1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/timer.h> 33 #include <linux/init.h> 34 #include <linux/bug.h> 35 #include <linux/nmi.h> 36 #include <linux/mm.h> 37 #include <linux/smp.h> 38 #include <linux/io.h> 39 40 #ifdef CONFIG_EISA 41 #include <linux/ioport.h> 42 #include <linux/eisa.h> 43 #endif 44 45 #if defined(CONFIG_EDAC) 46 #include <linux/edac.h> 47 #endif 48 49 #include <asm/kmemcheck.h> 50 #include <asm/stacktrace.h> 51 #include <asm/processor.h> 52 #include <asm/debugreg.h> 53 #include <linux/atomic.h> 54 #include <asm/text-patching.h> 55 #include <asm/ftrace.h> 56 #include <asm/traps.h> 57 #include <asm/desc.h> 58 #include <asm/fpu/internal.h> 59 #include <asm/mce.h> 60 #include <asm/fixmap.h> 61 #include <asm/mach_traps.h> 62 #include <asm/alternative.h> 63 #include <asm/fpu/xstate.h> 64 #include <asm/trace/mpx.h> 65 #include <asm/mpx.h> 66 #include <asm/vm86.h> 67 68 #ifdef CONFIG_X86_64 69 #include <asm/x86_init.h> 70 #include <asm/pgalloc.h> 71 #include <asm/proto.h> 72 73 /* No need to be aligned, but done to keep all IDTs defined the same way. */ 74 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss; 75 #else 76 #include <asm/processor-flags.h> 77 #include <asm/setup.h> 78 #include <asm/proto.h> 79 #endif 80 81 /* Must be page-aligned because the real IDT is used in a fixmap. */ 82 gate_desc idt_table[NR_VECTORS] __page_aligned_bss; 83 84 DECLARE_BITMAP(used_vectors, NR_VECTORS); 85 EXPORT_SYMBOL_GPL(used_vectors); 86 87 static inline void cond_local_irq_enable(struct pt_regs *regs) 88 { 89 if (regs->flags & X86_EFLAGS_IF) 90 local_irq_enable(); 91 } 92 93 static inline void cond_local_irq_disable(struct pt_regs *regs) 94 { 95 if (regs->flags & X86_EFLAGS_IF) 96 local_irq_disable(); 97 } 98 99 /* 100 * In IST context, we explicitly disable preemption. This serves two 101 * purposes: it makes it much less likely that we would accidentally 102 * schedule in IST context and it will force a warning if we somehow 103 * manage to schedule by accident. 104 */ 105 void ist_enter(struct pt_regs *regs) 106 { 107 if (user_mode(regs)) { 108 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 109 } else { 110 /* 111 * We might have interrupted pretty much anything. In 112 * fact, if we're a machine check, we can even interrupt 113 * NMI processing. We don't want in_nmi() to return true, 114 * but we need to notify RCU. 115 */ 116 rcu_nmi_enter(); 117 } 118 119 preempt_disable(); 120 121 /* This code is a bit fragile. Test it. */ 122 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 123 } 124 125 void ist_exit(struct pt_regs *regs) 126 { 127 preempt_enable_no_resched(); 128 129 if (!user_mode(regs)) 130 rcu_nmi_exit(); 131 } 132 133 /** 134 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 135 * @regs: regs passed to the IST exception handler 136 * 137 * IST exception handlers normally cannot schedule. As a special 138 * exception, if the exception interrupted userspace code (i.e. 139 * user_mode(regs) would return true) and the exception was not 140 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 141 * begins a non-atomic section within an ist_enter()/ist_exit() region. 142 * Callers are responsible for enabling interrupts themselves inside 143 * the non-atomic section, and callers must call ist_end_non_atomic() 144 * before ist_exit(). 145 */ 146 void ist_begin_non_atomic(struct pt_regs *regs) 147 { 148 BUG_ON(!user_mode(regs)); 149 150 /* 151 * Sanity check: we need to be on the normal thread stack. This 152 * will catch asm bugs and any attempt to use ist_preempt_enable 153 * from double_fault. 154 */ 155 BUG_ON((unsigned long)(current_top_of_stack() - 156 current_stack_pointer()) >= THREAD_SIZE); 157 158 preempt_enable_no_resched(); 159 } 160 161 /** 162 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 163 * 164 * Ends a non-atomic section started with ist_begin_non_atomic(). 165 */ 166 void ist_end_non_atomic(void) 167 { 168 preempt_disable(); 169 } 170 171 static nokprobe_inline int 172 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, 173 struct pt_regs *regs, long error_code) 174 { 175 if (v8086_mode(regs)) { 176 /* 177 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 178 * On nmi (interrupt 2), do_trap should not be called. 