xref: /openbmc/linux/arch/x86/kernel/traps.c (revision 110e6f26)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 
9 /*
10  * Handle hardware traps and faults.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/timer.h>
33 #include <linux/init.h>
34 #include <linux/bug.h>
35 #include <linux/nmi.h>
36 #include <linux/mm.h>
37 #include <linux/smp.h>
38 #include <linux/io.h>
39 
40 #ifdef CONFIG_EISA
41 #include <linux/ioport.h>
42 #include <linux/eisa.h>
43 #endif
44 
45 #if defined(CONFIG_EDAC)
46 #include <linux/edac.h>
47 #endif
48 
49 #include <asm/kmemcheck.h>
50 #include <asm/stacktrace.h>
51 #include <asm/processor.h>
52 #include <asm/debugreg.h>
53 #include <linux/atomic.h>
54 #include <asm/ftrace.h>
55 #include <asm/traps.h>
56 #include <asm/desc.h>
57 #include <asm/fpu/internal.h>
58 #include <asm/mce.h>
59 #include <asm/fixmap.h>
60 #include <asm/mach_traps.h>
61 #include <asm/alternative.h>
62 #include <asm/fpu/xstate.h>
63 #include <asm/trace/mpx.h>
64 #include <asm/mpx.h>
65 #include <asm/vm86.h>
66 
67 #ifdef CONFIG_X86_64
68 #include <asm/x86_init.h>
69 #include <asm/pgalloc.h>
70 #include <asm/proto.h>
71 
72 /* No need to be aligned, but done to keep all IDTs defined the same way. */
73 gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
74 #else
75 #include <asm/processor-flags.h>
76 #include <asm/setup.h>
77 #include <asm/proto.h>
78 #endif
79 
80 /* Must be page-aligned because the real IDT is used in a fixmap. */
81 gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
82 
83 DECLARE_BITMAP(used_vectors, NR_VECTORS);
84 EXPORT_SYMBOL_GPL(used_vectors);
85 
86 static inline void cond_local_irq_enable(struct pt_regs *regs)
87 {
88 	if (regs->flags & X86_EFLAGS_IF)
89 		local_irq_enable();
90 }
91 
92 static inline void cond_local_irq_disable(struct pt_regs *regs)
93 {
94 	if (regs->flags & X86_EFLAGS_IF)
95 		local_irq_disable();
96 }
97 
98 void ist_enter(struct pt_regs *regs)
99 {
100 	if (user_mode(regs)) {
101 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
102 	} else {
103 		/*
104 		 * We might have interrupted pretty much anything.  In
105 		 * fact, if we're a machine check, we can even interrupt
106 		 * NMI processing.  We don't want in_nmi() to return true,
107 		 * but we need to notify RCU.
108 		 */
109 		rcu_nmi_enter();
110 	}
111 
112 	/*
113 	 * We are atomic because we're on the IST stack; or we're on
114 	 * x86_32, in which case we still shouldn't schedule; or we're
115 	 * on x86_64 and entered from user mode, in which case we're
116 	 * still atomic unless ist_begin_non_atomic is called.
117 	 */
118 	preempt_count_add(HARDIRQ_OFFSET);
119 
120 	/* This code is a bit fragile.  Test it. */
121 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
122 }
123 
124 void ist_exit(struct pt_regs *regs)
125 {
126 	preempt_count_sub(HARDIRQ_OFFSET);
127 
128 	if (!user_mode(regs))
129 		rcu_nmi_exit();
130 }
131 
132 /**
133  * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
134  * @regs:	regs passed to the IST exception handler
135  *
136  * IST exception handlers normally cannot schedule.  As a special
137  * exception, if the exception interrupted userspace code (i.e.
138  * user_mode(regs) would return true) and the exception was not
139  * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
140  * begins a non-atomic section within an ist_enter()/ist_exit() region.
141  * Callers are responsible for enabling interrupts themselves inside
142  * the non-atomic section, and callers must call ist_end_non_atomic()
143  * before ist_exit().
