1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 9 /* 10 * Handle hardware traps and faults. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/context_tracking.h> 16 #include <linux/interrupt.h> 17 #include <linux/kallsyms.h> 18 #include <linux/kmsan.h> 19 #include <linux/spinlock.h> 20 #include <linux/kprobes.h> 21 #include <linux/uaccess.h> 22 #include <linux/kdebug.h> 23 #include <linux/kgdb.h> 24 #include <linux/kernel.h> 25 #include <linux/export.h> 26 #include <linux/ptrace.h> 27 #include <linux/uprobes.h> 28 #include <linux/string.h> 29 #include <linux/delay.h> 30 #include <linux/errno.h> 31 #include <linux/kexec.h> 32 #include <linux/sched.h> 33 #include <linux/sched/task_stack.h> 34 #include <linux/timer.h> 35 #include <linux/init.h> 36 #include <linux/bug.h> 37 #include <linux/nmi.h> 38 #include <linux/mm.h> 39 #include <linux/smp.h> 40 #include <linux/io.h> 41 #include <linux/hardirq.h> 42 #include <linux/atomic.h> 43 #include <linux/iommu.h> 44 #include <linux/ubsan.h> 45 46 #include <asm/stacktrace.h> 47 #include <asm/processor.h> 48 #include <asm/debugreg.h> 49 #include <asm/realmode.h> 50 #include <asm/text-patching.h> 51 #include <asm/ftrace.h> 52 #include <asm/traps.h> 53 #include <asm/desc.h> 54 #include <asm/fpu/api.h> 55 #include <asm/cpu.h> 56 #include <asm/cpu_entry_area.h> 57 #include <asm/mce.h> 58 #include <asm/fixmap.h> 59 #include <asm/mach_traps.h> 60 #include <asm/alternative.h> 61 #include <asm/fpu/xstate.h> 62 #include <asm/vm86.h> 63 #include <asm/umip.h> 64 #include <asm/insn.h> 65 #include <asm/insn-eval.h> 66 #include <asm/vdso.h> 67 #include <asm/tdx.h> 68 #include <asm/cfi.h> 69 70 #ifdef CONFIG_X86_64 71 #include <asm/x86_init.h> 72 #else 73 #include <asm/processor-flags.h> 74 #include <asm/setup.h> 75 #endif 76 77 #include <asm/proto.h> 78 79 DECLARE_BITMAP(system_vectors, NR_VECTORS); 80 81 __always_inline int is_valid_bugaddr(unsigned long addr) 82 { 83 if (addr < TASK_SIZE_MAX) 84 return 0; 85 86 /* 87 * We got #UD, if the text isn't readable we'd have gotten 88 * a different exception. 89 */ 90 return *(unsigned short *)addr == INSN_UD2; 91 } 92 93 /* 94 * Check for UD1 or UD2, accounting for Address Size Override Prefixes. 95 * If it's a UD1, get the ModRM byte to pass along to UBSan. 96 */ 97 __always_inline int decode_bug(unsigned long addr, u32 *imm) 98 { 99 u8 v; 100 101 if (addr < TASK_SIZE_MAX) 102 return BUG_NONE; 103 104 v = *(u8 *)(addr++); 105 if (v == INSN_ASOP) 106 v = *(u8 *)(addr++); 107 if (v != OPCODE_ESCAPE) 108 return BUG_NONE; 109 110 v = *(u8 *)(addr++); 111 if (v == SECOND_BYTE_OPCODE_UD2) 112 return BUG_UD2; 113 114 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1) 115 return BUG_NONE; 116 117 /* Retrieve the immediate (type value) for the UBSAN UD1 */ 118 v = *(u8 *)(addr++); 119 if (X86_MODRM_RM(v) == 4) 120 addr++; 121 122 *imm = 0; 123 if (X86_MODRM_MOD(v) == 1) 124 *imm = *(u8 *)addr; 125 else if (X86_MODRM_MOD(v) == 2) 126 *imm = *(u32 *)addr; 127 else 128 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v)); 129 130 return BUG_UD1; 131 } 132 133 134 static nokprobe_inline int 135 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, 136 struct pt_regs *regs, long error_code) 137 { 138 if (v8086_mode(regs)) { 139 /* 140 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. 141 * On nmi (interrupt 2), do_trap should not be called. 142 */ 143 if (trapnr < X86_TRAP_UD) { 144 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, 145 error_code, trapnr)) 146 return 0; 147 } 148 } else if (!user_mode(regs)) { 149 if (fixup_exception(regs, trapnr, error_code, 0)) 150 return 0; 151 152 tsk->thread.error_code = error_code; 153 tsk->thread.trap_nr = trapnr; 154 die(str, regs, error_code); 155 } else { 156 if (fixup_vdso_exception(regs, trapnr, error_code, 0)) 157 return 0; 158 } 159 160 /* 161 * We want error_code and trap_nr set for userspace faults and 162 * kernelspace faults which result in die(), but not 163 * kernelspace faults which are fixed up. die() gives the 164 * process no chance to handle the signal and notice the 165 * kernel fault information, so that won't result in polluting 166 * the information about previously queued, but not yet 167 * delivered, faults. See also exc_general_protection below. 168 */ 169 tsk->thread.error_code = error_code; 170 tsk->thread.trap_nr = trapnr; 171 172 return -1; 173 } 174 175 static void show_signal(struct task_struct *tsk, int signr, 176 const char *type, const char *desc, 177 struct pt_regs *regs, long error_code) 178 { 179 if (show_unhandled_signals && unhandled_signal(tsk, signr) && 180 printk_ratelimit()) { 181 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", 182 tsk->comm, task_pid_nr(tsk), type, desc, 183 regs->ip, regs->sp, error_code); 184 print_vma_addr(KERN_CONT " in ", regs->ip); 185 pr_cont("\n"); 186 } 187 } 188 189 static void 190 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, 191 long error_code, int sicode, void __user *addr) 192 { 193 struct task_struct *tsk = current; 194 195 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) 196 return; 197 198 show_signal(tsk, signr, "trap ", str, regs, error_code); 199 200 if (!sicode) 201 force_sig(signr); 202 else 203 force_sig_fault(signr, sicode, addr); 204 } 205 NOKPROBE_SYMBOL(do_trap); 206 207 static void do_error_trap(struct pt_regs *regs, long error_code, char *str, 208 unsigned long trapnr, int signr, int sicode, void __user *addr) 209 { 210 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 211 212 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != