1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/sched.h> 5 #include <linux/user.h> 6 #include <linux/regset.h> 7 #include <linux/syscalls.h> 8 9 #include <linux/uaccess.h> 10 #include <asm/desc.h> 11 #include <asm/ldt.h> 12 #include <asm/processor.h> 13 #include <asm/proto.h> 14 15 #include "tls.h" 16 17 /* 18 * sys_alloc_thread_area: get a yet unused TLS descriptor index. 19 */ 20 static int get_free_idx(void) 21 { 22 struct thread_struct *t = ¤t->thread; 23 int idx; 24 25 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++) 26 if (desc_empty(&t->tls_array[idx])) 27 return idx + GDT_ENTRY_TLS_MIN; 28 return -ESRCH; 29 } 30 31 static bool tls_desc_okay(const struct user_desc *info) 32 { 33 /* 34 * For historical reasons (i.e. no one ever documented how any 35 * of the segmentation APIs work), user programs can and do 36 * assume that a struct user_desc that's all zeros except for 37 * entry_number means "no segment at all". This never actually 38 * worked. In fact, up to Linux 3.19, a struct user_desc like 39 * this would create a 16-bit read-write segment with base and 40 * limit both equal to zero. 41 * 42 * That was close enough to "no segment at all" until we 43 * hardened this function to disallow 16-bit TLS segments. Fix 44 * it up by interpreting these zeroed segments the way that they 45 * were almost certainly intended to be interpreted. 46 * 47 * The correct way to ask for "no segment at all" is to specify 48 * a user_desc that satisfies LDT_empty. To keep everything 49 * working, we accept both. 50 * 51 * Note that there's a similar kludge in modify_ldt -- look at 52 * the distinction between modes 1 and 0x11. 53 */ 54 if (LDT_empty(info) || LDT_zero(info)) 55 return true; 56 57 /* 58 * espfix is required for 16-bit data segments, but espfix 59 * only works for LDT segments. 60 */ 61 if (!info->seg_32bit) 62 return false; 63 64 /* Only allow data segments in the TLS array. */ 65 if (info->contents > 1) 66 return false; 67 68 /* 69 * Non-present segments with DPL 3 present an interesting attack 70 * surface. The kernel should handle such segments correctly, 71 * but TLS is very difficult to protect in a sandbox, so prevent 72 * such segments from being created. 73 * 74 * If userspace needs to remove a TLS entry, it can still delete 75 * it outright. 76 */ 77 if (info->seg_not_present) 78 return false; 79 80 return true; 81 } 82 83 static void set_tls_desc(struct task_struct *p, int idx, 84 const struct user_desc *info, int n) 85 { 86 struct thread_struct *t = &p->thread; 87 struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN]; 88 int cpu; 89 90 /* 91 * We must not get preempted while modifying the TLS. 92 */ 93 cpu = get_cpu(); 94 95 while (n-- > 0) { 96 if (LDT_empty(info) || LDT_zero(info)) 97 memset(desc, 0, sizeof(*desc)); 98 else 99 fill_ldt(desc, info); 100 ++info; 101 ++desc; 102 } 103 104 if (t == ¤t->thread) 105 load_TLS(t, cpu); 106 107 put_cpu(); 108 } 109 110 /* 111 * Set a given TLS descriptor: 112 */ 113 int do_set_thread_area(struct task_struct *p, int idx, 114 struct user_desc __user *u_info, 115 int can_allocate) 116 { 117 struct user_desc info; 118 unsigned short __maybe_unused sel, modified_sel; 119 120 if (copy_from_user(&info, u_info, sizeof(info))) 121 return -EFAULT; 122 123 if (!tls_desc_okay(&info)) 124 return -EINVAL; 125 126 if (idx == -1) 127 idx = info.entry_number; 128 129 /* 130 * index -1 means the kernel should try to find and 131 * allocate an empty descriptor: 132 */ 133 if (idx == -1 && can_allocate) { 134 idx = get_free_idx(); 135 if (idx < 0) 136 return idx; 137 if (put_user(idx, &u_info->entry_number)) 138 return -EFAULT; 139 } 140 141 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) 142 return -EINVAL; 143 144 set_tls_desc(p, idx, &info, 1); 145 146 /* 147 * If DS, ES, FS, or GS points to the modified segment, forcibly 148 * refresh it. Only needed on x86_64 because x86_32 reloads them 149 * on return to user mode. 150 */ 151 modified_sel = (idx << 3) | 3; 152 153 if (p == current) { 154 #ifdef CONFIG_X86_64 155 savesegment(ds, sel); 156 if (sel == modified_sel) 157 loadsegment(ds, sel); 