179 */ 180 if (trapnr < X86_TRAP_UD) { 181 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 182 error_code, trapnr)) 183 return 0; 184 } 185 return -1; 186 } 187 188 if (!user_mode(regs)) { 189 if (!fixup_exception(regs, trapnr)) { 190 tsk->thread.error_code = error_code; 191 tsk->thread.trap_nr = trapnr; 192 die(str, regs, error_code); 193 } 194 return 0; 195 } 196 197 return -1; 198 } 199 200 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, 201 siginfo_t *info) 202 { 203 unsigned long siaddr; 204 int sicode; 205 206 switch (trapnr) { 207 default: 208 return SEND_SIG_PRIV; 209 210 case X86_TRAP_DE: 211 sicode = FPE_INTDIV; 212 siaddr = uprobe_get_trap_addr(regs); 213 break; 214 case X86_TRAP_UD: 215 sicode = ILL_ILLOPN; 216 siaddr = uprobe_get_trap_addr(regs); 217 break; 218 case X86_TRAP_AC: 219 sicode = BUS_ADRALN; 220 siaddr = 0; 221 break; 222 } 223 224 info->si_signo = signr; 225 info->si_errno = 0; 226 info->si_code = sicode; 227 info->si_addr = (void __user *)siaddr; 228 return info; 229 } 230 231 static void 232 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 233 long error_code, siginfo_t *info) 234 { 235 struct task_struct *tsk = current; 236 237 238 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 239 return; 240 /* 241 * We want error_code and trap_nr set for userspace faults and 242 * kernelspace faults which result in die(), but not 243 * kernelspace faults which are fixed up. die() gives the 244 * process no chance to handle the signal and notice the 245 * kernel fault information, so that won't result in polluting 246 * the information about previously queued, but not yet 247 * delivered, faults. See also do_general_protection below. 248 */ 249 tsk->thread.error_code = error_code; 250 tsk->thread.trap_nr = trapnr; 251 252 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 253 printk_ratelimit()) { 254 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", 255 tsk->comm, tsk->pid, str, 256 regs->ip, regs->sp, error_code); 257 print_vma_addr(" in ", regs->ip); 258 pr_cont("\n"); 259 } 260 261 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); 262 } 263 NOKPROBE_SYMBOL(do_trap); 264 265 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 266 unsigned long trapnr, int signr) 267 { 268 siginfo_t info; 269 270 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 271 272 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 273 NOTIFY_STOP) { 274 cond_local_irq_enable(regs); 275 do_trap(trapnr, signr, str, regs, error_code, 276 fill_trap_info(regs, signr, trapnr, &info)); 277 } 278 } 279 280 #define DO_ERROR(trapnr, signr, str, name) \ 281 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 282 { \ 283 do_error_trap(regs, error_code, str, trapnr, signr); \ 284 } 285 286 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) 287 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) 288 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) 289 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) 290 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) 291 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) 292 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) 293 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) 294 295 #ifdef CONFIG_VMAP_STACK 296 __visible void __noreturn handle_stack_overflow(const char *message, 297 struct pt_regs *regs, 298 unsigned long fault_address) 299 { 300 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 301 (void *)fault_address, current->stack, 302 (char *)current->stack + THREAD_SIZE - 1); 303 die(message, regs, 0); 304 305 /* Be absolutely certain we don't return. */ 306 panic(message); 307 } 308 #endif 309 310 #ifdef CONFIG_X86_64 311 /* Runs on IST stack */ 312 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) 313 { 314 static const char str[] = "double fault"; 315 struct task_struct *tsk = current; 316 #ifdef CONFIG_VMAP_STACK 317 unsigned long cr2; 318 #endif 319 320 #ifdef CONFIG_X86_ESPFIX64 321 extern unsigned char native_irq_return_iret[]; 322 323 /* 324 * If IRET takes a non-IST fault on the espfix64 stack, then we 325 * end up promoting it to a doublefault. In that case, modify 326 * the stack to make it look like we just entered the #GP 327 * handler from user space, similar to bad_iret. 328 * 329 * No need for ist_enter here because we don't use RCU. 330 */ 331 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY && 332 regs->cs == __KERNEL_CS && 333 regs->ip == (unsigned long)native_irq_return_iret) 334 { 335 struct pt_regs *normal_regs = task_pt_regs(current); 336 337 /* Fake a #GP(0) from userspace. */ 338 memmove(&normal_regs->ip, (void *)regs->sp, 5*8); 339 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */ 340 regs->ip = (unsigned long)general_protection; 341 regs->sp = (unsigned long)&normal_regs->orig_ax; 342 343 return; 344 } 345 #endif 346 347 ist_enter(regs); 348 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 349 350 tsk->thread.error_code = error_code; 351 tsk->thread.trap_nr = X86_TRAP_DF; 352 353 #ifdef CONFIG_VMAP_STACK 354 /* 355 * If we overflow the stack into a guard page, the CPU will fail 356 * to deliver #PF and will send #DF instead. Similarly, if we 357 * take any non-IST exception while too close to the bottom of 358 * the stack, the processor will get a page fault while 359 * delivering the exception and will generate a double fault. 360 * 361 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 362 * Page-Fault Exception (#PF): 363 * 364 * Processors update CR2 whenever a page fault is detected. If a 365 * second page fault occurs while an earlier page fault is being 366 * deliv- ered, the faulting linear address of the second fault will 367 * overwrite the contents of CR2 (replacing the previous 368 * address). These updates to CR2 occur even if the page fault 369 * results in a double fault or occurs during the delivery of a 370 * double fault. 371 * 372 * The logic below has a small possibility of incorrectly diagnosing 373 * some errors as stack overflows. For example, if the IDT or GDT 374 * gets corrupted such that #GP delivery fails due to a bad descriptor 375 * causing #GP and we hit this condition while CR2 coincidentally 376 * points to the stack guard page, we'll think we overflowed the 377 * stack. Given that we're going to panic one way or another 378 * if this happens, this isn't necessarily worth fixing. 379 * 380 * If necessary, we could improve the test by only diagnosing 381 * a stack overflow if the saved RSP points within 47 bytes of 382 * the bottom of the stack: if RSP == tsk_stack + 48 and we 383 * take an exception, the stack is already aligned and there 384 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 385 * possible error code, so a stack overflow would *not* double 386 * fault. With any less space left, exception delivery could 387 * fail, and, as a practical matter, we've overflowed the 388 * stack even if the actual trigger for the double fault was 389 * something else. 390 */ 391 cr2 = read_cr2(); 392 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 393 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 394 #endif 395 396 #ifdef CONFIG_DOUBLEFAULT 397 df_debug(regs, error_code); 398 #endif 399 /* 400 * This is always a kernel trap and never fixable (and thus must 401 * never return). 402 */ 403 for (;;) 404 die(str, regs, error_code); 405 } 406 #endif 407 408 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 409 { 410 const struct mpx_bndcsr *bndcsr; 411 siginfo_t *info; 412 413 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 414 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 415 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 416 return; 417 cond_local_irq_enable(regs); 418 419 if (!user_mode(regs)) 420 die("bounds", regs, error_code); 421 422 if (!cpu_feature_enabled(X86_FEATURE_MPX)) { 423 /* The exception is not from Intel MPX */ 424 goto exit_trap; 425 } 426 427 /* 428 * We need to look at BNDSTATUS to resolve this exception. 429 * A NULL here might mean that it is in its 'init state', 430 * which is all zeros which indicates MPX was not 431 * responsible for the exception. 432 */ 433 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 434 if (!bndcsr) 435 goto exit_trap; 436 437 trace_bounds_exception_mpx(bndcsr); 438 /* 439 * The error code field of the BNDSTATUS register communicates status 440 * information of a bound range exception #BR or operation involving 441 * bound directory. 