 213 NOTIFY_STOP) { 214 cond_local_irq_enable(regs); 215 do_trap(trapnr, signr, str, regs, error_code, sicode, addr); 216 cond_local_irq_disable(regs); 217 } 218 } 219 220 /* 221 * Posix requires to provide the address of the faulting instruction for 222 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. 223 * 224 * This address is usually regs->ip, but when an uprobe moved the code out 225 * of line then regs->ip points to the XOL code which would confuse 226 * anything which analyzes the fault address vs. the unmodified binary. If 227 * a trap happened in XOL code then uprobe maps regs->ip back to the 228 * original instruction address. 229 */ 230 static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) 231 { 232 return (void __user *)uprobe_get_trap_addr(regs); 233 } 234 235 DEFINE_IDTENTRY(exc_divide_error) 236 { 237 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, 238 FPE_INTDIV, error_get_trap_addr(regs)); 239 } 240 241 DEFINE_IDTENTRY(exc_overflow) 242 { 243 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); 244 } 245 246 #ifdef CONFIG_X86_F00F_BUG 247 void handle_invalid_op(struct pt_regs *regs) 248 #else 249 static inline void handle_invalid_op(struct pt_regs *regs) 250 #endif 251 { 252 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, 253 ILL_ILLOPN, error_get_trap_addr(regs)); 254 } 255 256 static noinstr bool handle_bug(struct pt_regs *regs) 257 { 258 bool handled = false; 259 int ud_type; 260 u32 imm; 261 262 ud_type = decode_bug(regs->ip, &imm); 263 if (ud_type == BUG_NONE) 264 return handled; 265 266 /* 267 * All lies, just get the WARN/BUG out. 268 */ 269 instrumentation_begin(); 270 /* 271 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug() 272 * is a rare case that uses @regs without passing them to 273 * irqentry_enter(). 274 */ 275 kmsan_unpoison_entry_regs(regs); 276 /* 277 * Since we're emulating a CALL with exceptions, restore the interrupt 278 * state to what it was at the exception site. 279 */ 280 if (regs->flags & X86_EFLAGS_IF) 281 raw_local_irq_enable(); 282 if (ud_type == BUG_UD2) { 283 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN || 284 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) { 285 regs->ip += LEN_UD2; 286 handled = true; 287 } 288 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) { 289 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip); 290 } 291 if (regs->flags & X86_EFLAGS_IF) 292 raw_local_irq_disable(); 293 instrumentation_end(); 294 295 return handled; 296 } 297 298 DEFINE_IDTENTRY_RAW(exc_invalid_op) 299 { 300 irqentry_state_t state; 301 302 /* 303 * We use UD2 as a short encoding for 'CALL __WARN', as such 304 * handle it before exception entry to avoid recursive WARN 305 * in case exception entry is the one triggering WARNs. 306 */ 307 if (!user_mode(regs) && handle_bug(regs)) 308 return; 309 310 state = irqentry_enter(regs); 311 instrumentation_begin(); 312 handle_invalid_op(regs); 313 instrumentation_end(); 314 irqentry_exit(regs, state); 315 } 316 317 DEFINE_IDTENTRY(exc_coproc_segment_overrun) 318 { 319 do_error_trap(regs, 0, "coprocessor segment overrun", 320 X86_TRAP_OLD_MF, SIGFPE, 0, NULL); 321 } 322 323 DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) 324 { 325 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, 326 0, NULL); 327 } 328 329 DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) 330 { 331 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, 332 SIGBUS, 0, NULL); 333 } 334 335 DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) 336 { 337 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, 338 0, NULL); 339 } 340 341 DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) 342 { 343 char *str = "alignment check"; 344 345 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) 346 return; 347 348 if (!user_mode(regs)) 349 die("Split lock detected\n", regs, error_code); 350 351 local_irq_enable(); 352 353 if (handle_user_split_lock(regs, error_code)) 354 goto out; 355 356 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, 357 error_code, BUS_ADRALN, NULL); 358 359 out: 360 local_irq_disable(); 361 } 362 363 #ifdef CONFIG_VMAP_STACK 364 __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, 365 unsigned long fault_address, 366 struct stack_info *info) 367 { 368 const char *name = stack_type_name(info->type); 369 370 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", 371 name, (void *)fault_address, info->begin, info->end); 372 373 die("stack guard page", regs, 0); 374 375 /* Be absolutely certain we don't return. */ 376 panic("%s stack guard hit", name); 377 } 378 #endif 379 380 /* 381 * Prevent the compiler and/or objtool from marking the !CONFIG_X86_ESPFIX64 382 * version of exc_double_fault() as noreturn. Otherwise the noreturn mismatch 383 * between configs triggers objtool warnings. 384 * 385 * This is a temporary hack until we have compiler or plugin support for 386 * annotating noreturns. 387 */ 388 #ifdef CONFIG_X86_ESPFIX64 389 #define always_true() true 390 #else 391 bool always_true(void); 392 bool __weak always_true(void) { return true; } 393 #endif 394 395 /* 396 * Runs on an IST stack for x86_64 and on a special task stack for x86_32. 