158 159 savesegment(es, sel); 160 if (sel == modified_sel) 161 loadsegment(es, sel); 162 163 savesegment(fs, sel); 164 if (sel == modified_sel) 165 loadsegment(fs, sel); 166 167 savesegment(gs, sel); 168 if (sel == modified_sel) 169 load_gs_index(sel); 170 #endif 171 172 #ifdef CONFIG_X86_32_LAZY_GS 173 savesegment(gs, sel); 174 if (sel == modified_sel) 175 loadsegment(gs, sel); 176 #endif 177 } else { 178 #ifdef CONFIG_X86_64 179 if (p->thread.fsindex == modified_sel) 180 p->thread.fsbase = info.base_addr; 181 182 if (p->thread.gsindex == modified_sel) 183 p->thread.gsbase = info.base_addr; 184 #endif 185 } 186 187 return 0; 188 } 189 190 SYSCALL_DEFINE1(set_thread_area, struct user_desc __user *, u_info) 191 { 192 return do_set_thread_area(current, -1, u_info, 1); 193 } 194 195 196 /* 197 * Get the current Thread-Local Storage area: 198 */ 199 200 static void fill_user_desc(struct user_desc *info, int idx, 201 const struct desc_struct *desc) 202 203 { 204 memset(info, 0, sizeof(*info)); 205 info->entry_number = idx; 206 info->base_addr = get_desc_base(desc); 207 info->limit = get_desc_limit(desc); 208 info->seg_32bit = desc->d; 209 info->contents = desc->type >> 2; 210 info->read_exec_only = !(desc->type & 2); 211 info->limit_in_pages = desc->g; 212 info->seg_not_present = !desc->p; 213 info->useable = desc->avl; 214 #ifdef CONFIG_X86_64 215 info->lm = desc->l; 216 #endif 217 } 218 219 int do_get_thread_area(struct task_struct *p, int idx, 220 struct user_desc __user *u_info) 221 { 222 struct user_desc info; 223 224 if (idx == -1 && get_user(idx, &u_info->entry_number)) 225 return -EFAULT; 226 227 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) 228 return -EINVAL; 229 230 fill_user_desc(&info, idx, 231 &p->thread.tls_array[idx - GDT_ENTRY_TLS_MIN]); 232 233 if (copy_to_user(u_info, &info, sizeof(info))) 234 return -EFAULT; 235 return 0; 236 } 237 238 SYSCALL_DEFINE1(get_thread_area, struct user_desc __user *, u_info) 239 { 240 return do_get_thread_area(current, -1, u_info); 241 } 242 243 int regset_tls_active(struct task_struct *target, 244 const struct user_regset *regset) 245 { 246 struct thread_struct *t = &target->thread; 247 int n = GDT_ENTRY_TLS_ENTRIES; 248 while (n > 0 && desc_empty(&t->tls_array[n - 1])) 249 --n; 250 return n; 251 } 252 253 int regset_tls_get(struct task_struct *target, const struct user_regset *regset, 254 unsigned int pos, unsigned int count, 255 void *kbuf, void __user *ubuf) 256 { 257 const struct desc_struct *tls; 258 259 if (pos >= GDT_ENTRY_TLS_ENTRIES * sizeof(struct user_desc) || 260 (pos % sizeof(struct user_desc)) != 0 || 261 (count % sizeof(struct user_desc)) != 0) 262 return -EINVAL; 263 264 pos /= sizeof(struct user_desc); 265 count /= sizeof(struct user_desc); 266 267 tls = &target->thread.tls_array[pos]; 268 269 if (kbuf) { 270 struct user_desc *info = kbuf; 271 while (count-- > 0) 272 fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++, 273 tls++); 274 } else { 275 struct user_desc __user *u_info = ubuf; 276 while (count-- > 0) { 277 struct user_desc info; 278 fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++); 279 if (__copy_to_user(u_info++, &info, sizeof(info))) 280 return -EFAULT; 281 } 282 } 283 284 return 0; 285 } 286 287 int regset_tls_set(struct task_struct *target, const struct user_regset *regset, 288 unsigned int pos, unsigned int count, 289 const void *kbuf, const void __user *ubuf) 290 { 291 struct user_desc infobuf[GDT_ENTRY_TLS_ENTRIES]; 292 const struct user_desc *info; 293 int i; 294 295 if (pos >= GDT_ENTRY_TLS_ENTRIES * sizeof(struct user_desc) || 296 (pos % sizeof(struct user_desc)) != 0 || 297 (count % sizeof(struct user_desc)) != 0) 298 return -EINVAL; 299 300 if (kbuf) 301 info = kbuf; 302 else if (__copy_from_user(infobuf, ubuf, count)) 303 return -EFAULT; 304 else 305 info = infobuf; 306 307 for (i = 0; i < count / sizeof(struct user_desc); i++) 308 if (!tls_desc_okay(info + i)) 309 return -EINVAL; 310 311 set_tls_desc(target, 312 GDT_ENTRY_TLS_MIN + (pos / sizeof(struct user_desc)), 313 info, count / sizeof(struct user_desc)); 314 315 return 0; 316 } 317