442 */ 443 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { 444 case 2: /* Bound directory has invalid entry. */ 445 if (mpx_handle_bd_fault()) 446 goto exit_trap; 447 break; /* Success, it was handled */ 448 case 1: /* Bound violation. */ 449 info = mpx_generate_siginfo(regs); 450 if (IS_ERR(info)) { 451 /* 452 * We failed to decode the MPX instruction. Act as if 453 * the exception was not caused by MPX. 454 */ 455 goto exit_trap; 456 } 457 /* 458 * Success, we decoded the instruction and retrieved 459 * an 'info' containing the address being accessed 460 * which caused the exception. This information 461 * allows and application to possibly handle the 462 * #BR exception itself. 463 */ 464 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); 465 kfree(info); 466 break; 467 case 0: /* No exception caused by Intel MPX operations. */ 468 goto exit_trap; 469 default: 470 die("bounds", regs, error_code); 471 } 472 473 return; 474 475 exit_trap: 476 /* 477 * This path out is for all the cases where we could not 478 * handle the exception in some way (like allocating a 479 * table or telling userspace about it. We will also end 480 * up here if the kernel has MPX turned off at compile 481 * time.. 482 */ 483 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); 484 } 485 486 dotraplinkage void 487 do_general_protection(struct pt_regs *regs, long error_code) 488 { 489 struct task_struct *tsk; 490 491 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 492 cond_local_irq_enable(regs); 493 494 if (v8086_mode(regs)) { 495 local_irq_enable(); 496 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 497 return; 498 } 499 500 tsk = current; 501 if (!user_mode(regs)) { 502 if (fixup_exception(regs, X86_TRAP_GP)) 503 return; 504 505 tsk->thread.error_code = error_code; 506 tsk->thread.trap_nr = X86_TRAP_GP; 507 if (notify_die(DIE_GPF, "general protection fault", regs, error_code, 508 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) 509 die("general protection fault", regs, error_code); 510 return; 511 } 512 513 tsk->thread.error_code = error_code; 514 tsk->thread.trap_nr = X86_TRAP_GP; 515 516 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && 517 printk_ratelimit()) { 518 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", 519 tsk->comm, task_pid_nr(tsk), 520 regs->ip, regs->sp, error_code); 521 print_vma_addr(" in ", regs->ip); 522 pr_cont("\n"); 523 } 524 525 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); 526 } 527 NOKPROBE_SYMBOL(do_general_protection); 528 529 /* May run on IST stack. */ 530 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 531 { 532 #ifdef CONFIG_DYNAMIC_FTRACE 533 /* 534 * ftrace must be first, everything else may cause a recursive crash. 535 * See note by declaration of modifying_ftrace_code in ftrace.c 536 */ 537 if (unlikely(atomic_read(&modifying_ftrace_code)) && 538 ftrace_int3_handler(regs)) 539 return; 540 #endif 541 if (poke_int3_handler(regs)) 542 return; 543 544 ist_enter(regs); 545 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 546 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 547 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 548 SIGTRAP) == NOTIFY_STOP) 549 goto exit; 550 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 551 552 #ifdef CONFIG_KPROBES 553 if (kprobe_int3_handler(regs)) 554 goto exit; 555 #endif 556 557 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 558 SIGTRAP) == NOTIFY_STOP) 559 goto exit; 560 561 /* 562 * Let others (NMI) know that the debug stack is in use 563 * as we may switch to the interrupt stack. 564 */ 565 debug_stack_usage_inc(); 566 cond_local_irq_enable(regs); 567 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); 568 cond_local_irq_disable(regs); 569 debug_stack_usage_dec(); 570 exit: 571 ist_exit(regs); 572 } 573 NOKPROBE_SYMBOL(do_int3); 574 575 #ifdef CONFIG_X86_64 576 /* 577 * Help handler running on IST stack to switch off the IST stack if the 578 * interrupted code was in user mode. The actual stack switch is done in 579 * entry_64.S 580 */ 581 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 582 { 583 struct pt_regs *regs = task_pt_regs(current); 584 *regs = *eregs; 585 return regs; 586 } 587 NOKPROBE_SYMBOL(sync_regs); 588 589 struct bad_iret_stack { 590 void *error_entry_ret; 591 struct pt_regs regs; 592 }; 593 594 asmlinkage __visible notrace 595 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 596 { 597 /* 598 * This is called from entry_64.S early in handling a fault 599 * caused by a bad iret to user mode. To handle the fault 600 * correctly, we want move our stack frame to task_pt_regs 601 * and we want to pretend that the exception came from the 602 * iret target. 