397 * 398 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the 399 * SDM's warnings about double faults being unrecoverable, returning works as 400 * expected. Presumably what the SDM actually means is that the CPU may get 401 * the register state wrong on entry, so returning could be a bad idea. 402 * 403 * Various CPU engineers have promised that double faults due to an IRET fault 404 * while the stack is read-only are, in fact, recoverable. 405 * 406 * On x86_32, this is entered through a task gate, and regs are synthesized 407 * from the TSS. Returning is, in principle, okay, but changes to regs will 408 * be lost. If, for some reason, we need to return to a context with modified 409 * regs, the shim code could be adjusted to synchronize the registers. 410 * 411 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs 412 * to be read before doing anything else. 413 */ 414 DEFINE_IDTENTRY_DF(exc_double_fault) 415 { 416 static const char str[] = "double fault"; 417 struct task_struct *tsk = current; 418 419 #ifdef CONFIG_VMAP_STACK 420 unsigned long address = read_cr2(); 421 struct stack_info info; 422 #endif 423 424 #ifdef CONFIG_X86_ESPFIX64 425 extern unsigned char native_irq_return_iret[]; 426 427 /* 428 * If IRET takes a non-IST fault on the espfix64 stack, then we 429 * end up promoting it to a doublefault. In that case, take 430 * advantage of the fact that we're not using the normal (TSS.sp0) 431 * stack right now. We can write a fake #GP(0) frame at TSS.sp0 432 * and then modify our own IRET frame so that, when we return, 433 * we land directly at the #GP(0) vector with the stack already 434 * set up according to its expectations. 435 * 436 * The net result is that our #GP handler will think that we 437 * entered from usermode with the bad user context. 438 * 439 * No need for nmi_enter() here because we don't use RCU. 440 */ 441 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && 442 regs->cs == __KERNEL_CS && 443 regs->ip == (unsigned long)native_irq_return_iret) 444 { 445 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 446 unsigned long *p = (unsigned long *)regs->sp; 447 448 /* 449 * regs->sp points to the failing IRET frame on the 450 * ESPFIX64 stack. Copy it to the entry stack. This fills 451 * in gpregs->ss through gpregs->ip. 452 * 453 */ 454 gpregs->ip = p[0]; 455 gpregs->cs = p[1]; 456 gpregs->flags = p[2]; 457 gpregs->sp = p[3]; 458 gpregs->ss = p[4]; 459 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ 460 461 /* 462 * Adjust our frame so that we return straight to the #GP 463 * vector with the expected RSP value. This is safe because 464 * we won't enable interrupts or schedule before we invoke 465 * general_protection, so nothing will clobber the stack 466 * frame we just set up. 467 * 468 * We will enter general_protection with kernel GSBASE, 469 * which is what the stub expects, given that the faulting 470 * RIP will be the IRET instruction. 471 */ 472 regs->ip = (unsigned long)asm_exc_general_protection; 473 regs->sp = (unsigned long)&gpregs->orig_ax; 474 475 return; 476 } 477 #endif 478 479 irqentry_nmi_enter(regs); 480 instrumentation_begin(); 481 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); 482 483 tsk->thread.error_code = error_code; 484 tsk->thread.trap_nr = X86_TRAP_DF; 485 486 #ifdef CONFIG_VMAP_STACK 487 /* 488 * If we overflow the stack into a guard page, the CPU will fail 489 * to deliver #PF and will send #DF instead. Similarly, if we 490 * take any non-IST exception while too close to the bottom of 491 * the stack, the processor will get a page fault while 492 * delivering the exception and will generate a double fault. 493 * 494 * According to the SDM (footnote in 6.15 under "Interrupt 14 - 495 * Page-Fault Exception (#PF): 496 * 497 * Processors update CR2 whenever a page fault is detected. If a 498 * second page fault occurs while an earlier page fault is being 499 * delivered, the faulting linear address of the second fault will 500 * overwrite the contents of CR2 (replacing the previous 501 * address). These updates to CR2 occur even if the page fault 502 * results in a double fault or occurs during the delivery of a 503 * double fault. 504 * 505 * The logic below has a small possibility of incorrectly diagnosing 506 * some errors as stack overflows. For example, if the IDT or GDT 507 * gets corrupted such that #GP delivery fails due to a bad descriptor 508 * causing #GP and we hit this condition while CR2 coincidentally 509 * points to the stack guard page, we'll think we overflowed the 510 * stack. Given that we're going to panic one way or another 511 * if this happens, this isn't necessarily worth fixing. 512 * 513 * If necessary, we could improve the test by only diagnosing 514 * a stack overflow if the saved RSP points within 47 bytes of 515 * the bottom of the stack: if RSP == tsk_stack + 48 and we 516 * take an exception, the stack is already aligned and there 517 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a 518 * possible error code, so a stack overflow would *not* double 519 * fault. With any less space left, exception delivery could 520 * fail, and, as a practical matter, we've overflowed the 521 * stack even if the actual trigger for the double fault was 522 * something else. 523 */ 524 if (get_stack_guard_info((void *)address, &info)) 525 handle_stack_overflow(regs, address, &info); 526 #endif 527 528 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); 529 die("double fault", regs, error_code); 530 if (always_true()) 531 panic("Machine halted."); 532 instrumentation_end(); 533 } 534 535 DEFINE_IDTENTRY(exc_bounds) 536 { 537 if (notify_die(DIE_TRAP, "bounds", regs, 0, 538 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) 539 return; 540 cond_local_irq_enable(regs); 541 542 if (!user_mode(regs)) 543 die("bounds", regs, 0); 544 545 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); 546 547 cond_local_irq_disable(regs); 548 } 549 550 enum kernel_gp_hint { 551 GP_NO_HINT, 552 GP_NON_CANONICAL, 553 GP_CANONICAL 554 }; 555 556 /* 557 * When an uncaught #GP occurs, try to determine the memory address accessed by 558 * the instruction and return that address to the caller. Also, try to figure 559 * out whether any part of the access to that address was non-canonical. 