xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 174cd4b1)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
39 
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
44 
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
48 
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/text-patching.h>
55 #include <asm/ftrace.h>
56 #include <asm/traps.h>
57 #include <asm/desc.h>
58 #include <asm/fpu/internal.h>
59 #include <asm/mce.h>
60 #include <asm/fixmap.h>
61 #include <asm/mach_traps.h>
62 #include <asm/alternative.h>
63 #include <asm/fpu/xstate.h>
64 #include <asm/trace/mpx.h>
65 #include <asm/mpx.h>
66 #include <asm/vm86.h>
67 
68 #ifdef CONFIG_X86_64
69 #include <asm/x86_init.h>
70 #include <asm/pgalloc.h>
71 #include <asm/proto.h>
72 
73 /* No need to be aligned, but done to keep all IDTs defined the same way. */
74 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
75 #else
76 #include <asm/processor-flags.h>
77 #include <asm/setup.h>
78 #include <asm/proto.h>
79 #endif
80 
81 /* Must be page-aligned because the real IDT is used in a fixmap. */
82 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
83 
84 DECLARE_BITMAP(used_vectors, NR_VECTORS);
85 EXPORT_SYMBOL_GPL(used_vectors);
86 
87 static inline void cond_local_irq_enable(struct pt_regs *regs)
88 {
89 	if (regs->flags & X86_EFLAGS_IF)
90 		local_irq_enable();
91 }
92 
93 static inline void cond_local_irq_disable(struct pt_regs *regs)
94 {
95 	if (regs->flags & X86_EFLAGS_IF)
96 		local_irq_disable();
97 }
98 
99 /*
100  * In IST context, we explicitly disable preemption.  This serves two
101  * purposes: it makes it much less likely that we would accidentally
102  * schedule in IST context and it will force a warning if we somehow
103  * manage to schedule by accident.
104  */
105 void ist_enter(struct pt_regs *regs)
106 {
107 	if (user_mode(regs)) {
108 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
109 	} else {
110 		/*
111 		 * We might have interrupted pretty much anything.  In
112 		 * fact, if we're a machine check, we can even interrupt
113 		 * NMI processing.  We don't want in_nmi() to return true,
114 		 * but we need to notify RCU.
115 		 */
116 		rcu_nmi_enter();
117 	}
118 
119 	preempt_disable();
120 
121 	/* This code is a bit fragile.  Test it. */
122 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
123 }
124 
125 void ist_exit(struct pt_regs *regs)
126 {
127 	preempt_enable_no_resched();
128 
129 	if (!user_mode(regs))
130 		rcu_nmi_exit();
131 }
132 
133 /**
134  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
135  * @regs:	regs passed to the IST exception handler
136  *
137  * IST exception handlers normally cannot schedule.  As a special
138  * exception, if the exception interrupted userspace code (i.e.
139  * user_mode(regs) would return true) and the exception was not
140  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
141  * begins a non-atomic section within an ist_enter()/ist_exit() region.
142  * Callers are responsible for enabling interrupts themselves inside
143  * the non-atomic section, and callers must call ist_end_non_atomic()
144  * before ist_exit().
145  */
146 void ist_begin_non_atomic(struct pt_regs *regs)
147 {
148 	BUG_ON(!user_mode(regs));
149 
150 	/*
151 	 * Sanity check: we need to be on the normal thread stack.  This
152 	 * will catch asm bugs and any attempt to use ist_preempt_enable
153 	 * from double_fault.
154 	 */
155 	BUG_ON((unsigned long)(current_top_of_stack() -
156 			       current_stack_pointer()) >= THREAD_SIZE);
157 
158 	preempt_enable_no_resched();
159 }
160 
161 /**
162  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
163  *
164  * Ends a non-atomic section started with ist_begin_non_atomic().
165  */
166 void ist_end_non_atomic(void)
167 {
168 	preempt_disable();
169 }
170 
171 static nokprobe_inline int
172 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
173 		  struct pt_regs *regs,	long error_code)
174 {
175 	if (v8086_mode(regs)) {
176 		/*
177 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
178 		 * On nmi (interrupt 2), do_trap should not be called.
