1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/sched.h> 4 #include <linux/user.h> 5 #include <linux/regset.h> 6 #include <linux/syscalls.h> 7 8 #include <linux/uaccess.h> 9 #include <asm/desc.h> 10 #include <asm/ldt.h> 11 #include <asm/processor.h> 12 #include <asm/proto.h> 13 14 #include "tls.h" 15 16 /* 17 * sys_alloc_thread_area: get a yet unused TLS descriptor index. 18 */ 19 static int get_free_idx(void) 20 { 21 struct thread_struct *t = ¤t->thread; 22 int idx; 23 24 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++) 25 if (desc_empty(&t->tls_array[idx])) 26 return idx + GDT_ENTRY_TLS_MIN; 27 return -ESRCH; 28 } 29 30 static bool tls_desc_okay(const struct user_desc *info) 31 { 32 /* 33 * For historical reasons (i.e. no one ever documented how any 34 * of the segmentation APIs work), user programs can and do 35 * assume that a struct user_desc that's all zeros except for 36 * entry_number means "no segment at all". This never actually 37 * worked. In fact, up to Linux 3.19, a struct user_desc like 38 * this would create a 16-bit read-write segment with base and 39 * limit both equal to zero. 40 * 41 * That was close enough to "no segment at all" until we 42 * hardened this function to disallow 16-bit TLS segments. Fix 43 * it up by interpreting these zeroed segments the way that they 44 * were almost certainly intended to be interpreted. 45 * 46 * The correct way to ask for "no segment at all" is to specify 47 * a user_desc that satisfies LDT_empty. To keep everything 48 * working, we accept both. 49 * 50 * Note that there's a similar kludge in modify_ldt -- look at 51 * the distinction between modes 1 and 0x11. 52 */ 53 if (LDT_empty(info) || LDT_zero(info)) 54 return true; 55 56 /* 57 * espfix is required for 16-bit data segments, but espfix 58 * only works for LDT segments. 59 */ 60 if (!info->seg_32bit) 61 return false; 62 63 /* Only allow data segments in the TLS array. */ 64 if (info->contents > 1) 65 return false; 66 67 /* 68 * Non-present segments with DPL 3 present an interesting attack 69 * surface. The kernel should handle such segments correctly, 70 * but TLS is very difficult to protect in a sandbox, so prevent 71 * such segments from being created. 72 * 73 * If userspace needs to remove a TLS entry, it can still delete 74 * it outright. 75 */ 76 if (info->seg_not_present) 77 return false; 78 79 return true; 80 } 81 82 static void set_tls_desc(struct task_struct *p, int idx, 83 const struct user_desc *info, int n) 84 { 85 struct thread_struct *t = &p->thread; 86 struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN]; 87 int cpu; 88 89 /* 90 * We must not get preempted while modifying the TLS. 91 */ 92 cpu = get_cpu(); 93 94 while (n-- > 0) { 95 if (LDT_empty(info) || LDT_zero(info)) 96 desc->a = desc->b = 0; 97 else 98 fill_ldt(desc, info); 99 ++info; 100 ++desc; 101 } 102 103 if (t == ¤t->thread) 104 load_TLS(t, cpu); 105 106 put_cpu(); 107 } 108 109 /* 110 * Set a given TLS descriptor: 111 */ 112 int do_set_thread_area(struct task_struct *p, int idx, 113 struct user_desc __user *u_info, 114 int can_allocate) 115 { 116 struct user_desc info; 117 unsigned short __maybe_unused sel, modified_sel; 118 119 if (copy_from_user(&info, u_info, sizeof(info))) 120 return -EFAULT; 121 122 if (!tls_desc_okay(&info)) 123 return -EINVAL; 124 125 if (idx == -1) 126 idx = info.entry_number; 127 128 /* 129 * index -1 means the kernel should try to find and 130 * allocate an empty descriptor: 131 */ 132 if (idx == -1 && can_allocate) { 133 idx = get_free_idx(); 134 if (idx < 0) 135 return idx; 136 if (put_user(idx, &u_info->entry_number)) 137 return -EFAULT; 138 } 139 140 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) 141 return -EINVAL; 142 143 set_tls_desc(p, idx, &info, 1); 144 145 /* 146 * If DS, ES, FS, or GS points to the modified segment, forcibly 147 * refresh it. Only needed on x86_64 because x86_32 reloads them 148 * on return to user mode. 149 */ 150 modified_sel = (idx << 3) | 3; 151 152 if (p == current) { 153 #ifdef CONFIG_X86_64 154 savesegment(ds, sel); 155 if (sel == modified_sel) 156 loadsegment(ds, sel); 