1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/spinlock.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/kdebug.h> 22 #include <linux/kgdb.h> 23 #include <linux/kernel.h> 24 #include <linux/export.h> 25 #include <linux/ptrace.h> 26 #include <linux/uprobes.h> 27 #include <linux/string.h> 28 #include <linux/delay.h> 29 #include <linux/errno.h> 30 #include <linux/kexec.h> 31 #include <linux/sched.h> 32 #include <linux/sched/task_stack.h> 33 #include <linux/timer.h> 34 #include <linux/init.h> 35 #include <linux/bug.h> 36 #include <linux/nmi.h> 37 #include <linux/mm.h> 38 #include <linux/smp.h> 39 #include <linux/io.h> 40 #include <asm/stacktrace.h> 41 #include <asm/processor.h> 42 #include <asm/debugreg.h> 43 #include <linux/atomic.h> 44 #include <asm/text-patching.h> 45 #include <asm/ftrace.h> 46 #include <asm/traps.h> 47 #include <asm/desc.h> 48 #include <asm/fpu/internal.h> 49 #include <asm/cpu.h> 50 #include <asm/cpu_entry_area.h> 51 #include <asm/mce.h> 52 #include <asm/fixmap.h> 53 #include <asm/mach_traps.h> 54 #include <asm/alternative.h> 55 #include <asm/fpu/xstate.h> 56 #include <asm/vm86.h> 57 #include <asm/umip.h> 58 #include <asm/insn.h> 59 #include <asm/insn-eval.h> 60 61 #ifdef CONFIG_X86_64 62 #include <asm/x86_init.h> 63 #include <asm/pgalloc.h> 64 #include <asm/proto.h> 65 #else 66 #include <asm/processor-flags.h> 67 #include <asm/setup.h> 68 #include <asm/proto.h> 69 #endif 70 71 DECLARE_BITMAP(system_vectors, NR_VECTORS); 72 73 static inline void cond_local_irq_enable(struct pt_regs *regs) 74 { 75 if (regs->flags & X86_EFLAGS_IF) 76 local_irq_enable(); 77 } 78 79 static inline void cond_local_irq_disable(struct pt_regs *regs) 80 { 81 if (regs->flags & X86_EFLAGS_IF) 82 local_irq_disable(); 83 } 84 85 /* 86 * In IST context, we explicitly disable preemption. This serves two 87 * purposes: it makes it much less likely that we would accidentally 88 * schedule in IST context and it will force a warning if we somehow 89 * manage to schedule by accident. 90 */ 91 void ist_enter(struct pt_regs *regs) 92 { 93 if (user_mode(regs)) { 94 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 95 } else { 96 /* 97 * We might have interrupted pretty much anything. In 98 * fact, if we're a machine check, we can even interrupt 99 * NMI processing. We don't want in_nmi() to return true, 100 * but we need to notify RCU. 101 */ 102 rcu_nmi_enter(); 103 } 104 105 preempt_disable(); 106 107 /* This code is a bit fragile. Test it. */ 108 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); 109 } 110 NOKPROBE_SYMBOL(ist_enter); 111 112 void ist_exit(struct pt_regs *regs) 113 { 114 preempt_enable_no_resched(); 115 116 if (!user_mode(regs)) 117 rcu_nmi_exit(); 118 } 119 120 /** 121 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception 122 * @regs: regs passed to the IST exception handler 123 * 124 * IST exception handlers normally cannot schedule. As a special 125 * exception, if the exception interrupted userspace code (i.e. 126 * user_mode(regs) would return true) and the exception was not 127 * a double fault, it can be safe to schedule. ist_begin_non_atomic() 128 * begins a non-atomic section within an ist_enter()/ist_exit() region. 129 * Callers are responsible for enabling interrupts themselves inside 130 * the non-atomic section, and callers must call ist_end_non_atomic() 131 * before ist_exit(). 132 */ 133 void ist_begin_non_atomic(struct pt_regs *regs) 134 { 135 BUG_ON(!user_mode(regs)); 136 137 /* 138 * Sanity check: we need to be on the normal thread stack. This 139 * will catch asm bugs and any attempt to use ist_preempt_enable 140 * from double_fault. 141 */ 142 BUG_ON(!on_thread_stack()); 143 144 preempt_enable_no_resched(); 145 } 146 147 /** 148 * ist_end_non_atomic() - begin a non-atomic section in an IST exception 149 * 150 * Ends a non-atomic section started with ist_begin_non_atomic(). 