179 		 */
180 		if (trapnr < X86_TRAP_UD) {
181 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
182 						error_code, trapnr))
183 				return 0;
184 		}
185 		return -1;
186 	}
187 
188 	if (!user_mode(regs)) {
189 		if (!fixup_exception(regs, trapnr)) {
190 			tsk->thread.error_code = error_code;
191 			tsk->thread.trap_nr = trapnr;
192 			die(str, regs, error_code);
193 		}
194 		return 0;
195 	}
196 
197 	return -1;
198 }
199 
200 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
201 				siginfo_t *info)
202 {
203 	unsigned long siaddr;
204 	int sicode;
205 
206 	switch (trapnr) {
207 	default:
208 		return SEND_SIG_PRIV;
209 
210 	case X86_TRAP_DE:
211 		sicode = FPE_INTDIV;
212 		siaddr = uprobe_get_trap_addr(regs);
213 		break;
214 	case X86_TRAP_UD:
215 		sicode = ILL_ILLOPN;
216 		siaddr = uprobe_get_trap_addr(regs);
217 		break;
218 	case X86_TRAP_AC:
219 		sicode = BUS_ADRALN;
220 		siaddr = 0;
221 		break;
222 	}
223 
224 	info->si_signo = signr;
225 	info->si_errno = 0;
226 	info->si_code = sicode;
227 	info->si_addr = (void __user *)siaddr;
228 	return info;
229 }
230 
231 static void
232 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
233 	long error_code, siginfo_t *info)
234 {
235 	struct task_struct *tsk = current;
236 
237 
238 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
239 		return;
240 	/*
241 	 * We want error_code and trap_nr set for userspace faults and
242 	 * kernelspace faults which result in die(), but not
243 	 * kernelspace faults which are fixed up.  die() gives the
244 	 * process no chance to handle the signal and notice the
245 	 * kernel fault information, so that won't result in polluting
246 	 * the information about previously queued, but not yet
247 	 * delivered, faults.  See also do_general_protection below.
248 	 */
249 	tsk->thread.error_code = error_code;
250 	tsk->thread.trap_nr = trapnr;
251 
252 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
253 	    printk_ratelimit()) {
254 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
255 			tsk->comm, tsk->pid, str,
256 			regs->ip, regs->sp, error_code);
257 		print_vma_addr(" in ", regs->ip);
258 		pr_cont("\n");
259 	}
260 
261 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
262 }
263 NOKPROBE_SYMBOL(do_trap);
264 
265 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
266 			  unsigned long trapnr, int signr)
267 {
268 	siginfo_t info;
269 
270 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
271 
272 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
273 			NOTIFY_STOP) {
274 		cond_local_irq_enable(regs);
275 		do_trap(trapnr, signr, str, regs, error_code,
276 			fill_trap_info(regs, signr, trapnr, &info));
277 	}
278 }
279 
280 #define DO_ERROR(trapnr, signr, str, name)				\
281 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
282 {									\
283 	do_error_trap(regs, error_code, str, trapnr, signr);		\
284 }
285 
286 DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
287 DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
288 DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
289 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
290 DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
291 DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
292 DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
293 DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
294 
295 #ifdef CONFIG_VMAP_STACK
296 __visible void __noreturn handle_stack_overflow(const char *message,
297 						struct pt_regs *regs,
298 						unsigned long fault_address)
299 {
300 	printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
301 		 (void *)fault_address, current->stack,
302 		 (char *)current->stack + THREAD_SIZE - 1);
303 	die(message, regs, 0);
304 
305 	/* Be absolutely certain we don't return. */
306 	panic(message);
307 }
308 #endif
309 
310 #ifdef CONFIG_X86_64
311 /* Runs on IST stack */
312 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
313 {
314 	static const char str[] = "double fault";
315 	struct task_struct *tsk = current;
316 #ifdef CONFIG_VMAP_STACK
317 	unsigned long cr2;
318 #endif
319 
320 #ifdef CONFIG_X86_ESPFIX64
321 	extern unsigned char native_irq_return_iret[];
322 
323 	/*
324 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
325 	 * end up promoting it to a doublefault.  In that case, modify
326 	 * the stack to make it look like we just entered the #GP
327 	 * handler from user space, similar to bad_iret.
328 	 *
329 	 * No need for ist_enter here because we don't use RCU.