144  */
145 void ist_begin_non_atomic(struct pt_regs *regs)
146 {
147 	BUG_ON(!user_mode(regs));
148 
149 	/*
150 	 * Sanity check: we need to be on the normal thread stack.  This
151 	 * will catch asm bugs and any attempt to use ist_preempt_enable
152 	 * from double_fault.
153 	 */
154 	BUG_ON((unsigned long)(current_top_of_stack() -
155 			       current_stack_pointer()) >= THREAD_SIZE);
156 
157 	preempt_count_sub(HARDIRQ_OFFSET);
158 }
159 
160 /**
161  * ist_end_non_atomic() - begin a non-atomic section in an IST exception
162  *
163  * Ends a non-atomic section started with ist_begin_non_atomic().
164  */
165 void ist_end_non_atomic(void)
166 {
167 	preempt_count_add(HARDIRQ_OFFSET);
168 }
169 
170 static nokprobe_inline int
171 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
172 		  struct pt_regs *regs,	long error_code)
173 {
174 	if (v8086_mode(regs)) {
175 		/*
176 		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
177 		 * On nmi (interrupt 2), do_trap should not be called.
178 		 */
179 		if (trapnr < X86_TRAP_UD) {
180 			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
181 						error_code, trapnr))
182 				return 0;
183 		}
184 		return -1;
185 	}
186 
187 	if (!user_mode(regs)) {
188 		if (!fixup_exception(regs, trapnr)) {
189 			tsk->thread.error_code = error_code;
190 			tsk->thread.trap_nr = trapnr;
191 			die(str, regs, error_code);
192 		}
193 		return 0;
194 	}
195 
196 	return -1;
197 }
198 
199 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
200 				siginfo_t *info)
201 {
202 	unsigned long siaddr;
203 	int sicode;
204 
205 	switch (trapnr) {
206 	default:
207 		return SEND_SIG_PRIV;
208 
209 	case X86_TRAP_DE:
210 		sicode = FPE_INTDIV;
211 		siaddr = uprobe_get_trap_addr(regs);
212 		break;
213 	case X86_TRAP_UD:
214 		sicode = ILL_ILLOPN;
215 		siaddr = uprobe_get_trap_addr(regs);
216 		break;
217 	case X86_TRAP_AC:
218 		sicode = BUS_ADRALN;
219 		siaddr = 0;
220 		break;
221 	}
222 
223 	info->si_signo = signr;
224 	info->si_errno = 0;
225 	info->si_code = sicode;
226 	info->si_addr = (void __user *)siaddr;
227 	return info;
228 }
229 
230 static void
231 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
232 	long error_code, siginfo_t *info)
233 {
234 	struct task_struct *tsk = current;
235 
236 
237 	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
238 		return;
239 	/*
240 	 * We want error_code and trap_nr set for userspace faults and
241 	 * kernelspace faults which result in die(), but not
242 	 * kernelspace faults which are fixed up.  die() gives the
243 	 * process no chance to handle the signal and notice the
244 	 * kernel fault information, so that won't result in polluting
245 	 * the information about previously queued, but not yet
246 	 * delivered, faults.  See also do_general_protection below.
247 	 */
248 	tsk->thread.error_code = error_code;
249 	tsk->thread.trap_nr = trapnr;
250 
251 	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
252 	    printk_ratelimit()) {
253 		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
254 			tsk->comm, tsk->pid, str,
255 			regs->ip, regs->sp, error_code);
256 		print_vma_addr(" in ", regs->ip);
257 		pr_cont("\n");
258 	}
259 
260 	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
261 }
262 NOKPROBE_SYMBOL(do_trap);
263 
264 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
265 			  unsigned long trapnr, int signr)
266 {
267 	siginfo_t info;
268 
269 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
270 
271 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
272 			NOTIFY_STOP) {
273 		cond_local_irq_enable(regs);
274 		do_trap(trapnr, signr, str, regs, error_code,
275 			fill_trap_info(regs, signr, trapnr, &info));
276 	}
277 }
278 
279 #define DO_ERROR(trapnr, signr, str, name)				\
280 dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
281 {									\
282 	do_error_trap(regs, error_code, str, trapnr, signr);		\
283 }
284 
285 DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
286 DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
287 DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
288 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
289 DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
290 DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
291 DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
292 DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
293 
294 #ifdef CONFIG_X86_64
295 /* Runs on IST stack */
296 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
297 {
298 	static const char str[] = "double fault";
299 	struct task_struct *tsk = current;
300 
301 #ifdef CONFIG_X86_ESPFIX64
302 	extern unsigned char native_irq_return_iret[];
303 
304 	/*
305 	 * If IRET takes a non-IST fault on the espfix64 stack, then we
306 	 * end up promoting it to a doublefault.  In that case, modify
307 	 * the stack to make it look like we just entered the #GP
308 	 * handler from user space, similar to bad_iret.