560 */ 561 static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, 562 unsigned long *addr) 563 { 564 u8 insn_buf[MAX_INSN_SIZE]; 565 struct insn insn; 566 int ret; 567 568 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, 569 MAX_INSN_SIZE)) 570 return GP_NO_HINT; 571 572 ret = insn_decode_kernel(&insn, insn_buf); 573 if (ret < 0) 574 return GP_NO_HINT; 575 576 *addr = (unsigned long)insn_get_addr_ref(&insn, regs); 577 if (*addr == -1UL) 578 return GP_NO_HINT; 579 580 #ifdef CONFIG_X86_64 581 /* 582 * Check that: 583 * - the operand is not in the kernel half 584 * - the last byte of the operand is not in the user canonical half 585 */ 586 if (*addr < ~__VIRTUAL_MASK && 587 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) 588 return GP_NON_CANONICAL; 589 #endif 590 591 return GP_CANONICAL; 592 } 593 594 #define GPFSTR "general protection fault" 595 596 static bool fixup_iopl_exception(struct pt_regs *regs) 597 { 598 struct thread_struct *t = ¤t->thread; 599 unsigned char byte; 600 unsigned long ip; 601 602 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) 603 return false; 604 605 if (insn_get_effective_ip(regs, &ip)) 606 return false; 607 608 if (get_user(byte, (const char __user *)ip)) 609 return false; 610 611 if (byte != 0xfa && byte != 0xfb) 612 return false; 613 614 if (!t->iopl_warn && printk_ratelimit()) { 615 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", 616 current->comm, task_pid_nr(current), ip); 617 print_vma_addr(KERN_CONT " in ", ip); 618 pr_cont("\n"); 619 t->iopl_warn = 1; 620 } 621 622 regs->ip += 1; 623 return true; 624 } 625 626 /* 627 * The unprivileged ENQCMD instruction generates #GPs if the 628 * IA32_PASID MSR has not been populated. If possible, populate 629 * the MSR from a PASID previously allocated to the mm. 630 */ 631 static bool try_fixup_enqcmd_gp(void) 632 { 633 #ifdef CONFIG_IOMMU_SVA 634 u32 pasid; 635 636 /* 637 * MSR_IA32_PASID is managed using XSAVE. Directly 638 * writing to the MSR is only possible when fpregs 639 * are valid and the fpstate is not. This is 640 * guaranteed when handling a userspace exception 641 * in *before* interrupts are re-enabled. 642 */ 643 lockdep_assert_irqs_disabled(); 644 645 /* 646 * Hardware without ENQCMD will not generate 647 * #GPs that can be fixed up here. 648 */ 649 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD)) 650 return false; 651 652 /* 653 * If the mm has not been allocated a 654 * PASID, the #GP can not be fixed up. 655 */ 656 if (!mm_valid_pasid(current->mm)) 657 return false; 658 659 pasid = current->mm->pasid; 660 661 /* 662 * Did this thread already have its PASID activated? 663 * If so, the #GP must be from something else. 664 */ 665 if (current->pasid_activated) 666 return false; 667 668 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID); 669 current->pasid_activated = 1; 670 671 return true; 672 #else 673 return false; 674 #endif 675 } 676 677 static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, 678 unsigned long error_code, const char *str, 679 unsigned long address) 680 { 681 if (fixup_exception(regs, trapnr, error_code, address)) 682 return true; 683 684 current->thread.error_code = error_code; 685 current->thread.trap_nr = trapnr; 686 687 /* 688 * To be potentially processing a kprobe fault and to trust the result 689 * from kprobe_running(), we have to be non-preemptible. 690 */ 691 if (!preemptible() && kprobe_running() && 692 kprobe_fault_handler(regs, trapnr)) 693 return true; 694 695 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP; 696 } 697 698 static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, 699 unsigned long error_code, const char *str) 700 { 701 current->thread.error_code = error_code; 702 current->thread.trap_nr = trapnr; 703 show_signal(current, SIGSEGV, "", str, regs, error_code); 704 force_sig(SIGSEGV); 705 } 706 707 DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) 708 { 709 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; 710 enum kernel_gp_hint hint = GP_NO_HINT; 711 unsigned long gp_addr; 712 713 if (user_mode(regs) && try_fixup_enqcmd_gp()) 714 return; 715 716 cond_local_irq_enable(regs); 717 718 if (static_cpu_has(X86_FEATURE_UMIP)) { 719 if (user_mode(regs) && fixup_umip_exception(regs)) 720 goto exit; 721 } 722 723 if (v8086_mode(regs)) { 724 local_irq_enable(); 725 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); 726 local_irq_disable(); 727 return; 728 } 729 730 if (user_mode(regs)) { 731 if (fixup_iopl_exception(regs)) 732 goto exit; 733 734 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) 735 goto exit; 736 737 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc); 738 goto exit; 739 } 740 741 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0)) 742 goto exit; 743 744 if (error_code) 745 snprintf(desc, sizeof(desc), "segment-related " GPFSTR); 746 else 747 hint = get_kernel_gp_address(regs, &gp_addr); 748 749 if (hint != GP_NO_HINT) 750 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", 751 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" 752 : "maybe for address", 753 gp_addr); 754 755 /* 756 * KASAN is interested only in the non-canonical case, clear it 757 * otherwise. 