330 	 */
331 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
332 		regs->cs == __KERNEL_CS &&
333 		regs->ip == (unsigned long)native_irq_return_iret)
334 	{
335 		struct pt_regs *normal_regs = task_pt_regs(current);
336 
337 		/* Fake a #GP(0) from userspace. */
338 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
339 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
340 		regs->ip = (unsigned long)general_protection;
341 		regs->sp = (unsigned long)&normal_regs->orig_ax;
342 
343 		return;
344 	}
345 #endif
346 
347 	ist_enter(regs);
348 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
349 
350 	tsk->thread.error_code = error_code;
351 	tsk->thread.trap_nr = X86_TRAP_DF;
352 
353 #ifdef CONFIG_VMAP_STACK
354 	/*
355 	 * If we overflow the stack into a guard page, the CPU will fail
356 	 * to deliver #PF and will send #DF instead.  Similarly, if we
357 	 * take any non-IST exception while too close to the bottom of
358 	 * the stack, the processor will get a page fault while
359 	 * delivering the exception and will generate a double fault.
360 	 *
361 	 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
362 	 * Page-Fault Exception (#PF):
363 	 *
364 	 *   Processors update CR2 whenever a page fault is detected. If a
365 	 *   second page fault occurs while an earlier page fault is being
366 	 *   deliv- ered, the faulting linear address of the second fault will
367 	 *   overwrite the contents of CR2 (replacing the previous
368 	 *   address). These updates to CR2 occur even if the page fault
369 	 *   results in a double fault or occurs during the delivery of a
370 	 *   double fault.
371 	 *
372 	 * The logic below has a small possibility of incorrectly diagnosing
373 	 * some errors as stack overflows.  For example, if the IDT or GDT
374 	 * gets corrupted such that #GP delivery fails due to a bad descriptor
375 	 * causing #GP and we hit this condition while CR2 coincidentally
376 	 * points to the stack guard page, we'll think we overflowed the
377 	 * stack.  Given that we're going to panic one way or another
378 	 * if this happens, this isn't necessarily worth fixing.
379 	 *
380 	 * If necessary, we could improve the test by only diagnosing
381 	 * a stack overflow if the saved RSP points within 47 bytes of
382 	 * the bottom of the stack: if RSP == tsk_stack + 48 and we
383 	 * take an exception, the stack is already aligned and there
384 	 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
385 	 * possible error code, so a stack overflow would *not* double
386 	 * fault.  With any less space left, exception delivery could
387 	 * fail, and, as a practical matter, we've overflowed the
388 	 * stack even if the actual trigger for the double fault was
389 	 * something else.
390 	 */
391 	cr2 = read_cr2();
392 	if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
393 		handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
394 #endif
395 
396 #ifdef CONFIG_DOUBLEFAULT
397 	df_debug(regs, error_code);
398 #endif
399 	/*
400 	 * This is always a kernel trap and never fixable (and thus must
401 	 * never return).
402 	 */
403 	for (;;)
404 		die(str, regs, error_code);
405 }
406 #endif
407 
408 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
409 {
410 	const struct mpx_bndcsr *bndcsr;
411 	siginfo_t *info;
412 
413 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
414 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
415 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
416 		return;
417 	cond_local_irq_enable(regs);
418 
419 	if (!user_mode(regs))
420 		die("bounds", regs, error_code);
421 
422 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
423 		/* The exception is not from Intel MPX */
424 		goto exit_trap;
425 	}
426 
427 	/*
428 	 * We need to look at BNDSTATUS to resolve this exception.
429 	 * A NULL here might mean that it is in its 'init state',
430 	 * which is all zeros which indicates MPX was not
431 	 * responsible for the exception.
432 	 */
433 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
434 	if (!bndcsr)
435 		goto exit_trap;
436 
437 	trace_bounds_exception_mpx(bndcsr);
438 	/*
439 	 * The error code field of the BNDSTATUS register communicates status
440 	 * information of a bound range exception #BR or operation involving
441 	 * bound directory.
442 	 */
443 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
444 	case 2:	/* Bound directory has invalid entry. */
445 		if (mpx_handle_bd_fault())
446 			goto exit_trap;
447 		break; /* Success, it was handled */
448 	case 1: /* Bound violation. */
449 		info = mpx_generate_siginfo(regs);
450 		if (IS_ERR(info)) {
451 			/*
452 			 * We failed to decode the MPX instruction.  Act as if
453 			 * the exception was not caused by MPX.