151 */ 152 void ist_end_non_atomic(void) 153 { 154 preempt_disable(); 155 } 156 157 int is_valid_bugaddr(unsigned long addr) 158 { 159 unsigned short ud; 160 161 if (addr < TASK_SIZE_MAX) 162 return 0; 163 164 if (probe_kernel_address((unsigned short *)addr, ud)) 165 return 0; 166 167 return ud == INSN_UD0 || ud == INSN_UD2; 168 } 169 170 int fixup_bug(struct pt_regs *regs, int trapnr) 171 { 172 if (trapnr != X86_TRAP_UD) 173 return 0; 174 175 switch (report_bug(regs->ip, regs)) { 176 case BUG_TRAP_TYPE_NONE: 177 case BUG_TRAP_TYPE_BUG: 178 break; 179 180 case BUG_TRAP_TYPE_WARN: 181 regs->ip += LEN_UD2; 182 return 1; 183 } 184 185 return 0; 186 } 187 188 static nokprobe_inline int 189 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 190 struct pt_regs *regs, long error_code) 191 { 192 if (v8086_mode(regs)) { 193 /* 194 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 195 * On nmi (interrupt 2), do_trap should not be called. 196 */ 197 if (trapnr < X86_TRAP_UD) { 198 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 199 error_code, trapnr)) 200 return 0; 201 } 202 } else if (!user_mode(regs)) { 203 if (fixup_exception(regs, trapnr, error_code, 0)) 204 return 0; 205 206 tsk->thread.error_code = error_code; 207 tsk->thread.trap_nr = trapnr; 208 die(str, regs, error_code); 209 } 210 211 /* 212 * We want error_code and trap_nr set for userspace faults and 213 * kernelspace faults which result in die(), but not 214 * kernelspace faults which are fixed up. die() gives the 215 * process no chance to handle the signal and notice the 216 * kernel fault information, so that won't result in polluting 217 * the information about previously queued, but not yet 218 * delivered, faults. See also do_general_protection below. 219 */ 220 tsk->thread.error_code = error_code; 221 tsk->thread.trap_nr = trapnr; 222 223 return -1; 224 } 225 226 static void show_signal(struct task_struct *tsk, int signr, 227 const char *type, const char *desc, 228 struct pt_regs *regs, long error_code) 229 { 230 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 231 printk_ratelimit()) { 232 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 233 tsk->comm, task_pid_nr(tsk), type, desc, 234 regs->ip, regs->sp, error_code); 235 print_vma_addr(KERN_CONT " in ", regs->ip); 236 pr_cont("\n"); 237 } 238 } 239 240 static void 241 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 242 long error_code, int sicode, void __user *addr) 243 { 244 struct task_struct *tsk = current; 245 246 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 247 return; 248 249 show_signal(tsk, signr, "trap ", str, regs, error_code); 250 251 if (!sicode) 252 force_sig(signr); 253 else 254 force_sig_fault(signr, sicode, addr); 255 } 256 NOKPROBE_SYMBOL(do_trap); 257 258 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 259 unsigned long trapnr, int signr, int sicode, void __user *addr) 260 { 261 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 262 263 /* 264 * WARN*()s end up here; fix them up before we call the 265 * notifier chain. 266 */ 267 if (!user_mode(regs) && fixup_bug(regs, trapnr)) 268 return; 269 270 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 271 NOTIFY_STOP) { 272 cond_local_irq_enable(regs); 273 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 274 } 275 } 276 277 #define IP ((void __user *)uprobe_get_trap_addr(regs)) 278 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ 279 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ 280 { \ 281 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ 282 } 283 284 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) 285 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) 286 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) 287 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) 288 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) 289 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) 290 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) 291 #undef IP 292 293 dotraplinkage void do_alignment_check(struct pt_regs *regs, long error_code) 294 { 295 char *str = "alignment check"; 296 297 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 298 299 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 300 return; 301 302 if (!user_mode(regs)) 303 die("Split lock detected\n", regs, error_code); 304 305 local_irq_enable(); 306 307 if (handle_user_split_lock(regs, error_code)) 308 return; 309 310 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 311 error_code, BUS_ADRALN, NULL); 312 } 313 314 #ifdef CONFIG_VMAP_STACK 315 __visible void __noreturn handle_stack_overflow(const char *message, 316 struct pt_regs *regs, 317 unsigned long fault_address) 318 { 319 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", 320 (void *)fault_address, current->stack, 321 (char *)current->stack + THREAD_SIZE - 1); 322 die(message, regs, 0); 323 324 /* Be absolutely certain we don't return. */ 325 panic("%s", message); 326 } 327 #endif 328 329 #if defined(CONFIG_X86_64) || defined(CONFIG_DOUBLEFAULT) 330 /* 331 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 332 * 333 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 334 * SDM's warnings about double faults being unrecoverable, returning works as 335 * expected. Presumably what the SDM actually means is that the CPU may get 336 * the register state wrong on entry, so returning could be a bad idea. 337 * 338 * Various CPU engineers have promised that double faults due to an IRET fault 339 * while the stack is read-only are, in fact, recoverable. 340 * 341 * On x86_32, this is entered through a task gate, and regs are synthesized 342 * from the TSS. Returning is, in principle, okay, but changes to regs will 343 * be lost. If, for some reason, we need to return to a context with modified 344 * regs, the shim code could be adjusted to synchronize the registers. 345 */ 346 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2) 347 { 348 static const char str[] = "double fault"; 349 struct task_struct *tsk = current; 350 351 #ifdef CONFIG_X86_ESPFIX64 352 extern unsigned char native_irq_return_iret[]; 353 354 /* 355 * If IRET takes a non-IST fault on the espfix64 stack, then we 356 * end up promoting it to a doublefault. In that case, take 357 * advantage of the fact that we're not using the normal (TSS.sp0) 358 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 359 * and then modify our own IRET frame so that, when we return, 360 * we land directly at the #GP(0) vector with the stack already 361 * set up according to its expectations. 362 * 363 * The net result is that our #GP handler will think that we 364 * entered from usermode with the bad user context. 365 * 366 * No need for ist_enter here because we don't use RCU. 367 */ 368 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 369 regs->cs == __KERNEL_CS && 370 regs->ip == (unsigned long)native_irq_return_iret) 371 { 372 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 373 374 /* 375 * regs->sp points to the failing IRET frame on the 376 * ESPFIX64 stack. Copy it to the entry stack. This fills 377 * in gpregs->ss through gpregs->ip. 378 * 379 */ 380 memmove(&gpregs->ip, (void *)regs->sp, 5*8); 381 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 382 383 /* 384 * Adjust our frame so that we return straight to the #GP 385 * vector with the expected RSP value. This is safe because 386 * we won't enable interupts or schedule before we invoke 387 * general_protection, so nothing will clobber the stack 388 * frame we just set up. 389 * 390 * We will enter general_protection with kernel GSBASE, 391 * which is what the stub expects, given that the faulting 392 * RIP will be the IRET instruction. 393 */ 394 regs->ip = (unsigned long)general_protection; 395 regs->sp = (unsigned long)&gpregs->orig_ax; 396 397 return; 398 } 399 #endif 400 401 ist_enter(regs); 402 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 403 404 tsk->thread.error_code = error_code; 405 tsk->thread.trap_nr = X86_TRAP_DF; 406 407 #ifdef CONFIG_VMAP_STACK 408 /* 409 * If we overflow the stack into a guard page, the CPU will fail 410 * to deliver #PF and will send #DF instead. Similarly, if we 411 * take any non-IST exception while too close to the bottom of 412 * the stack, the processor will get a page fault while 413 * delivering the exception and will generate a double fault. 414 * 415 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 416 * Page-Fault Exception (#PF): 417 * 418 * Processors update CR2 whenever a page fault is detected. If a 419 * second page fault occurs while an earlier page fault is being 420 * delivered, the faulting linear address of the second fault will 421 * overwrite the contents of CR2 (replacing the previous 422 * address). These updates to CR2 occur even if the page fault 423 * results in a double fault or occurs during the delivery of a 424 * double fault. 