758 */ 759 if (hint != GP_NON_CANONICAL) 760 gp_addr = 0; 761 762 die_addr(desc, regs, error_code, gp_addr); 763 764 exit: 765 cond_local_irq_disable(regs); 766 } 767 768 static bool do_int3(struct pt_regs *regs) 769 { 770 int res; 771 772 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 773 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, 774 SIGTRAP) == NOTIFY_STOP) 775 return true; 776 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 777 778 #ifdef CONFIG_KPROBES 779 if (kprobe_int3_handler(regs)) 780 return true; 781 #endif 782 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); 783 784 return res == NOTIFY_STOP; 785 } 786 NOKPROBE_SYMBOL(do_int3); 787 788 static void do_int3_user(struct pt_regs *regs) 789 { 790 if (do_int3(regs)) 791 return; 792 793 cond_local_irq_enable(regs); 794 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); 795 cond_local_irq_disable(regs); 796 } 797 798 DEFINE_IDTENTRY_RAW(exc_int3) 799 { 800 /* 801 * poke_int3_handler() is completely self contained code; it does (and 802 * must) *NOT* call out to anything, lest it hits upon yet another 803 * INT3. 804 */ 805 if (poke_int3_handler(regs)) 806 return; 807 808 /* 809 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() 810 * and therefore can trigger INT3, hence poke_int3_handler() must 811 * be done before. If the entry came from kernel mode, then use 812 * nmi_enter() because the INT3 could have been hit in any context 813 * including NMI. 814 */ 815 if (user_mode(regs)) { 816 irqentry_enter_from_user_mode(regs); 817 instrumentation_begin(); 818 do_int3_user(regs); 819 instrumentation_end(); 820 irqentry_exit_to_user_mode(regs); 821 } else { 822 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 823 824 instrumentation_begin(); 825 if (!do_int3(regs)) 826 die("int3", regs, 0); 827 instrumentation_end(); 828 irqentry_nmi_exit(regs, irq_state); 829 } 830 } 831 832 #ifdef CONFIG_X86_64 833 /* 834 * Help handler running on a per-cpu (IST or entry trampoline) stack 835 * to switch to the normal thread stack if the interrupted code was in 836 * user mode. The actual stack switch is done in entry_64.S 837 */ 838 asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) 839 { 840 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1; 841 if (regs != eregs) 842 *regs = *eregs; 843 return regs; 844 } 845 846 #ifdef CONFIG_AMD_MEM_ENCRYPT 847 asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) 848 { 849 unsigned long sp, *stack; 850 struct stack_info info; 851 struct pt_regs *regs_ret; 852 853 /* 854 * In the SYSCALL entry path the RSP value comes from user-space - don't 855 * trust it and switch to the current kernel stack 856 */ 857 if (ip_within_syscall_gap(regs)) { 858 sp = this_cpu_read(pcpu_hot.top_of_stack); 859 goto sync; 860 } 861 862 /* 863 * From here on the RSP value is trusted. Now check whether entry 864 * happened from a safe stack. Not safe are the entry or unknown stacks, 865 * use the fall-back stack instead in this case. 866 */ 867 sp = regs->sp; 868 stack = (unsigned long *)sp; 869 870 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || 871 info.type > STACK_TYPE_EXCEPTION_LAST) 872 sp = __this_cpu_ist_top_va(VC2); 873 874 sync: 875 /* 876 * Found a safe stack - switch to it as if the entry didn't happen via 877 * IST stack. The code below only copies pt_regs, the real switch happens 878 * in assembly code. 879 */ 880 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); 881 882 regs_ret = (struct pt_regs *)sp; 883 *regs_ret = *regs; 884 885 return regs_ret; 886 } 887 #endif 888 889 asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) 890 { 891 struct pt_regs tmp, *new_stack; 892 893 /* 894 * This is called from entry_64.S early in handling a fault 895 * caused by a bad iret to user mode. To handle the fault 896 * correctly, we want to move our stack frame to where it would 897 * be had we entered directly on the entry stack (rather than 898 * just below the IRET frame) and we want to pretend that the 899 * exception came from the IRET target. 900 */ 901 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; 902 903 /* Copy the IRET target to the temporary storage. */ 904 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); 905 906 /* Copy the remainder of the stack from the current stack. */ 907 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); 908 909 /* Update the entry stack */ 910 __memcpy(new_stack, &tmp, sizeof(tmp)); 911 912 BUG_ON(!user_mode(new_stack)); 913 return new_stack; 914 } 915 #endif 916 917 static bool is_sysenter_singlestep(struct pt_regs *regs) 918 { 919 /* 920 * We don't try for precision here. If we're anywhere in the region of 921 * code that can be single-stepped in the SYSENTER entry path, then 922 * assume that this is a useless single-step trap due to SYSENTER 923 * being invoked with TF set. (We don't know in advance exactly 924 * which instructions will be hit because BTF could plausibly 925 * be set.) 926 */ 927 #ifdef CONFIG_X86_32 928 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < 929 (unsigned long)__end_SYSENTER_singlestep_region - 930 (unsigned long)__begin_SYSENTER_singlestep_region; 931 #elif defined(CONFIG_IA32_EMULATION) 932 return (regs->ip - (unsigned long)entry_SYSENTER_compat) < 933 (unsigned long)__end_entry_SYSENTER_compat - 934 (unsigned long)entry_SYSENTER_compat; 935 #else 936 return false; 937 #endif 938 } 939 940 static __always_inline unsigned long debug_read_clear_dr6(void) 941 { 942 unsigned long dr6; 943 944 /* 945 * The Intel SDM says: 946 * 947 * Certain debug exceptions may clear bits 0-3. The remaining 948 * contents of the DR6 register are never cleared by the 949 * processor. To avoid confusion in identifying debug 950 * exceptions, debug handlers should clear the register before 951 * returning to the interrupted task. 952 * 953 * Keep it simple: clear DR6 immediately. 954 */ 955 get_debugreg(dr6, 6); 956 set_debugreg(DR6_RESERVED, 6); 957 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ 958 959 return dr6; 960 } 961 962 /* 963 * Our handling of the processor debug registers is non-trivial. 964 * We do not clear them on entry and exit from the kernel. Therefore 965 * it is possible to get a watchpoint trap here from inside the kernel. 966 * However, the code in ./ptrace.c has ensured that the user can 967 * only set watchpoints on userspace addresses. Therefore the in-kernel 968 * watchpoint trap can only occur in code which is reading/writing 969 * from user space. Such code must not hold kernel locks (since it 970 * can equally take a page fault), therefore it is safe to call 971 * force_sig_info even though that claims and releases locks. 972 * 973 * Code in ./signal.c ensures that the debug control register 974 * is restored before we deliver any signal, and therefore that 975 * user code runs with the correct debug control register even though 976 * we clear it here. 977 * 978 * Being careful here means that we don't have to be as careful in a 979 * lot of more complicated places (task switching can be a bit lazy 980 * about restoring all the debug state, and ptrace doesn't have to 981 * find every occurrence of the TF bit that could be saved away even 982 * by user code) 983 * 984 * May run on IST stack. 985 */ 986 987 static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) 988 { 989 /* 990 * Notifiers will clear bits in @dr6 to indicate the event has been 991 * consumed - hw_breakpoint_handler(), single_stop_cont(). 992 * 993 * Notifiers will set bits in @virtual_dr6 to indicate the desire 994 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). 995 */ 996 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) 997 return true; 998 999 return false; 1000 } 1001 1002 static __always_inline void exc_debug_kernel(struct pt_regs *regs, 1003 unsigned long dr6) 1004 { 1005 /* 1006 * Disable breakpoints during exception handling; recursive exceptions 1007 * are exceedingly 'fun'. 1008 * 1009 * Since this function is NOKPROBE, and that also applies to 1010 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a 1011 * HW_BREAKPOINT_W on our stack) 1012 * 1013 * Entry text is excluded for HW_BP_X and cpu_entry_area, which 1014 * includes the entry stack is excluded for everything. 1015 */ 1016 unsigned long dr7 = local_db_save(); 1017 irqentry_state_t irq_state = irqentry_nmi_enter(regs); 1018 instrumentation_begin(); 1019 1020 /* 1021 * If something gets miswired and we end up here for a user mode 1022 * #DB, we will malfunction. 1023 */ 1024 WARN_ON_ONCE(user_mode(regs)); 1025 1026 if (test_thread_flag(TIF_BLOCKSTEP)) { 1027 /* 1028 * The SDM says "The processor clears the BTF flag when it 1029 * generates a debug exception." but PTRACE_BLOCKSTEP requested 1030 * it for userspace, but we just took a kernel #DB, so re-set 1031 * BTF. 1032 */ 1033 unsigned long debugctl; 1034 1035 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1036 debugctl |= DEBUGCTLMSR_BTF; 1037 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); 1038 } 1039 1040 /* 1041 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a 1042 * watchpoint at the same time then that will still be handled. 1043 */ 1044 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) 1045 dr6 &= ~DR_STEP; 1046 1047 /* 1048 * The kernel doesn't use INT1 1049 */ 1050 if (!dr6) 1051 goto out; 1052 1053 if (notify_debug(regs, &dr6)) 1054 goto out; 1055 1056 /* 1057 * The kernel doesn't use TF single-step outside of: 1058 * 1059 * - Kprobes, consumed through kprobe_debug_handler() 1060 * - KGDB, consumed through notify_debug() 1061 * 1062 * So if we get here with DR_STEP set, something is wonky. 1063 * 1064 * A known way to trigger this is through QEMU's GDB stub, 1065 * which leaks #DB into the guest and causes IST recursion. 1066 */ 1067 if (WARN_ON_ONCE(dr6 & DR_STEP)) 1068 regs->flags &= ~X86_EFLAGS_TF; 1069 out: 1070 instrumentation_end(); 1071 irqentry_nmi_exit(regs, irq_state); 1072 1073 local_db_restore(dr7); 1074 } 1075 1076 static __always_inline void exc_debug_user(struct pt_regs *regs, 1077 unsigned long dr6) 1078 { 1079 bool icebp; 1080 1081 /* 1082 * If something gets miswired and we end up here for a kernel mode 1083 * #DB, we will malfunction. 1084 */ 1085 WARN_ON_ONCE(!user_mode(regs)); 1086 1087 /* 1088 * NB: We can't easily clear DR7 here because 1089 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access 1090 * user memory, etc. This means that a recursive #DB is possible. If 1091 * this happens, that #DB will hit exc_debug_kernel() and clear DR7. 