603 */ 604 struct bad_iret_stack *new_stack = 605 container_of(task_pt_regs(current), 606 struct bad_iret_stack, regs); 607 608 /* Copy the IRET target to the new stack. */ 609 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 610 611 /* Copy the remainder of the stack from the current stack. */ 612 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 613 614 BUG_ON(!user_mode(&new_stack->regs)); 615 return new_stack; 616 } 617 NOKPROBE_SYMBOL(fixup_bad_iret); 618 #endif 619 620 static bool is_sysenter_singlestep(struct pt_regs *regs) 621 { 622 /* 623 * We don't try for precision here. If we're anywhere in the region of 624 * code that can be single-stepped in the SYSENTER entry path, then 625 * assume that this is a useless single-step trap due to SYSENTER 626 * being invoked with TF set. (We don't know in advance exactly 627 * which instructions will be hit because BTF could plausibly 628 * be set.) 629 */ 630 #ifdef CONFIG_X86_32 631 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 632 (unsigned long)__end_SYSENTER_singlestep_region - 633 (unsigned long)__begin_SYSENTER_singlestep_region; 634 #elif defined(CONFIG_IA32_EMULATION) 635 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 636 (unsigned long)__end_entry_SYSENTER_compat - 637 (unsigned long)entry_SYSENTER_compat; 638 #else 639 return false; 640 #endif 641 } 642 643 /* 644 * Our handling of the processor debug registers is non-trivial. 645 * We do not clear them on entry and exit from the kernel. Therefore 646 * it is possible to get a watchpoint trap here from inside the kernel. 647 * However, the code in ./ptrace.c has ensured that the user can 648 * only set watchpoints on userspace addresses. Therefore the in-kernel 649 * watchpoint trap can only occur in code which is reading/writing 650 * from user space. Such code must not hold kernel locks (since it 651 * can equally take a page fault), therefore it is safe to call 652 * force_sig_info even though that claims and releases locks. 653 * 654 * Code in ./signal.c ensures that the debug control register 655 * is restored before we deliver any signal, and therefore that 656 * user code runs with the correct debug control register even though 657 * we clear it here. 658 * 659 * Being careful here means that we don't have to be as careful in a 660 * lot of more complicated places (task switching can be a bit lazy 661 * about restoring all the debug state, and ptrace doesn't have to 662 * find every occurrence of the TF bit that could be saved away even 663 * by user code) 664 * 665 * May run on IST stack. 666 */ 667 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 668 { 669 struct task_struct *tsk = current; 670 int user_icebp = 0; 671 unsigned long dr6; 672 int si_code; 673 674 ist_enter(regs); 675 676 get_debugreg(dr6, 6); 677 /* 678 * The Intel SDM says: 679 * 680 * Certain debug exceptions may clear bits 0-3. The remaining 681 * contents of the DR6 register are never cleared by the 682 * processor. To avoid confusion in identifying debug 683 * exceptions, debug handlers should clear the register before 684 * returning to the interrupted task. 685 * 686 * Keep it simple: clear DR6 immediately. 687 */ 688 set_debugreg(0, 6); 689 690 /* Filter out all the reserved bits which are preset to 1 */ 691 dr6 &= ~DR6_RESERVED; 692 693 /* 694 * The SDM says "The processor clears the BTF flag when it 695 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 696 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 697 */ 698 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 699 700 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 701 is_sysenter_singlestep(regs))) { 702 dr6 &= ~DR_STEP; 703 if (!dr6) 704 goto exit; 705 /* 706 * else we might have gotten a single-step trap and hit a 707 * watchpoint at the same time, in which case we should fall 708 * through and handle the watchpoint. 709 */ 710 } 711 712 /* 713 * If dr6 has no reason to give us about the origin of this trap, 714 * then it's very likely the result of an icebp/int01 trap. 715 * User wants a sigtrap for that. 716 */ 717 if (!dr6 && user_mode(regs)) 718 user_icebp = 1; 719 720 /* Catch kmemcheck conditions! */ 721 if ((dr6 & DR_STEP) && kmemcheck_trap(regs)) 722 goto exit; 723 724 /* Store the virtualized DR6 value */ 725 tsk->thread.debugreg6 = dr6; 726 727 #ifdef CONFIG_KPROBES 728 if (kprobe_debug_handler(regs)) 729 goto exit; 730 #endif 731 732 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 733 SIGTRAP) == NOTIFY_STOP) 734 goto exit; 735 736 /* 737 * Let others (NMI) know that the debug stack is in use 738 * as we may switch to the interrupt stack. 