425 * 426 * The logic below has a small possibility of incorrectly diagnosing 427 * some errors as stack overflows. For example, if the IDT or GDT 428 * gets corrupted such that #GP delivery fails due to a bad descriptor 429 * causing #GP and we hit this condition while CR2 coincidentally 430 * points to the stack guard page, we'll think we overflowed the 431 * stack. Given that we're going to panic one way or another 432 * if this happens, this isn't necessarily worth fixing. 433 * 434 * If necessary, we could improve the test by only diagnosing 435 * a stack overflow if the saved RSP points within 47 bytes of 436 * the bottom of the stack: if RSP == tsk_stack + 48 and we 437 * take an exception, the stack is already aligned and there 438 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 439 * possible error code, so a stack overflow would *not* double 440 * fault. With any less space left, exception delivery could 441 * fail, and, as a practical matter, we've overflowed the 442 * stack even if the actual trigger for the double fault was 443 * something else. 444 */ 445 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) 446 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); 447 #endif 448 449 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 450 die("double fault", regs, error_code); 451 panic("Machine halted."); 452 } 453 #endif 454 455 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) 456 { 457 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 458 if (notify_die(DIE_TRAP, "bounds", regs, error_code, 459 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 460 return; 461 cond_local_irq_enable(regs); 462 463 if (!user_mode(regs)) 464 die("bounds", regs, error_code); 465 466 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); 467 } 468 469 enum kernel_gp_hint { 470 GP_NO_HINT, 471 GP_NON_CANONICAL, 472 GP_CANONICAL 473 }; 474 475 /* 476 * When an uncaught #GP occurs, try to determine the memory address accessed by 477 * the instruction and return that address to the caller. Also, try to figure 478 * out whether any part of the access to that address was non-canonical. 479 */ 480 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 481 unsigned long *addr) 482 { 483 u8 insn_buf[MAX_INSN_SIZE]; 484 struct insn insn; 485 486 if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) 487 return GP_NO_HINT; 488 489 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); 490 insn_get_modrm(&insn); 491 insn_get_sib(&insn); 492 493 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 494 if (*addr == -1UL) 495 return GP_NO_HINT; 496 497 #ifdef CONFIG_X86_64 498 /* 499 * Check that: 500 * - the operand is not in the kernel half 501 * - the last byte of the operand is not in the user canonical half 502 */ 503 if (*addr < ~__VIRTUAL_MASK && 504 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 505 return GP_NON_CANONICAL; 506 #endif 507 508 return GP_CANONICAL; 509 } 510 511 #define GPFSTR "general protection fault" 512 513 dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code) 514 { 515 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 516 enum kernel_gp_hint hint = GP_NO_HINT; 517 struct task_struct *tsk; 518 unsigned long gp_addr; 519 int ret; 520 521 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 522 cond_local_irq_enable(regs); 523 524 if (static_cpu_has(X86_FEATURE_UMIP)) { 525 if (user_mode(regs) && fixup_umip_exception(regs)) 526 return; 527 } 528 529 if (v8086_mode(regs)) { 530 local_irq_enable(); 531 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 532 return; 533 } 534 535 tsk = current; 536 537 if (user_mode(regs)) { 538 tsk->thread.error_code = error_code; 539 tsk->thread.trap_nr = X86_TRAP_GP; 540 541 show_signal(tsk, SIGSEGV, "", desc, regs, error_code); 542 force_sig(SIGSEGV); 543 544 return; 545 } 546 547 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) 548 return; 549 550 tsk->thread.error_code = error_code; 551 tsk->thread.trap_nr = X86_TRAP_GP; 552 553 /* 554 * To be potentially processing a kprobe fault and to trust the result 555 * from kprobe_running(), we have to be non-preemptible. 556 */ 557 if (!preemptible() && 558 kprobe_running() && 559 kprobe_fault_handler(regs, X86_TRAP_GP)) 560 return; 561 562 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); 563 if (ret == NOTIFY_STOP) 564 return; 565 566 if (error_code) 567 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 568 else 569 hint = get_kernel_gp_address(regs, &gp_addr); 570 571 if (hint != GP_NO_HINT) 572 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 573 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 574 : "maybe for address", 575 gp_addr); 576 577 /* 578 * KASAN is interested only in the non-canonical case, clear it 579 * otherwise. 