1092 * Since we're not on the IST stack right now, everything will be 1093 * fine. 1094 */ 1095 1096 irqentry_enter_from_user_mode(regs); 1097 instrumentation_begin(); 1098 1099 /* 1100 * Start the virtual/ptrace DR6 value with just the DR_STEP mask 1101 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. 1102 * 1103 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) 1104 * even if it is not the result of PTRACE_SINGLESTEP. 1105 */ 1106 current->thread.virtual_dr6 = (dr6 & DR_STEP); 1107 1108 /* 1109 * The SDM says "The processor clears the BTF flag when it 1110 * generates a debug exception." Clear TIF_BLOCKSTEP to keep 1111 * TIF_BLOCKSTEP in sync with the hardware BTF flag. 1112 */ 1113 clear_thread_flag(TIF_BLOCKSTEP); 1114 1115 /* 1116 * If dr6 has no reason to give us about the origin of this trap, 1117 * then it's very likely the result of an icebp/int01 trap. 1118 * User wants a sigtrap for that. 1119 */ 1120 icebp = !dr6; 1121 1122 if (notify_debug(regs, &dr6)) 1123 goto out; 1124 1125 /* It's safe to allow irq's after DR6 has been saved */ 1126 local_irq_enable(); 1127 1128 if (v8086_mode(regs)) { 1129 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); 1130 goto out_irq; 1131 } 1132 1133 /* #DB for bus lock can only be triggered from userspace. */ 1134 if (dr6 & DR_BUS_LOCK) 1135 handle_bus_lock(regs); 1136 1137 /* Add the virtual_dr6 bits for signals. */ 1138 dr6 |= current->thread.virtual_dr6; 1139 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) 1140 send_sigtrap(regs, 0, get_si_code(dr6)); 1141 1142 out_irq: 1143 local_irq_disable(); 1144 out: 1145 instrumentation_end(); 1146 irqentry_exit_to_user_mode(regs); 1147 } 1148 1149 #ifdef CONFIG_X86_64 1150 /* IST stack entry */ 1151 DEFINE_IDTENTRY_DEBUG(exc_debug) 1152 { 1153 exc_debug_kernel(regs, debug_read_clear_dr6()); 1154 } 1155 1156 /* User entry, runs on regular task stack */ 1157 DEFINE_IDTENTRY_DEBUG_USER(exc_debug) 1158 { 1159 exc_debug_user(regs, debug_read_clear_dr6()); 1160 } 1161 #else 1162 /* 32 bit does not have separate entry points. */ 1163 DEFINE_IDTENTRY_RAW(exc_debug) 1164 { 1165 unsigned long dr6 = debug_read_clear_dr6(); 1166 1167 if (user_mode(regs)) 1168 exc_debug_user(regs, dr6); 1169 else 1170 exc_debug_kernel(regs, dr6); 1171 } 1172 #endif 1173 1174 /* 1175 * Note that we play around with the 'TS' bit in an attempt to get 1176 * the correct behaviour even in the presence of the asynchronous 1177 * IRQ13 behaviour 1178 */ 1179 static void math_error(struct pt_regs *regs, int trapnr) 1180 { 1181 struct task_struct *task = current; 1182 struct fpu *fpu = &task->thread.fpu; 1183 int si_code; 1184 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : 1185 "simd exception"; 1186 1187 cond_local_irq_enable(regs); 1188 1189 if (!user_mode(regs)) { 1190 if (fixup_exception(regs, trapnr, 0, 0)) 1191 goto exit; 1192 1193 task->thread.error_code = 0; 1194 task->thread.trap_nr = trapnr; 1195 1196 if (notify_die(DIE_TRAP, str, regs, 0, trapnr, 1197 SIGFPE) != NOTIFY_STOP) 1198 die(str, regs, 0); 1199 goto exit; 1200 } 1201 1202 /* 1203 * Synchronize the FPU register state to the memory register state 1204 * if necessary. This allows the exception handler to inspect it. 1205 */ 1206 fpu_sync_fpstate(fpu); 1207 1208 task->thread.trap_nr = trapnr; 1209 task->thread.error_code = 0; 1210 1211 si_code = fpu__exception_code(fpu, trapnr); 1212 /* Retry when we get spurious exceptions: */ 1213 if (!si_code) 1214 goto exit; 1215 1216 if (fixup_vdso_exception(regs, trapnr, 0, 0)) 1217 goto exit; 1218 1219 force_sig_fault(SIGFPE, si_code, 1220 (void __user *)uprobe_get_trap_addr(regs)); 1221 exit: 1222 cond_local_irq_disable(regs); 1223 } 1224 1225 DEFINE_IDTENTRY(exc_coprocessor_error) 1226 { 1227 math_error(regs, X86_TRAP_MF); 1228 } 1229 1230 DEFINE_IDTENTRY(exc_simd_coprocessor_error) 1231 { 1232 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { 1233 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ 1234 if (!static_cpu_has(X86_FEATURE_XMM)) { 1235 __exc_general_protection(regs, 0); 1236 return; 1237 } 1238 } 1239 math_error(regs, X86_TRAP_XF); 1240 } 1241 1242 DEFINE_IDTENTRY(exc_spurious_interrupt_bug) 1243 { 1244 /* 1245 * This addresses a Pentium Pro Erratum: 1246 * 1247 * PROBLEM: If the APIC subsystem is configured in mixed mode with 1248 * Virtual Wire mode implemented through the local APIC, an 1249 * interrupt vector of 0Fh (Intel reserved encoding) may be 1250 * generated by the local APIC (Int 15). This vector may be 1251 * generated upon receipt of a spurious interrupt (an interrupt 1252 * which is removed before the system receives the INTA sequence) 1253 * instead of the programmed 8259 spurious interrupt vector. 1254 * 1255 * IMPLICATION: The spurious interrupt vector programmed in the 1256 * 8259 is normally handled by an operating system's spurious 1257 * interrupt handler. However, a vector of 0Fh is unknown to some 1258 * operating systems, which would crash if this erratum occurred. 