739 */ 740 debug_stack_usage_inc(); 741 742 /* It's safe to allow irq's after DR6 has been saved */ 743 cond_local_irq_enable(regs); 744 745 if (v8086_mode(regs)) { 746 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 747 X86_TRAP_DB); 748 cond_local_irq_disable(regs); 749 debug_stack_usage_dec(); 750 goto exit; 751 } 752 753 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 754 /* 755 * Historical junk that used to handle SYSENTER single-stepping. 756 * This should be unreachable now. If we survive for a while 757 * without anyone hitting this warning, we'll turn this into 758 * an oops. 759 */ 760 tsk->thread.debugreg6 &= ~DR_STEP; 761 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 762 regs->flags &= ~X86_EFLAGS_TF; 763 } 764 si_code = get_si_code(tsk->thread.debugreg6); 765 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 766 send_sigtrap(tsk, regs, error_code, si_code); 767 cond_local_irq_disable(regs); 768 debug_stack_usage_dec(); 769 770 exit: 771 #if defined(CONFIG_X86_32) 772 /* 773 * This is the most likely code path that involves non-trivial use 774 * of the SYSENTER stack. Check that we haven't overrun it. 775 */ 776 WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC, 777 "Overran or corrupted SYSENTER stack\n"); 778 #endif 779 ist_exit(regs); 780 } 781 NOKPROBE_SYMBOL(do_debug); 782 783 /* 784 * Note that we play around with the 'TS' bit in an attempt to get 785 * the correct behaviour even in the presence of the asynchronous 786 * IRQ13 behaviour 787 */ 788 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 789 { 790 struct task_struct *task = current; 791 struct fpu *fpu = &task->thread.fpu; 792 siginfo_t info; 793 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 794 "simd exception"; 795 796 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) 797 return; 798 cond_local_irq_enable(regs); 799 800 if (!user_mode(regs)) { 801 if (!fixup_exception(regs, trapnr)) { 802 task->thread.error_code = error_code; 803 task->thread.trap_nr = trapnr; 804 die(str, regs, error_code); 805 } 806 return; 807 } 808 809 /* 810 * Save the info for the exception handler and clear the error. 811 */ 812 fpu__save(fpu); 813 814 task->thread.trap_nr = trapnr; 815 task->thread.error_code = error_code; 816 info.si_signo = SIGFPE; 817 info.si_errno = 0; 818 info.si_addr = (void __user *)uprobe_get_trap_addr(regs); 819 820 info.si_code = fpu__exception_code(fpu, trapnr); 821 822 /* Retry when we get spurious exceptions: */ 823 if (!info.si_code) 824 return; 825 826 force_sig_info(SIGFPE, &info, task); 827 } 828 829 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 830 { 831 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 832 math_error(regs, error_code, X86_TRAP_MF); 833 } 834 835 dotraplinkage void 836 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 837 { 838 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 839 math_error(regs, error_code, X86_TRAP_XF); 840 } 841 842 dotraplinkage void 843 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 844 { 845 cond_local_irq_enable(regs); 846 } 847 848 dotraplinkage void 849 do_device_not_available(struct pt_regs *regs, long error_code) 850 { 851 unsigned long cr0; 852 853 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 854 855 #ifdef CONFIG_MATH_EMULATION 856 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { 857 struct math_emu_info info = { }; 858 859 cond_local_irq_enable(regs); 860 861 info.regs = regs; 862 math_emulate(&info); 863 return; 864 } 865 #endif 866 867 /* This should not happen. */ 868 cr0 = read_cr0(); 869 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 870 /* Try to fix it up and carry on. */ 871 write_cr0(cr0 & ~X86_CR0_TS); 872 } else { 873 /* 874 * Something terrible happened, and we're better off trying 875 * to kill the task than getting stuck in a never-ending 876 * loop of #NM faults. 