580 */ 581 if (hint != GP_NON_CANONICAL) 582 gp_addr = 0; 583 584 die_addr(desc, regs, error_code, gp_addr); 585 586 } 587 NOKPROBE_SYMBOL(do_general_protection); 588 589 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) 590 { 591 if (poke_int3_handler(regs)) 592 return; 593 594 /* 595 * Unlike any other non-IST entry, we can be called from a kprobe in 596 * non-CONTEXT_KERNEL kernel mode or even during context tracking 597 * state changes. Make sure that we wake up RCU even if we're coming 598 * from kernel code. 599 * 600 * This means that we can't schedule even if we came from a 601 * preemptible kernel context. That's okay. 602 */ 603 if (!user_mode(regs)) { 604 rcu_nmi_enter(); 605 preempt_disable(); 606 } 607 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 608 609 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 610 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 611 SIGTRAP) == NOTIFY_STOP) 612 goto exit; 613 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 614 615 #ifdef CONFIG_KPROBES 616 if (kprobe_int3_handler(regs)) 617 goto exit; 618 #endif 619 620 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, 621 SIGTRAP) == NOTIFY_STOP) 622 goto exit; 623 624 cond_local_irq_enable(regs); 625 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); 626 cond_local_irq_disable(regs); 627 628 exit: 629 if (!user_mode(regs)) { 630 preempt_enable_no_resched(); 631 rcu_nmi_exit(); 632 } 633 } 634 NOKPROBE_SYMBOL(do_int3); 635 636 #ifdef CONFIG_X86_64 637 /* 638 * Help handler running on a per-cpu (IST or entry trampoline) stack 639 * to switch to the normal thread stack if the interrupted code was in 640 * user mode. The actual stack switch is done in entry_64.S 641 */ 642 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) 643 { 644 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; 645 if (regs != eregs) 646 *regs = *eregs; 647 return regs; 648 } 649 NOKPROBE_SYMBOL(sync_regs); 650 651 struct bad_iret_stack { 652 void *error_entry_ret; 653 struct pt_regs regs; 654 }; 655 656 asmlinkage __visible notrace 657 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) 658 { 659 /* 660 * This is called from entry_64.S early in handling a fault 661 * caused by a bad iret to user mode. To handle the fault 662 * correctly, we want to move our stack frame to where it would 663 * be had we entered directly on the entry stack (rather than 664 * just below the IRET frame) and we want to pretend that the 665 * exception came from the IRET target. 666 */ 667 struct bad_iret_stack *new_stack = 668 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 669 670 /* Copy the IRET target to the new stack. */ 671 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); 672 673 /* Copy the remainder of the stack from the current stack. */ 674 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); 675 676 BUG_ON(!user_mode(&new_stack->regs)); 677 return new_stack; 678 } 679 NOKPROBE_SYMBOL(fixup_bad_iret); 680 #endif 681 682 static bool is_sysenter_singlestep(struct pt_regs *regs) 683 { 684 /* 685 * We don't try for precision here. If we're anywhere in the region of 686 * code that can be single-stepped in the SYSENTER entry path, then 687 * assume that this is a useless single-step trap due to SYSENTER 688 * being invoked with TF set. (We don't know in advance exactly 689 * which instructions will be hit because BTF could plausibly 690 * be set.) 691 */ 692 #ifdef CONFIG_X86_32 693 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 694 (unsigned long)__end_SYSENTER_singlestep_region - 695 (unsigned long)__begin_SYSENTER_singlestep_region; 696 #elif defined(CONFIG_IA32_EMULATION) 697 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 698 (unsigned long)__end_entry_SYSENTER_compat - 699 (unsigned long)entry_SYSENTER_compat; 700 #else 701 return false; 702 #endif 703 } 704 705 /* 706 * Our handling of the processor debug registers is non-trivial. 707 * We do not clear them on entry and exit from the kernel. Therefore 708 * it is possible to get a watchpoint trap here from inside the kernel. 