309 	 *
310 	 * No need for ist_enter here because we don't use RCU.
311 	 */
312 	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
313 		regs->cs == __KERNEL_CS &&
314 		regs->ip == (unsigned long)native_irq_return_iret)
315 	{
316 		struct pt_regs *normal_regs = task_pt_regs(current);
317 
318 		/* Fake a #GP(0) from userspace. */
319 		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
320 		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
321 		regs->ip = (unsigned long)general_protection;
322 		regs->sp = (unsigned long)&normal_regs->orig_ax;
323 
324 		return;
325 	}
326 #endif
327 
328 	ist_enter(regs);
329 	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
330 
331 	tsk->thread.error_code = error_code;
332 	tsk->thread.trap_nr = X86_TRAP_DF;
333 
334 #ifdef CONFIG_DOUBLEFAULT
335 	df_debug(regs, error_code);
336 #endif
337 	/*
338 	 * This is always a kernel trap and never fixable (and thus must
339 	 * never return).
340 	 */
341 	for (;;)
342 		die(str, regs, error_code);
343 }
344 #endif
345 
346 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
347 {
348 	const struct mpx_bndcsr *bndcsr;
349 	siginfo_t *info;
350 
351 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
352 	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
353 			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
354 		return;
355 	cond_local_irq_enable(regs);
356 
357 	if (!user_mode(regs))
358 		die("bounds", regs, error_code);
359 
360 	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
361 		/* The exception is not from Intel MPX */
362 		goto exit_trap;
363 	}
364 
365 	/*
366 	 * We need to look at BNDSTATUS to resolve this exception.
367 	 * A NULL here might mean that it is in its 'init state',
368 	 * which is all zeros which indicates MPX was not
369 	 * responsible for the exception.
370 	 */
371 	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
372 	if (!bndcsr)
373 		goto exit_trap;
374 
375 	trace_bounds_exception_mpx(bndcsr);
376 	/*
377 	 * The error code field of the BNDSTATUS register communicates status
378 	 * information of a bound range exception #BR or operation involving
379 	 * bound directory.
380 	 */
381 	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
382 	case 2:	/* Bound directory has invalid entry. */
383 		if (mpx_handle_bd_fault())
384 			goto exit_trap;
385 		break; /* Success, it was handled */
386 	case 1: /* Bound violation. */
387 		info = mpx_generate_siginfo(regs);
388 		if (IS_ERR(info)) {
389 			/*
390 			 * We failed to decode the MPX instruction.  Act as if
391 			 * the exception was not caused by MPX.
392 			 */
393 			goto exit_trap;
394 		}
395 		/*
396 		 * Success, we decoded the instruction and retrieved
397 		 * an 'info' containing the address being accessed
398 		 * which caused the exception.  This information
399 		 * allows and application to possibly handle the
400 		 * #BR exception itself.
401 		 */
402 		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
403 		kfree(info);
404 		break;
405 	case 0: /* No exception caused by Intel MPX operations. */
406 		goto exit_trap;
407 	default:
408 		die("bounds", regs, error_code);
409 	}
410 
411 	return;
412 
413 exit_trap:
414 	/*
415 	 * This path out is for all the cases where we could not
416 	 * handle the exception in some way (like allocating a
417 	 * table or telling userspace about it.  We will also end
418 	 * up here if the kernel has MPX turned off at compile
419 	 * time..