454 			 */
455 			goto exit_trap;
456 		}
457 		/*
458 		 * Success, we decoded the instruction and retrieved
459 		 * an 'info' containing the address being accessed
460 		 * which caused the exception.  This information
461 		 * allows and application to possibly handle the
462 		 * #BR exception itself.
463 		 */
464 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
465 		kfree(info);
466 		break;
467 	case 0: /* No exception caused by Intel MPX operations. */
468 		goto exit_trap;
469 	default:
470 		die("bounds", regs, error_code);
471 	}
472 
473 	return;
474 
475 exit_trap:
476 	/*
477 	 * This path out is for all the cases where we could not
478 	 * handle the exception in some way (like allocating a
479 	 * table or telling userspace about it.  We will also end
480 	 * up here if the kernel has MPX turned off at compile
481 	 * time..
482 	 */
483 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
484 }
485 
486 dotraplinkage void
487 do_general_protection(struct pt_regs *regs, long error_code)
488 {
489 	struct task_struct *tsk;
490 
491 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
492 	cond_local_irq_enable(regs);
493 
494 	if (v8086_mode(regs)) {
495 		local_irq_enable();
496 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
497 		return;
498 	}
499 
500 	tsk = current;
501 	if (!user_mode(regs)) {
502 		if (fixup_exception(regs, X86_TRAP_GP))
503 			return;
504 
505 		tsk->thread.error_code = error_code;
506 		tsk->thread.trap_nr = X86_TRAP_GP;
507 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
508 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
509 			die("general protection fault", regs, error_code);
510 		return;
511 	}
512 
513 	tsk->thread.error_code = error_code;
514 	tsk->thread.trap_nr = X86_TRAP_GP;
515 
516 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
517 			printk_ratelimit()) {
518 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
519 			tsk->comm, task_pid_nr(tsk),
520 			regs->ip, regs->sp, error_code);
521 		print_vma_addr(" in ", regs->ip);
522 		pr_cont("\n");
523 	}
524 
525 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
526 }
527 NOKPROBE_SYMBOL(do_general_protection);
528 
529 /* May run on IST stack. */
530 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
531 {
532 #ifdef CONFIG_DYNAMIC_FTRACE
533 	/*
534 	 * ftrace must be first, everything else may cause a recursive crash.
535 	 * See note by declaration of modifying_ftrace_code in ftrace.c
536 	 */
537 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
538 	    ftrace_int3_handler(regs))
539 		return;
540 #endif
541 	if (poke_int3_handler(regs))
542 		return;
543 
544 	ist_enter(regs);
545 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
546 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
547 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
548 				SIGTRAP) == NOTIFY_STOP)
549 		goto exit;
550 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
551 
552 #ifdef CONFIG_KPROBES
553 	if (kprobe_int3_handler(regs))
554 		goto exit;
555 #endif
556 
557 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
558 			SIGTRAP) == NOTIFY_STOP)
559 		goto exit;
560 
561 	/*
562 	 * Let others (NMI) know that the debug stack is in use
563 	 * as we may switch to the interrupt stack.
564 	 */
565 	debug_stack_usage_inc();
566 	cond_local_irq_enable(regs);
567 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
568 	cond_local_irq_disable(regs);
569 	debug_stack_usage_dec();
570 exit:
571 	ist_exit(regs);
572 }
573 NOKPROBE_SYMBOL(do_int3);
574 
575 #ifdef CONFIG_X86_64
576 /*
577  * Help handler running on IST stack to switch off the IST stack if the
578  * interrupted code was in user mode. The actual stack switch is done in
579  * entry_64.S
580  */
581 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
582 {
583 	struct pt_regs *regs = task_pt_regs(current);
584 	*regs = *eregs;
585 	return regs;
586 }
587 NOKPROBE_SYMBOL(sync_regs);
588 
589 struct bad_iret_stack {
590 	void *error_entry_ret;
591 	struct pt_regs regs;
592 };
593 
594 asmlinkage __visible notrace
595 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
596 {
597 	/*
598 	 * This is called from entry_64.S early in handling a fault
599 	 * caused by a bad iret to user mode.  To handle the fault
600 	 * correctly, we want move our stack frame to task_pt_regs
601 	 * and we want to pretend that the exception came from the
602 	 * iret target.