709 * However, the code in ./ptrace.c has ensured that the user can 710 * only set watchpoints on userspace addresses. Therefore the in-kernel 711 * watchpoint trap can only occur in code which is reading/writing 712 * from user space. Such code must not hold kernel locks (since it 713 * can equally take a page fault), therefore it is safe to call 714 * force_sig_info even though that claims and releases locks. 715 * 716 * Code in ./signal.c ensures that the debug control register 717 * is restored before we deliver any signal, and therefore that 718 * user code runs with the correct debug control register even though 719 * we clear it here. 720 * 721 * Being careful here means that we don't have to be as careful in a 722 * lot of more complicated places (task switching can be a bit lazy 723 * about restoring all the debug state, and ptrace doesn't have to 724 * find every occurrence of the TF bit that could be saved away even 725 * by user code) 726 * 727 * May run on IST stack. 728 */ 729 dotraplinkage void do_debug(struct pt_regs *regs, long error_code) 730 { 731 struct task_struct *tsk = current; 732 int user_icebp = 0; 733 unsigned long dr6; 734 int si_code; 735 736 ist_enter(regs); 737 738 get_debugreg(dr6, 6); 739 /* 740 * The Intel SDM says: 741 * 742 * Certain debug exceptions may clear bits 0-3. The remaining 743 * contents of the DR6 register are never cleared by the 744 * processor. To avoid confusion in identifying debug 745 * exceptions, debug handlers should clear the register before 746 * returning to the interrupted task. 747 * 748 * Keep it simple: clear DR6 immediately. 749 */ 750 set_debugreg(0, 6); 751 752 /* Filter out all the reserved bits which are preset to 1 */ 753 dr6 &= ~DR6_RESERVED; 754 755 /* 756 * The SDM says "The processor clears the BTF flag when it 757 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 758 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 759 */ 760 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); 761 762 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && 763 is_sysenter_singlestep(regs))) { 764 dr6 &= ~DR_STEP; 765 if (!dr6) 766 goto exit; 767 /* 768 * else we might have gotten a single-step trap and hit a 769 * watchpoint at the same time, in which case we should fall 770 * through and handle the watchpoint. 771 */ 772 } 773 774 /* 775 * If dr6 has no reason to give us about the origin of this trap, 776 * then it's very likely the result of an icebp/int01 trap. 777 * User wants a sigtrap for that. 778 */ 779 if (!dr6 && user_mode(regs)) 780 user_icebp = 1; 781 782 /* Store the virtualized DR6 value */ 783 tsk->thread.debugreg6 = dr6; 784 785 #ifdef CONFIG_KPROBES 786 if (kprobe_debug_handler(regs)) 787 goto exit; 788 #endif 789 790 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, 791 SIGTRAP) == NOTIFY_STOP) 792 goto exit; 793 794 /* 795 * Let others (NMI) know that the debug stack is in use 796 * as we may switch to the interrupt stack. 797 */ 798 debug_stack_usage_inc(); 799 800 /* It's safe to allow irq's after DR6 has been saved */ 801 cond_local_irq_enable(regs); 802 803 if (v8086_mode(regs)) { 804 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 805 X86_TRAP_DB); 806 cond_local_irq_disable(regs); 807 debug_stack_usage_dec(); 808 goto exit; 809 } 810 811 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { 812 /* 813 * Historical junk that used to handle SYSENTER single-stepping. 814 * This should be unreachable now. If we survive for a while 815 * without anyone hitting this warning, we'll turn this into 816 * an oops. 817 */ 818 tsk->thread.debugreg6 &= ~DR_STEP; 819 set_tsk_thread_flag(tsk, TIF_SINGLESTEP); 820 regs->flags &= ~X86_EFLAGS_TF; 821 } 822 si_code = get_si_code(tsk->thread.debugreg6); 823 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) 824 send_sigtrap(regs, error_code, si_code); 825 cond_local_irq_disable(regs); 826 debug_stack_usage_dec(); 827 828 exit: 829 ist_exit(regs); 830 } 831 NOKPROBE_SYMBOL(do_debug); 832 833 /* 834 * Note that we play around with the 'TS' bit in an attempt to get 835 * the correct behaviour even in the presence of the asynchronous 836 * IRQ13 behaviour 837 */ 838 static void math_error(struct pt_regs *regs, int error_code, int trapnr) 839 { 840 struct task_struct *task = current; 841 struct fpu *fpu = &task->thread.fpu; 842 int si_code; 843 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 844 "simd exception"; 845 846 cond_local_irq_enable(regs); 847 848 if (!user_mode(regs)) { 849 if (fixup_exception(regs, trapnr, error_code, 0)) 850 return; 851 852 task->thread.error_code = error_code; 853 task->thread.trap_nr = trapnr; 854 855 if (notify_die(DIE_TRAP, str, regs, error_code, 856 trapnr, SIGFPE) != NOTIFY_STOP) 857 die(str, regs, error_code); 858 return; 859 } 860 861 /* 862 * Save the info for the exception handler and clear the error. 