420 	 */
421 	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
422 }
423 
424 dotraplinkage void
425 do_general_protection(struct pt_regs *regs, long error_code)
426 {
427 	struct task_struct *tsk;
428 
429 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
430 	cond_local_irq_enable(regs);
431 
432 	if (v8086_mode(regs)) {
433 		local_irq_enable();
434 		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
435 		return;
436 	}
437 
438 	tsk = current;
439 	if (!user_mode(regs)) {
440 		if (fixup_exception(regs, X86_TRAP_GP))
441 			return;
442 
443 		tsk->thread.error_code = error_code;
444 		tsk->thread.trap_nr = X86_TRAP_GP;
445 		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
446 			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
447 			die("general protection fault", regs, error_code);
448 		return;
449 	}
450 
451 	tsk->thread.error_code = error_code;
452 	tsk->thread.trap_nr = X86_TRAP_GP;
453 
454 	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
455 			printk_ratelimit()) {
456 		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
457 			tsk->comm, task_pid_nr(tsk),
458 			regs->ip, regs->sp, error_code);
459 		print_vma_addr(" in ", regs->ip);
460 		pr_cont("\n");
461 	}
462 
463 	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
464 }
465 NOKPROBE_SYMBOL(do_general_protection);
466 
467 /* May run on IST stack. */
468 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
469 {
470 #ifdef CONFIG_DYNAMIC_FTRACE
471 	/*
472 	 * ftrace must be first, everything else may cause a recursive crash.
473 	 * See note by declaration of modifying_ftrace_code in ftrace.c
474 	 */
475 	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
476 	    ftrace_int3_handler(regs))
477 		return;
478 #endif
479 	if (poke_int3_handler(regs))
480 		return;
481 
482 	ist_enter(regs);
483 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
484 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
485 	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
486 				SIGTRAP) == NOTIFY_STOP)
487 		goto exit;
488 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
489 
490 #ifdef CONFIG_KPROBES
491 	if (kprobe_int3_handler(regs))
492 		goto exit;
493 #endif
494 
495 	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
496 			SIGTRAP) == NOTIFY_STOP)
497 		goto exit;
498 
499 	/*
500 	 * Let others (NMI) know that the debug stack is in use
501 	 * as we may switch to the interrupt stack.
502 	 */
503 	debug_stack_usage_inc();
504 	preempt_disable();
505 	cond_local_irq_enable(regs);
506 	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
507 	cond_local_irq_disable(regs);
508 	preempt_enable_no_resched();
509 	debug_stack_usage_dec();
510 exit:
511 	ist_exit(regs);
512 }
513 NOKPROBE_SYMBOL(do_int3);
514 
515 #ifdef CONFIG_X86_64
516 /*
517  * Help handler running on IST stack to switch off the IST stack if the
518  * interrupted code was in user mode. The actual stack switch is done in
519  * entry_64.S
520  */
521 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
522 {
523 	struct pt_regs *regs = task_pt_regs(current);
524 	*regs = *eregs;
525 	return regs;
526 }
527 NOKPROBE_SYMBOL(sync_regs);
528 
529 struct bad_iret_stack {
530 	void *error_entry_ret;
531 	struct pt_regs regs;
532 };
533 
534 asmlinkage __visible notrace
535 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
536 {
537 	/*
538 	 * This is called from entry_64.S early in handling a fault
539 	 * caused by a bad iret to user mode.  To handle the fault
540 	 * correctly, we want move our stack frame to task_pt_regs
541 	 * and we want to pretend that the exception came from the
542 	 * iret target.
543 	 */
544 	struct bad_iret_stack *new_stack =
545 		container_of(task_pt_regs(current),
546 			     struct bad_iret_stack, regs);
547 
548 	/* Copy the IRET target to the new stack. */
549 	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
550 
551 	/* Copy the remainder of the stack from the current stack. */
552 	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
553 
554 	BUG_ON(!user_mode(&new_stack->regs));
555 	return new_stack;
556 }
557 NOKPROBE_SYMBOL(fixup_bad_iret);
558 #endif
559 
560 static bool is_sysenter_singlestep(struct pt_regs *regs)
561 {
562 	/*
563 	 * We don't try for precision here.  If we're anywhere in the region of
564 	 * code that can be single-stepped in the SYSENTER entry path, then
565 	 * assume that this is a useless single-step trap due to SYSENTER
566 	 * being invoked with TF set.  (We don't know in advance exactly
567 	 * which instructions will be hit because BTF could plausibly
568 	 * be set.)