1259 * 1260 * In theory this could be limited to 32bit, but the handler is not 1261 * hurting and who knows which other CPUs suffer from this. 1262 */ 1263 } 1264 1265 static bool handle_xfd_event(struct pt_regs *regs) 1266 { 1267 u64 xfd_err; 1268 int err; 1269 1270 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD)) 1271 return false; 1272 1273 rdmsrl(MSR_IA32_XFD_ERR, xfd_err); 1274 if (!xfd_err) 1275 return false; 1276 1277 wrmsrl(MSR_IA32_XFD_ERR, 0); 1278 1279 /* Die if that happens in kernel space */ 1280 if (WARN_ON(!user_mode(regs))) 1281 return false; 1282 1283 local_irq_enable(); 1284 1285 err = xfd_enable_feature(xfd_err); 1286 1287 switch (err) { 1288 case -EPERM: 1289 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs)); 1290 break; 1291 case -EFAULT: 1292 force_sig(SIGSEGV); 1293 break; 1294 } 1295 1296 local_irq_disable(); 1297 return true; 1298 } 1299 1300 DEFINE_IDTENTRY(exc_device_not_available) 1301 { 1302 unsigned long cr0 = read_cr0(); 1303 1304 if (handle_xfd_event(regs)) 1305 return; 1306 1307 #ifdef CONFIG_MATH_EMULATION 1308 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { 1309 struct math_emu_info info = { }; 1310 1311 cond_local_irq_enable(regs); 1312 1313 info.regs = regs; 1314 math_emulate(&info); 1315 1316 cond_local_irq_disable(regs); 1317 return; 1318 } 1319 #endif 1320 1321 /* This should not happen. */ 1322 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { 1323 /* Try to fix it up and carry on. */ 1324 write_cr0(cr0 & ~X86_CR0_TS); 1325 } else { 1326 /* 1327 * Something terrible happened, and we're better off trying 1328 * to kill the task than getting stuck in a never-ending 1329 * loop of #NM faults. 1330 */ 1331 die("unexpected #NM exception", regs, 0); 1332 } 1333 } 1334 1335 #ifdef CONFIG_INTEL_TDX_GUEST 1336 1337 #define VE_FAULT_STR "VE fault" 1338 1339 static void ve_raise_fault(struct pt_regs *regs, long error_code, 1340 unsigned long address) 1341 { 1342 if (user_mode(regs)) { 1343 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR); 1344 return; 1345 } 1346 1347 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, 1348 VE_FAULT_STR, address)) { 1349 return; 1350 } 1351 1352 die_addr(VE_FAULT_STR, regs, error_code, address); 1353 } 1354 1355 /* 1356 * Virtualization Exceptions (#VE) are delivered to TDX guests due to 1357 * specific guest actions which may happen in either user space or the 1358 * kernel: 1359 * 1360 * * Specific instructions (WBINVD, for example) 1361 * * Specific MSR accesses 1362 * * Specific CPUID leaf accesses 1363 * * Access to specific guest physical addresses 1364 * 1365 * In the settings that Linux will run in, virtualization exceptions are 1366 * never generated on accesses to normal, TD-private memory that has been 1367 * accepted (by BIOS or with tdx_enc_status_changed()). 1368 * 1369 * Syscall entry code has a critical window where the kernel stack is not 1370 * yet set up. Any exception in this window leads to hard to debug issues 1371 * and can be exploited for privilege escalation. Exceptions in the NMI 1372 * entry code also cause issues. Returning from the exception handler with 1373 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. 1374 * 1375 * For these reasons, the kernel avoids #VEs during the syscall gap and 1376 * the NMI entry code. Entry code paths do not access TD-shared memory, 1377 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves 1378 * that might generate #VE. VMM can remove memory from TD at any point, 1379 * but access to unaccepted (or missing) private memory leads to VM 1380 * termination, not to #VE. 1381 * 1382 * Similarly to page faults and breakpoints, #VEs are allowed in NMI 1383 * handlers once the kernel is ready to deal with nested NMIs. 1384 * 1385 * During #VE delivery, all interrupts, including NMIs, are blocked until 1386 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads 1387 * the VE info. 1388 * 1389 * If a guest kernel action which would normally cause a #VE occurs in 1390 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault 1391 * exception) is delivered to the guest which will result in an oops. 1392 * 1393 * The entry code has been audited carefully for following these expectations. 1394 * Changes in the entry code have to be audited for correctness vs. this 1395 * aspect. Similarly to #PF, #VE in these places will expose kernel to 1396 * privilege escalation or may lead to random crashes. 1397 */ 1398 DEFINE_IDTENTRY(exc_virtualization_exception) 1399 { 1400 struct ve_info ve; 1401 1402 /* 1403 * NMIs/Machine-checks/Interrupts will be in a disabled state 1404 * till TDGETVEINFO TDCALL is executed. This ensures that VE 1405 * info cannot be overwritten by a nested #VE. 1406 */ 1407 tdx_get_ve_info(&ve); 1408 1409 cond_local_irq_enable(regs); 1410 1411 /* 1412 * If tdx_handle_virt_exception() could not process 1413 * it successfully, treat it as #GP(0) and handle it. 1414 */ 1415 if (!tdx_handle_virt_exception(regs, &ve)) 1416 ve_raise_fault(regs, 0, ve.gla); 1417 1418 cond_local_irq_disable(regs); 1419 } 1420 1421 #endif 1422 1423 #ifdef CONFIG_X86_32 1424 DEFINE_IDTENTRY_SW(iret_error) 1425 { 1426 local_irq_enable(); 1427 if (notify_die(DIE_TRAP, "iret exception", regs, 0, 1428 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { 1429 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, 1430 ILL_BADSTK, (void __user *)NULL); 1431 } 1432 local_irq_disable(); 1433 } 1434 #endif 1435 1436 void __init trap_init(void) 1437 { 1438 /* Init cpu_entry_area before IST entries are set up */ 1439 setup_cpu_entry_areas(); 1440 1441 /* Init GHCB memory pages when running as an SEV-ES guest */ 1442 sev_es_init_vc_handling(); 1443 1444 /* Initialize TSS before setting up traps so ISTs work */ 1445 cpu_init_exception_handling(); 1446 /* Setup traps as cpu_init() might #GP */ 1447 idt_setup_traps(); 1448 cpu_init(); 1449 } 1450