877 */ 878 die("unexpected #NM exception", regs, error_code); 879 } 880 } 881 NOKPROBE_SYMBOL(do_device_not_available); 882 883 #ifdef CONFIG_X86_32 884 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 885 { 886 siginfo_t info; 887 888 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 889 local_irq_enable(); 890 891 info.si_signo = SIGILL; 892 info.si_errno = 0; 893 info.si_code = ILL_BADSTK; 894 info.si_addr = NULL; 895 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 896 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 897 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 898 &info); 899 } 900 } 901 #endif 902 903 /* Set of traps needed for early debugging. */ 904 void __init early_trap_init(void) 905 { 906 /* 907 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS 908 * is ready in cpu_init() <-- trap_init(). Before trap_init(), 909 * CPU runs at ring 0 so it is impossible to hit an invalid 910 * stack. Using the original stack works well enough at this 911 * early stage. DEBUG_STACK will be equipped after cpu_init() in 912 * trap_init(). 913 * 914 * We don't need to set trace_idt_table like set_intr_gate(), 915 * since we don't have trace_debug and it will be reset to 916 * 'debug' in trap_init() by set_intr_gate_ist(). 917 */ 918 set_intr_gate_notrace(X86_TRAP_DB, debug); 919 /* int3 can be called from all */ 920 set_system_intr_gate(X86_TRAP_BP, &int3); 921 #ifdef CONFIG_X86_32 922 set_intr_gate(X86_TRAP_PF, page_fault); 923 #endif 924 load_idt(&idt_descr); 925 } 926 927 void __init early_trap_pf_init(void) 928 { 929 #ifdef CONFIG_X86_64 930 set_intr_gate(X86_TRAP_PF, page_fault); 931 #endif 932 } 933 934 void __init trap_init(void) 935 { 936 int i; 937 938 #ifdef CONFIG_EISA 939 void __iomem *p = early_ioremap(0x0FFFD9, 4); 940 941 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) 942 EISA_bus = 1; 943 early_iounmap(p, 4); 944 #endif 945 946 set_intr_gate(X86_TRAP_DE, divide_error); 947 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK); 948 /* int4 can be called from all */ 949 set_system_intr_gate(X86_TRAP_OF, &overflow); 950 set_intr_gate(X86_TRAP_BR, bounds); 951 set_intr_gate(X86_TRAP_UD, invalid_op); 952 set_intr_gate(X86_TRAP_NM, device_not_available); 953 #ifdef CONFIG_X86_32 954 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS); 955 #else 956 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK); 957 #endif 958 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun); 959 set_intr_gate(X86_TRAP_TS, invalid_TSS); 960 set_intr_gate(X86_TRAP_NP, segment_not_present); 961 set_intr_gate(X86_TRAP_SS, stack_segment); 962 set_intr_gate(X86_TRAP_GP, general_protection); 963 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug); 964 set_intr_gate(X86_TRAP_MF, coprocessor_error); 965 set_intr_gate(X86_TRAP_AC, alignment_check); 966 #ifdef CONFIG_X86_MCE 967 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK); 968 #endif 969 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error); 970 971 /* Reserve all the builtin and the syscall vector: */ 972 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) 973 set_bit(i, used_vectors); 974 975 #ifdef CONFIG_IA32_EMULATION 976 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat); 977 set_bit(IA32_SYSCALL_VECTOR, used_vectors); 978 #endif 979 980 #ifdef CONFIG_X86_32 981 set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32); 982 set_bit(IA32_SYSCALL_VECTOR, used_vectors); 983 #endif 984 985 /* 986 * Set the IDT descriptor to a fixed read-only location, so that the 987 * "sidt" instruction will not leak the location of the kernel, and 988 * to defend the IDT against arbitrary memory write vulnerabilities. 989 * It will be reloaded in cpu_init() */ 990 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO); 991 idt_descr.address = fix_to_virt(FIX_RO_IDT); 992 993 /* 994 * Should be a barrier for any external CPU state: 995 */ 996 cpu_init(); 997 998 /* 999 * X86_TRAP_DB and X86_TRAP_BP have been set 1000 * in early_trap_init(). However, ITS works only after 1001 * cpu_init() loads TSS. See comments in early_trap_init(). 1002 */ 1003 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK); 1004 /* int3 can be called from all */ 1005 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK); 1006 1007 x86_init.irqs.trap_init(); 1008 1009 #ifdef CONFIG_X86_64 1010 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16); 1011 set_nmi_gate(X86_TRAP_DB, &debug); 1012 set_nmi_gate(X86_TRAP_BP, &int3); 1013 #endif 1014 } 1015