569 	 */
570 #ifdef CONFIG_X86_32
571 	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
572 		(unsigned long)__end_SYSENTER_singlestep_region -
573 		(unsigned long)__begin_SYSENTER_singlestep_region;
574 #elif defined(CONFIG_IA32_EMULATION)
575 	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
576 		(unsigned long)__end_entry_SYSENTER_compat -
577 		(unsigned long)entry_SYSENTER_compat;
578 #else
579 	return false;
580 #endif
581 }
582 
583 /*
584  * Our handling of the processor debug registers is non-trivial.
585  * We do not clear them on entry and exit from the kernel. Therefore
586  * it is possible to get a watchpoint trap here from inside the kernel.
587  * However, the code in ./ptrace.c has ensured that the user can
588  * only set watchpoints on userspace addresses. Therefore the in-kernel
589  * watchpoint trap can only occur in code which is reading/writing
590  * from user space. Such code must not hold kernel locks (since it
591  * can equally take a page fault), therefore it is safe to call
592  * force_sig_info even though that claims and releases locks.
593  *
594  * Code in ./signal.c ensures that the debug control register
595  * is restored before we deliver any signal, and therefore that
596  * user code runs with the correct debug control register even though
597  * we clear it here.
598  *
599  * Being careful here means that we don't have to be as careful in a
600  * lot of more complicated places (task switching can be a bit lazy
601  * about restoring all the debug state, and ptrace doesn't have to
602  * find every occurrence of the TF bit that could be saved away even
603  * by user code)
604  *
605  * May run on IST stack.
606  */
607 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
608 {
609 	struct task_struct *tsk = current;
610 	int user_icebp = 0;
611 	unsigned long dr6;
612 	int si_code;
613 
614 	ist_enter(regs);
615 
616 	get_debugreg(dr6, 6);
617 	/*
618 	 * The Intel SDM says:
619 	 *
620 	 *   Certain debug exceptions may clear bits 0-3. The remaining
621 	 *   contents of the DR6 register are never cleared by the
622 	 *   processor. To avoid confusion in identifying debug
623 	 *   exceptions, debug handlers should clear the register before
624 	 *   returning to the interrupted task.
625 	 *
626 	 * Keep it simple: clear DR6 immediately.
627 	 */
628 	set_debugreg(0, 6);
629 
630 	/* Filter out all the reserved bits which are preset to 1 */
631 	dr6 &= ~DR6_RESERVED;
632 
633 	/*
634 	 * The SDM says "The processor clears the BTF flag when it
635 	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
636 	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
637 	 */
638 	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
639 
640 	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
641 		     is_sysenter_singlestep(regs))) {
642 		dr6 &= ~DR_STEP;
643 		if (!dr6)
644 			goto exit;
645 		/*
646 		 * else we might have gotten a single-step trap and hit a
647 		 * watchpoint at the same time, in which case we should fall
648 		 * through and handle the watchpoint.
649 		 */
650 	}
651 
652 	/*
653 	 * If dr6 has no reason to give us about the origin of this trap,
654 	 * then it's very likely the result of an icebp/int01 trap.
655 	 * User wants a sigtrap for that.
656 	 */
657 	if (!dr6 && user_mode(regs))
658 		user_icebp = 1;
659 
660 	/* Catch kmemcheck conditions! */
661 	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
662 		goto exit;
663 
664 	/* Store the virtualized DR6 value */
665 	tsk->thread.debugreg6 = dr6;
666 
667 #ifdef CONFIG_KPROBES
668 	if (kprobe_debug_handler(regs))
669 		goto exit;
670 #endif
671 
672 	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
673 							SIGTRAP) == NOTIFY_STOP)
674 		goto exit;
675 
676 	/*
677 	 * Let others (NMI) know that the debug stack is in use
678 	 * as we may switch to the interrupt stack.