157 158 savesegment(es, sel); 159 if (sel == modified_sel) 160 loadsegment(es, sel); 161 162 savesegment(fs, sel); 163 if (sel == modified_sel) 164 loadsegment(fs, sel); 165 166 savesegment(gs, sel); 167 if (sel == modified_sel) 168 load_gs_index(sel); 169 #endif 170 171 #ifdef CONFIG_X86_32_LAZY_GS 172 savesegment(gs, sel); 173 if (sel == modified_sel) 174 loadsegment(gs, sel); 175 #endif 176 } else { 177 #ifdef CONFIG_X86_64 178 if (p->thread.fsindex == modified_sel) 179 p->thread.fsbase = info.base_addr; 180 181 if (p->thread.gsindex == modified_sel) 182 p->thread.gsbase = info.base_addr; 183 #endif 184 } 185 186 return 0; 187 } 188 189 SYSCALL_DEFINE1(set_thread_area, struct user_desc __user *, u_info) 190 { 191 return do_set_thread_area(current, -1, u_info, 1); 192 } 193 194 195 /* 196 * Get the current Thread-Local Storage area: 197 */ 198 199 static void fill_user_desc(struct user_desc *info, int idx, 200 const struct desc_struct *desc) 201 202 { 203 memset(info, 0, sizeof(*info)); 204 info->entry_number = idx; 205 info->base_addr = get_desc_base(desc); 206 info->limit = get_desc_limit(desc); 207 info->seg_32bit = desc->d; 208 info->contents = desc->type >> 2; 209 info->read_exec_only = !(desc->type & 2); 210 info->limit_in_pages = desc->g; 211 info->seg_not_present = !desc->p; 212 info->useable = desc->avl; 213 #ifdef CONFIG_X86_64 214 info->lm = desc->l; 215 #endif 216 } 217 218 int do_get_thread_area(struct task_struct *p, int idx, 219 struct user_desc __user *u_info) 220 { 221 struct user_desc info; 222 223 if (idx == -1 && get_user(idx, &u_info->entry_number)) 224 return -EFAULT; 225 226 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) 227 return -EINVAL; 228 229 fill_user_desc(&info, idx, 230 &p->thread.tls_array[idx - GDT_ENTRY_TLS_MIN]); 231 232 if (copy_to_user(u_info, &info, sizeof(info))) 233 return -EFAULT; 234 return 0; 235 } 236 237 SYSCALL_DEFINE1(get_thread_area, struct user_desc __user *, u_info) 238 { 239 return do_get_thread_area(current, -1, u_info); 240 } 241 242 int regset_tls_active(struct task_struct *target, 243 const struct user_regset *regset) 244 { 245 struct thread_struct *t = &target->thread; 246 int n = GDT_ENTRY_TLS_ENTRIES; 247 while (n > 0 && desc_empty(&t->tls_array[n - 1])) 248 --n; 249 return n; 250 } 251 252 int regset_tls_get(struct task_struct *target, const struct user_regset *regset, 253 unsigned int pos, unsigned int count, 254 void *kbuf, void __user *ubuf) 255 { 256 const struct desc_struct *tls; 257 258 if (pos >= GDT_ENTRY_TLS_ENTRIES * sizeof(struct user_desc) || 259 (pos % sizeof(struct user_desc)) != 0 || 260 (count % sizeof(struct user_desc)) != 0) 261 return -EINVAL; 262 263 pos /= sizeof(struct user_desc); 264 count /= sizeof(struct user_desc); 265 266 tls = &target->thread.tls_array[pos]; 267 268 if (kbuf) { 269 struct user_desc *info = kbuf; 270 while (count-- > 0) 271 fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++, 272 tls++); 273 } else { 274 struct user_desc __user *u_info = ubuf; 275 while (count-- > 0) { 276 struct user_desc info; 277 fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++); 278 if (__copy_to_user(u_info++, &info, sizeof(info))) 279 return -EFAULT; 280 } 281 } 282 283 return 0; 284 } 285 286 int regset_tls_set(struct task_struct *target, const struct user_regset *regset, 287 unsigned int pos, unsigned int count, 288 const void *kbuf, const void __user *ubuf) 289 { 290 struct user_desc infobuf[GDT_ENTRY_TLS_ENTRIES]; 291 const struct user_desc *info; 292 int i; 293 294 if (pos >= GDT_ENTRY_TLS_ENTRIES * sizeof(struct user_desc) || 295 (pos % sizeof(struct user_desc)) != 0 || 296 (count % sizeof(struct user_desc)) != 0) 297 return -EINVAL; 298 299 if (kbuf) 300 info = kbuf; 301 else if (__copy_from_user(infobuf, ubuf, count)) 302 return -EFAULT; 303 else 304 info = infobuf; 305 306 for (i = 0; i < count / sizeof(struct user_desc); i++) 307 if (!tls_desc_okay(info + i)) 308 return -EINVAL; 309 310 set_tls_desc(target, 311 GDT_ENTRY_TLS_MIN + (pos / sizeof(struct user_desc)), 312 info, count / sizeof(struct user_desc)); 313 314 return 0; 315 } 316