863 */ 864 fpu__save(fpu); 865 866 task->thread.trap_nr = trapnr; 867 task->thread.error_code = error_code; 868 869 si_code = fpu__exception_code(fpu, trapnr); 870 /* Retry when we get spurious exceptions: */ 871 if (!si_code) 872 return; 873 874 force_sig_fault(SIGFPE, si_code, 875 (void __user *)uprobe_get_trap_addr(regs)); 876 } 877 878 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) 879 { 880 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 881 math_error(regs, error_code, X86_TRAP_MF); 882 } 883 884 dotraplinkage void 885 do_simd_coprocessor_error(struct pt_regs *regs, long error_code) 886 { 887 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 888 math_error(regs, error_code, X86_TRAP_XF); 889 } 890 891 dotraplinkage void 892 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) 893 { 894 /* 895 * This addresses a Pentium Pro Erratum: 896 * 897 * PROBLEM: If the APIC subsystem is configured in mixed mode with 898 * Virtual Wire mode implemented through the local APIC, an 899 * interrupt vector of 0Fh (Intel reserved encoding) may be 900 * generated by the local APIC (Int 15). This vector may be 901 * generated upon receipt of a spurious interrupt (an interrupt 902 * which is removed before the system receives the INTA sequence) 903 * instead of the programmed 8259 spurious interrupt vector. 904 * 905 * IMPLICATION: The spurious interrupt vector programmed in the 906 * 8259 is normally handled by an operating system's spurious 907 * interrupt handler. However, a vector of 0Fh is unknown to some 908 * operating systems, which would crash if this erratum occurred. 909 * 910 * In theory this could be limited to 32bit, but the handler is not 911 * hurting and who knows which other CPUs suffer from this. 912 */ 913 } 914 915 dotraplinkage void 916 do_device_not_available(struct pt_regs *regs, long error_code) 917 { 918 unsigned long cr0 = read_cr0(); 919 920 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 921 922 #ifdef CONFIG_MATH_EMULATION 923 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 924 struct math_emu_info info = { }; 925 926 cond_local_irq_enable(regs); 927 928 info.regs = regs; 929 math_emulate(&info); 930 return; 931 } 932 #endif 933 934 /* This should not happen. */ 935 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 936 /* Try to fix it up and carry on. */ 937 write_cr0(cr0 & ~X86_CR0_TS); 938 } else { 939 /* 940 * Something terrible happened, and we're better off trying 941 * to kill the task than getting stuck in a never-ending 942 * loop of #NM faults. 943 */ 944 die("unexpected #NM exception", regs, error_code); 945 } 946 } 947 NOKPROBE_SYMBOL(do_device_not_available); 948 949 #ifdef CONFIG_X86_32 950 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) 951 { 952 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 953 local_irq_enable(); 954 955 if (notify_die(DIE_TRAP, "iret exception", regs, error_code, 956 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 957 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, 958 ILL_BADSTK, (void __user *)NULL); 959 } 960 } 961 #endif 962 963 void __init trap_init(void) 964 { 965 /* Init cpu_entry_area before IST entries are set up */ 966 setup_cpu_entry_areas(); 967 968 idt_setup_traps(); 969 970 /* 971 * Set the IDT descriptor to a fixed read-only location, so that the 972 * "sidt" instruction will not leak the location of the kernel, and 973 * to defend the IDT against arbitrary memory write vulnerabilities. 974 * It will be reloaded in cpu_init() */ 975 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), 976 PAGE_KERNEL_RO); 977 idt_descr.address = CPU_ENTRY_AREA_RO_IDT; 978 979 /* 980 * Should be a barrier for any external CPU state: 981 */ 982 cpu_init(); 983 984 idt_setup_ist_traps(); 985 986 x86_init.irqs.trap_init(); 987 988 idt_setup_debugidt_traps(); 989 } 990