679 	 */
680 	debug_stack_usage_inc();
681 
682 	/* It's safe to allow irq's after DR6 has been saved */
683 	preempt_disable();
684 	cond_local_irq_enable(regs);
685 
686 	if (v8086_mode(regs)) {
687 		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
688 					X86_TRAP_DB);
689 		cond_local_irq_disable(regs);
690 		preempt_enable_no_resched();
691 		debug_stack_usage_dec();
692 		goto exit;
693 	}
694 
695 	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
696 		/*
697 		 * Historical junk that used to handle SYSENTER single-stepping.
698 		 * This should be unreachable now.  If we survive for a while
699 		 * without anyone hitting this warning, we'll turn this into
700 		 * an oops.
701 		 */
702 		tsk->thread.debugreg6 &= ~DR_STEP;
703 		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
704 		regs->flags &= ~X86_EFLAGS_TF;
705 	}
706 	si_code = get_si_code(tsk->thread.debugreg6);
707 	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
708 		send_sigtrap(tsk, regs, error_code, si_code);
709 	cond_local_irq_disable(regs);
710 	preempt_enable_no_resched();
711 	debug_stack_usage_dec();
712 
713 exit:
714 #if defined(CONFIG_X86_32)
715 	/*
716 	 * This is the most likely code path that involves non-trivial use
717 	 * of the SYSENTER stack.  Check that we haven't overrun it.
718 	 */
719 	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
720 	     "Overran or corrupted SYSENTER stack\n");
721 #endif
722 	ist_exit(regs);
723 }
724 NOKPROBE_SYMBOL(do_debug);
725 
726 /*
727  * Note that we play around with the 'TS' bit in an attempt to get
728  * the correct behaviour even in the presence of the asynchronous
729  * IRQ13 behaviour
730  */
731 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
732 {
733 	struct task_struct *task = current;
734 	struct fpu *fpu = &task->thread.fpu;
735 	siginfo_t info;
736 	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
737 						"simd exception";
738 
739 	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
740 		return;
741 	cond_local_irq_enable(regs);
742 
743 	if (!user_mode(regs)) {
744 		if (!fixup_exception(regs, trapnr)) {
745 			task->thread.error_code = error_code;
746 			task->thread.trap_nr = trapnr;
747 			die(str, regs, error_code);
748 		}
749 		return;
750 	}
751 
752 	/*
753 	 * Save the info for the exception handler and clear the error.
754 	 */
755 	fpu__save(fpu);
756 
757 	task->thread.trap_nr	= trapnr;
758 	task->thread.error_code = error_code;
759 	info.si_signo		= SIGFPE;
760 	info.si_errno		= 0;
761 	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
762 
763 	info.si_code = fpu__exception_code(fpu, trapnr);
764 
765 	/* Retry when we get spurious exceptions: */
766 	if (!info.si_code)
767 		return;
768 
769 	force_sig_info(SIGFPE, &info, task);
770 }
771 
772 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
773 {
774 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
775 	math_error(regs, error_code, X86_TRAP_MF);
776 }
777 
778 dotraplinkage void
779 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
780 {
781 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
782 	math_error(regs, error_code, X86_TRAP_XF);
783 }
784 
785 dotraplinkage void
786 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
787 {
788 	cond_local_irq_enable(regs);
789 }
790 
791 dotraplinkage void
792 do_device_not_available(struct pt_regs *regs, long error_code)
793 {
794 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
795 
796 #ifdef CONFIG_MATH_EMULATION
797 	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
798 		struct math_emu_info info = { };
799 
800 		cond_local_irq_enable(regs);
801 
802 		info.regs = regs;
803 		math_emulate(&info);
804 		return;
805 	}
806 #endif
807 	fpu__restore(&current->thread.fpu); /* interrupts still off */
808 #ifdef CONFIG_X86_32
809 	cond_local_irq_enable(regs);
810 #endif
811 }
812 NOKPROBE_SYMBOL(do_device_not_available);
813 
814 #ifdef CONFIG_X86_32
815 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
816 {
817 	siginfo_t info;
818 
819 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
820 	local_irq_enable();
821 
822 	info.si_signo = SIGILL;
823 	info.si_errno = 0;
824 	info.si_code = ILL_BADSTK;
825 	info.si_addr = NULL;
826 	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
827 			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
828 		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
829 			&info);
830 	}
831 }
832 #endif
833 
834 /* Set of traps needed for early debugging. */
835 void __init early_trap_init(void)
836 {
837 	/*
838 	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
839 	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
840 	 * CPU runs at ring 0 so it is impossible to hit an invalid
841 	 * stack.  Using the original stack works well enough at this
842 	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
843 	 * trap_init().