603 	 */
604 	struct bad_iret_stack *new_stack =
605 		container_of(task_pt_regs(current),
606 			     struct bad_iret_stack, regs);
607 
608 	/* Copy the IRET target to the new stack. */
609 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
610 
611 	/* Copy the remainder of the stack from the current stack. */
612 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
613 
614 	BUG_ON(!user_mode(&new_stack->regs));
615 	return new_stack;
616 }
617 NOKPROBE_SYMBOL(fixup_bad_iret);
618 #endif
619 
620 static bool is_sysenter_singlestep(struct pt_regs *regs)
621 {
622 	/*
623 	 * We don't try for precision here.  If we're anywhere in the region of
624 	 * code that can be single-stepped in the SYSENTER entry path, then
625 	 * assume that this is a useless single-step trap due to SYSENTER
626 	 * being invoked with TF set.  (We don't know in advance exactly
627 	 * which instructions will be hit because BTF could plausibly
628 	 * be set.)
629 	 */
630 #ifdef CONFIG_X86_32
631 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
632 		(unsigned long)__end_SYSENTER_singlestep_region -
633 		(unsigned long)__begin_SYSENTER_singlestep_region;
634 #elif defined(CONFIG_IA32_EMULATION)
635 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
636 		(unsigned long)__end_entry_SYSENTER_compat -
637 		(unsigned long)entry_SYSENTER_compat;
638 #else
639 	return false;
640 #endif
641 }
642 
643 /*
644  * Our handling of the processor debug registers is non-trivial.
645  * We do not clear them on entry and exit from the kernel. Therefore
646  * it is possible to get a watchpoint trap here from inside the kernel.
647  * However, the code in ./ptrace.c has ensured that the user can
648  * only set watchpoints on userspace addresses. Therefore the in-kernel
649  * watchpoint trap can only occur in code which is reading/writing
650  * from user space. Such code must not hold kernel locks (since it
651  * can equally take a page fault), therefore it is safe to call
652  * force_sig_info even though that claims and releases locks.
653  *
654  * Code in ./signal.c ensures that the debug control register
655  * is restored before we deliver any signal, and therefore that
656  * user code runs with the correct debug control register even though
657  * we clear it here.
658  *
659  * Being careful here means that we don't have to be as careful in a
660  * lot of more complicated places (task switching can be a bit lazy
661  * about restoring all the debug state, and ptrace doesn't have to
662  * find every occurrence of the TF bit that could be saved away even
663  * by user code)
664  *
665  * May run on IST stack.
666  */
667 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
668 {
669 	struct task_struct *tsk = current;
670 	int user_icebp = 0;
671 	unsigned long dr6;
672 	int si_code;
673 
674 	ist_enter(regs);
675 
676 	get_debugreg(dr6, 6);
677 	/*
678 	 * The Intel SDM says:
679 	 *
680 	 *   Certain debug exceptions may clear bits 0-3. The remaining
681 	 *   contents of the DR6 register are never cleared by the
682 	 *   processor. To avoid confusion in identifying debug
683 	 *   exceptions, debug handlers should clear the register before
684 	 *   returning to the interrupted task.
685 	 *
686 	 * Keep it simple: clear DR6 immediately.
687 	 */
688 	set_debugreg(0, 6);
689 
690 	/* Filter out all the reserved bits which are preset to 1 */
691 	dr6 &= ~DR6_RESERVED;
692 
693 	/*
694 	 * The SDM says "The processor clears the BTF flag when it
695 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
696 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
697 	 */
698 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
699 
700 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
701 		     is_sysenter_singlestep(regs))) {
702 		dr6 &= ~DR_STEP;
703 		if (!dr6)
704 			goto exit;
705 		/*
706 		 * else we might have gotten a single-step trap and hit a
707 		 * watchpoint at the same time, in which case we should fall
708 		 * through and handle the watchpoint.
709 		 */
710 	}
711 
712 	/*
713 	 * If dr6 has no reason to give us about the origin of this trap,
714 	 * then it's very likely the result of an icebp/int01 trap.
715 	 * User wants a sigtrap for that.
716 	 */
717 	if (!dr6 && user_mode(regs))
718 		user_icebp = 1;
719 
720 	/* Catch kmemcheck conditions! */
721 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
722 		goto exit;
723 
724 	/* Store the virtualized DR6 value */
725 	tsk->thread.debugreg6 = dr6;
726 
727 #ifdef CONFIG_KPROBES
728 	if (kprobe_debug_handler(regs))
729 		goto exit;
730 #endif
731 
732 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
733 							SIGTRAP) == NOTIFY_STOP)
734 		goto exit;
735 
736 	/*
737 	 * Let others (NMI) know that the debug stack is in use
738 	 * as we may switch to the interrupt stack.
