if that happens in kernel space */
1215 	if (WARN_ON(!user_mode(regs)))
1216 		return false;
1217 
1218 	local_irq_enable();
1219 
1220 	err = xfd_enable_feature(xfd_err);
1221 
1222 	switch (err) {
1223 	case -EPERM:
1224 		force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1225 		break;
1226 	case -EFAULT:
1227 		force_sig(SIGSEGV);
1228 		break;
1229 	}
1230 
1231 	local_irq_disable();
1232 	return true;
1233 }
1234 
1235 DEFINE_IDTENTRY(exc_device_not_available)
1236 {
1237 	unsigned long cr0 = read_cr0();
1238 
1239 	if (handle_xfd_event(regs))
1240 		return;
1241 
1242 #ifdef CONFIG_MATH_EMULATION
1243 	if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1244 		struct math_emu_info info = { };
1245 
1246 		cond_local_irq_enable(regs);
1247 
1248 		info.regs = regs;
1249 		math_emulate(&info);
1250 
1251 		cond_local_irq_disable(regs);
1252 		return;
1253 	}
1254 #endif
1255 
1256 	/* This should not happen. */
1257 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1258 		/* Try to fix it up and carry on. */
1259 		write_cr0(cr0 & ~X86_CR0_TS);
1260 	} else {
1261 		/*
1262 		 * Something terrible happened, and we're better off trying
1263 		 * to kill the task than getting stuck in a never-ending
1264 		 * loop of #NM faults.
1265 		 */
1266 		die("unexpected #NM exception", regs, 0);
1267 	}
1268 }
1269 
1270 #ifdef CONFIG_INTEL_TDX_GUEST
1271 
1272 #define VE_FAULT_STR "VE fault"
1273 
1274 static void ve_raise_fault(struct pt_regs *regs, long error_code,
1275 			   unsigned long address)
1276 {
1277 	if (user_mode(regs)) {
1278 		gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1279 		return;
1280 	}
1281 
1282 	if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1283 				    VE_FAULT_STR, address)) {
1284 		return;
1285 	}
1286 
1287 	die_addr(VE_FAULT_STR, regs, error_code, address);
1288 }
1289 
1290 /*
1291  * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1292  * specific guest actions which may happen in either user space or the
1293  * kernel:
1294  *
1295  *  * Specific instructions (WBINVD, for example)
1296  *  * Specific MSR accesses
1297  *  * Specific CPUID leaf accesses
1298  *  * Access to specific guest physical addresses
1299  *
1300  * In the settings that Linux will run in, virtualization exceptions are
1301  * never generated on accesses to normal, TD-private memory that has been
1302  * accepted (by BIOS or with tdx_enc_status_changed()).
1303  *
1304  * Syscall entry code has a critical window where the kernel stack is not
1305  * yet set up. Any exception in this window leads to hard to debug issues
1306  * and can be exploited for privilege escalation. Exceptions in the NMI
1307  * entry code also cause issues. Returning from the exception handler with
1308  * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1309  *
1310  * For these reasons, the kernel avoids #VEs during the syscall gap and
1311  * the NMI entry code. Entry code paths do not access TD-shared memory,
1312  * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1313  * that might generate #VE. VMM can remove memory from TD at any point,
1314  * but access to unaccepted (or missing) private memory leads to VM
1315  * termination, not to #VE.
1316  *
1317  * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1318  * handlers once the kernel is ready to deal with nested NMIs.
1319  *
1320  * During #VE delivery, all interrupts, including NMIs, are blocked until
1321  * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1322  * the VE info.
1323  *
1324  * If a guest kernel action which would normally cause a #VE occurs in
1325  * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1326  * exception) is delivered to the guest which will result in an oops.
1327  *
1328  * The entry code has been audited carefully for following these expectations.
1329  * Changes in the entry code have to be audited for correctness vs. this
1330  * aspect. Similarly to #PF, #VE in these places will expose kernel to
1331  * privilege escalation or may lead to random crashes.
1332  */
1333 DEFINE_IDTENTRY(exc_virtualization_exception)
1334 {
1335 	struct ve_info ve;
1336 
1337 	/*
1338 	 * NMIs/Machine-checks/Interrupts will be in a disabled state
1339 	 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1340 	 * info cannot be overwritten by a nested #VE.
1341 	 */
1342 	tdx_get_ve_info(&ve);
1343 
1344 	cond_local_irq_enable(regs);
1345 
1346 	/*
1347 	 * If tdx_handle_virt_exception() could not process
1348 	 * it successfully, treat it as #GP(0) and handle it.
1349 	 */
1350 	if (!tdx_handle_virt_exception(regs, &ve))
1351 		ve_raise_fault(regs, 0, ve.gla);
1352 
1353 	cond_local_irq_disable(regs);
1354 }
1355 
1356 #endif
1357 
1358 #ifdef CONFIG_X86_32
1359 DEFINE_IDTENTRY_SW(iret_error)
1360 {
1361 	local_irq_enable();
1362 	if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1363 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1364 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1365 			ILL_BADSTK, (void __user *)NULL);
1366 	}
1367 	local_irq_disable();
1368 }
1369 #endif
1370 
1371 void __init trap_init(void)
1372 {
1373 	/* Init cpu_entry_area before IST entries are set up */
1374 	setup_cpu_entry_areas();
1375 
1376 	/* Init GHCB memory pages when running as an SEV-ES guest */
1377 	sev_es_init_vc_handling();
1378 
1379 	/* Initialize TSS before setting up traps so ISTs work */
1380 	cpu_init_exception_handling();
1381 	/* Setup traps as cpu_init() might #GP */
1382 	idt_setup_traps();
1383 	cpu_init();
1384 }
1385