844 	 *
845 	 * We don't need to set trace_idt_table like set_intr_gate(),
846 	 * since we don't have trace_debug and it will be reset to
847 	 * 'debug' in trap_init() by set_intr_gate_ist().
848 	 */
849 	set_intr_gate_notrace(X86_TRAP_DB, debug);
850 	/* int3 can be called from all */
851 	set_system_intr_gate(X86_TRAP_BP, &int3);
852 #ifdef CONFIG_X86_32
853 	set_intr_gate(X86_TRAP_PF, page_fault);
854 #endif
855 	load_idt(&idt_descr);
856 }
857 
858 void __init early_trap_pf_init(void)
859 {
860 #ifdef CONFIG_X86_64
861 	set_intr_gate(X86_TRAP_PF, page_fault);
862 #endif
863 }
864 
865 void __init trap_init(void)
866 {
867 	int i;
868 
869 #ifdef CONFIG_EISA
870 	void __iomem *p = early_ioremap(0x0FFFD9, 4);
871 
872 	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
873 		EISA_bus = 1;
874 	early_iounmap(p, 4);
875 #endif
876 
877 	set_intr_gate(X86_TRAP_DE, divide_error);
878 	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
879 	/* int4 can be called from all */
880 	set_system_intr_gate(X86_TRAP_OF, &overflow);
881 	set_intr_gate(X86_TRAP_BR, bounds);
882 	set_intr_gate(X86_TRAP_UD, invalid_op);
883 	set_intr_gate(X86_TRAP_NM, device_not_available);
884 #ifdef CONFIG_X86_32
885 	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
886 #else
887 	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
888 #endif
889 	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
890 	set_intr_gate(X86_TRAP_TS, invalid_TSS);
891 	set_intr_gate(X86_TRAP_NP, segment_not_present);
892 	set_intr_gate(X86_TRAP_SS, stack_segment);
893 	set_intr_gate(X86_TRAP_GP, general_protection);
894 	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
895 	set_intr_gate(X86_TRAP_MF, coprocessor_error);
896 	set_intr_gate(X86_TRAP_AC, alignment_check);
897 #ifdef CONFIG_X86_MCE
898 	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
899 #endif
900 	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
901 
902 	/* Reserve all the builtin and the syscall vector: */
903 	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
904 		set_bit(i, used_vectors);
905 
906 #ifdef CONFIG_IA32_EMULATION
907 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
908 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
909 #endif
910 
911 #ifdef CONFIG_X86_32
912 	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
913 	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
914 #endif
915 
916 	/*
917 	 * Set the IDT descriptor to a fixed read-only location, so that the
918 	 * "sidt" instruction will not leak the location of the kernel, and
919 	 * to defend the IDT against arbitrary memory write vulnerabilities.
920 	 * It will be reloaded in cpu_init() */
921 	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
922 	idt_descr.address = fix_to_virt(FIX_RO_IDT);
923 
924 	/*
925 	 * Should be a barrier for any external CPU state:
926 	 */
927 	cpu_init();
928 
929 	/*
930 	 * X86_TRAP_DB and X86_TRAP_BP have been set
931 	 * in early_trap_init(). However, ITS works only after
932 	 * cpu_init() loads TSS. See comments in early_trap_init().
933 	 */
934 	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
935 	/* int3 can be called from all */
936 	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
937 
938 	x86_init.irqs.trap_init();
939 
940 #ifdef CONFIG_X86_64
941 	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
942 	set_nmi_gate(X86_TRAP_DB, &debug);
943 	set_nmi_gate(X86_TRAP_BP, &int3);
944 #endif
945 }
946