739 	 */
740 	debug_stack_usage_inc();
741 
742 	/* It's safe to allow irq's after DR6 has been saved */
743 	cond_local_irq_enable(regs);
744 
745 	if (v8086_mode(regs)) {
746 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
747 					X86_TRAP_DB);
748 		cond_local_irq_disable(regs);
749 		debug_stack_usage_dec();
750 		goto exit;
751 	}
752 
753 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
754 		/*
755 		 * Historical junk that used to handle SYSENTER single-stepping.
756 		 * This should be unreachable now.  If we survive for a while
757 		 * without anyone hitting this warning, we'll turn this into
758 		 * an oops.
759 		 */
760 		tsk->thread.debugreg6 &= ~DR_STEP;
761 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
762 		regs->flags &= ~X86_EFLAGS_TF;
763 	}
764 	si_code = get_si_code(tsk->thread.debugreg6);
765 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
766 		send_sigtrap(tsk, regs, error_code, si_code);
767 	cond_local_irq_disable(regs);
768 	debug_stack_usage_dec();
769 
770 exit:
771 #if defined(CONFIG_X86_32)
772 	/*
773 	 * This is the most likely code path that involves non-trivial use
774 	 * of the SYSENTER stack.  Check that we haven't overrun it.
775 	 */
776 	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
777 	     "Overran or corrupted SYSENTER stack\n");
778 #endif
779 	ist_exit(regs);
780 }
781 NOKPROBE_SYMBOL(do_debug);
782 
783 /*
784  * Note that we play around with the 'TS' bit in an attempt to get
785  * the correct behaviour even in the presence of the asynchronous
786  * IRQ13 behaviour
787  */
788 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
789 {
790 	struct task_struct *task = current;
791 	struct fpu *fpu = &task->thread.fpu;
792 	siginfo_t info;
793 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
794 						"simd exception";
795 
796 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
797 		return;
798 	cond_local_irq_enable(regs);
799 
800 	if (!user_mode(regs)) {
801 		if (!fixup_exception(regs, trapnr)) {
802 			task->thread.error_code = error_code;
803 			task->thread.trap_nr = trapnr;
804 			die(str, regs, error_code);
805 		}
806 		return;
807 	}
808 
809 	/*
810 	 * Save the info for the exception handler and clear the error.
811 	 */
812 	fpu__save(fpu);
813 
814 	task->thread.trap_nr	= trapnr;
815 	task->thread.error_code = error_code;
816 	info.si_signo		= SIGFPE;
817 	info.si_errno		= 0;
818 	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
819 
820 	info.si_code = fpu__exception_code(fpu, trapnr);
821 
822 	/* Retry when we get spurious exceptions: */
823 	if (!info.si_code)
824 		return;
825 
826 	force_sig_info(SIGFPE, &info, task);
827 }
828 
829 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
830 {
831 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
832 	math_error(regs, error_code, X86_TRAP_MF);
833 }
834 
835 dotraplinkage void
836 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
837 {
838 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
839 	math_error(regs, error_code, X86_TRAP_XF);
840 }
841 
842 dotraplinkage void
843 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
844 {
845 	cond_local_irq_enable(regs);
846 }
847 
848 dotraplinkage void
849 do_device_not_available(struct pt_regs *regs, long error_code)
850 {
851 	unsigned long cr0;
852 
853 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
854 
855 #ifdef CONFIG_MATH_EMULATION
856 	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
857 		struct math_emu_info info = { };
858 
859 		cond_local_irq_enable(regs);
860 
861 		info.regs = regs;
862 		math_emulate(&info);
863 		return;
864 	}
865 #endif
866 
867 	/* This should not happen. */
868 	cr0 = read_cr0();
869 	if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
870 		/* Try to fix it up and carry on. */
871 		write_cr0(cr0 & ~X86_CR0_TS);
872 	} else {
873 		/*
874 		 * Something terrible happened, and we're better off trying
875 		 * to kill the task than getting stuck in a never-ending
876 		 * loop of #NM faults.
877 		 */
878 		die("unexpected #NM exception", regs, error_code);
879 	}
880 }
881 NOKPROBE_SYMBOL(do_device_not_available);
882 
883 #ifdef CONFIG_X86_32
884 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
885 {
886 	siginfo_t info;
887 
888 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
889 	local_irq_enable();
890 
891 	info.si_signo = SIGILL;
892 	info.si_errno = 0;
893 	info.si_code = ILL_BADSTK;
894 	info.si_addr = NULL;
895 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
896 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
897 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
898 			&info);
899 	}
900 }
901 #endif
902 
903 /* Set of traps needed for early debugging. */
904 void __init early_trap_init(void)
905 {
906 	/*
907 	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
908 	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
909 	 * CPU runs at ring 0 so it is impossible to hit an invalid
910 	 * stack.  Using the original stack works well enough at this
911 	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
912 	 * trap_init().
913 	 *
914 	 * We don't need to set trace_idt_table like set_intr_gate(),
915 	 * since we don't have trace_debug and it will be reset to
916 	 * 'debug' in trap_init() by set_intr_gate_ist().
917 	 */
918 	set_intr_gate_notrace(X86_TRAP_DB, debug);
919 	/* int3 can be called from all */
920 	set_system_intr_gate(X86_TRAP_BP, &int3);
921 #ifdef CONFIG_X86_32
922 	set_intr_gate(X86_TRAP_PF, page_fault);
923 #endif
924 	load_idt(&idt_descr);
925 }
926 
927 void __init early_trap_pf_init(void)
928 {
929 #ifdef CONFIG_X86_64
930 	set_intr_gate(X86_TRAP_PF, page_fault);
931 #endif
932 }
933 
934 void __init trap_init(void)
935 {
936 	int i;
937 
938 #ifdef CONFIG_EISA
939 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
940 
941 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
942 		EISA_bus = 1;
943 	early_iounmap(p, 4);
944 #endif
945 
946 	set_intr_gate(X86_TRAP_DE, divide_error);
947 	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
948 	/* int4 can be called from all */
949 	set_system_intr_gate(X86_TRAP_OF, &overflow);
950 	set_intr_gate(X86_TRAP_BR, bounds);
951 	set_intr_gate(X86_TRAP_UD, invalid_op);
952 	set_intr_gate(X86_TRAP_NM, device_not_available);
953 #ifdef CONFIG_X86_32
954 	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
955 #else
956 	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
957 #endif
958 	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
959 	set_intr_gate(X86_TRAP_TS, invalid_TSS);
960 	set_intr_gate(X86_TRAP_NP, segment_not_present);
961 	set_intr_gate(X86_TRAP_SS, stack_segment);
962 	set_intr_gate(X86_TRAP_GP, general_protection);
963 	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
964 	set_intr_gate(X86_TRAP_MF, coprocessor_error);
965 	set_intr_gate(X86_TRAP_AC, alignment_check);
966 #ifdef CONFIG_X86_MCE
967 	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
968 #endif
969 	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
970 
971 	/* Reserve all the builtin and the syscall vector: */
972 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
973 		set_bit(i, used_vectors);
974 
975 #ifdef CONFIG_IA32_EMULATION
976 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
977 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
978 #endif
979 
980 #ifdef CONFIG_X86_32
981 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
982 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
983 #endif
984 
985 	/*
986 	 * Set the IDT descriptor to a fixed read-only location, so that the
987 	 * "sidt" instruction will not leak the location of the kernel, and
988 	 * to defend the IDT against arbitrary memory write vulnerabilities.
989 	 * It will be reloaded in cpu_init() */
990 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
991 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
992 
993 	/*
994 	 * Should be a barrier for any external CPU state:
995 	 */
996 	cpu_init();
997 
998 	/*
999 	 * X86_TRAP_DB and X86_TRAP_BP have been set
1000 	 * in early_trap_init(). However, ITS works only after
1001 	 * cpu_init() loads TSS. See comments in early_trap_init().
1002 	 */
1003 	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
1004 	/* int3 can be called from all */
1005 	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
1006 
1007 	x86_init.irqs.trap_init();
1008 
1009 #ifdef CONFIG_X86_64
1010 	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
1011 	set_nmi_gate(X86_TRAP_DB, &debug);
1012 	set_nmi_gate(X86_TRAP_BP, &int3);
1013 #endif
1014 }
1015