xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84 
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88 
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92 
93 /* representing HT, core, and die siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96 
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98 
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102 
103 /* Logical package management. We might want to allocate that dynamically */
104 unsigned int __max_logical_packages __read_mostly;
105 EXPORT_SYMBOL(__max_logical_packages);
106 static unsigned int logical_packages __read_mostly;
107 static unsigned int logical_die __read_mostly;
108 
109 /* Maximum number of SMT threads on any online core */
110 int __read_mostly __max_smt_threads = 1;
111 
112 /* Flag to indicate if a complete sched domain rebuild is required */
113 bool x86_topology_update;
114 
115 int arch_update_cpu_topology(void)
116 {
117 	int retval = x86_topology_update;
118 
119 	x86_topology_update = false;
120 	return retval;
121 }
122 
123 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&rtc_lock, flags);
128 	CMOS_WRITE(0xa, 0xf);
129 	spin_unlock_irqrestore(&rtc_lock, flags);
130 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131 							start_eip >> 4;
132 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133 							start_eip & 0xf;
134 }
135 
136 static inline void smpboot_restore_warm_reset_vector(void)
137 {
138 	unsigned long flags;
139 
140 	/*
141 	 * Paranoid:  Set warm reset code and vector here back
142 	 * to default values.
143 	 */
144 	spin_lock_irqsave(&rtc_lock, flags);
145 	CMOS_WRITE(0, 0xf);
146 	spin_unlock_irqrestore(&rtc_lock, flags);
147 
148 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149 }
150 
151 static void init_freq_invariance(bool secondary);
152 
153 /*
154  * Report back to the Boot Processor during boot time or to the caller processor
155  * during CPU online.
156  */
157 static void smp_callin(void)
158 {
159 	int cpuid;
160 
161 	/*
162 	 * If waken up by an INIT in an 82489DX configuration
163 	 * cpu_callout_mask guarantees we don't get here before
164 	 * an INIT_deassert IPI reaches our local APIC, so it is
165 	 * now safe to touch our local APIC.
166 	 */
167 	cpuid = smp_processor_id();
168 
169 	/*
170 	 * the boot CPU has finished the init stage and is spinning
171 	 * on callin_map until we finish. We are free to set up this
172 	 * CPU, first the APIC. (this is probably redundant on most
173 	 * boards)
174 	 */
175 	apic_ap_setup();
176 
177 	/*
178 	 * Save our processor parameters. Note: this information
179 	 * is needed for clock calibration.
180 	 */
181 	smp_store_cpu_info(cpuid);
182 
183 	/*
184 	 * The topology information must be up to date before
185 	 * calibrate_delay() and notify_cpu_starting().
186 	 */
187 	set_cpu_sibling_map(raw_smp_processor_id());
188 
189 	init_freq_invariance(true);
190 
191 	/*
192 	 * Get our bogomips.
193 	 * Update loops_per_jiffy in cpu_data. Previous call to
194 	 * smp_store_cpu_info() stored a value that is close but not as
195 	 * accurate as the value just calculated.
196 	 */
197 	calibrate_delay();
198 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
199 	pr_debug("Stack at about %p\n", &cpuid);
200 
201 	wmb();
202 
203 	notify_cpu_starting(cpuid);
204 
205 	/*
206 	 * Allow the master to continue.
207 	 */
208 	cpumask_set_cpu(cpuid, cpu_callin_mask);
209 }
210 
211 static int cpu0_logical_apicid;
212 static int enable_start_cpu0;
213 /*
214  * Activate a secondary processor.
215  */
216 static void notrace start_secondary(void *unused)
217 {
218 	/*
219 	 * Don't put *anything* except direct CPU state initialization
220 	 * before cpu_init(), SMP booting is too fragile that we want to
221 	 * limit the things done here to the most necessary things.
222 	 */
223 	cr4_init();
224 
225 #ifdef CONFIG_X86_32
226 	/* switch away from the initial page table */
227 	load_cr3(swapper_pg_dir);
228 	__flush_tlb_all();
229 #endif
230 	cpu_init_exception_handling();
231 	cpu_init();
232 	x86_cpuinit.early_percpu_clock_init();
233 	preempt_disable();
234 	smp_callin();
235 
236 	enable_start_cpu0 = 0;
237 
238 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
239 	barrier();
240 	/*
241 	 * Check TSC synchronization with the boot CPU:
242 	 */
243 	check_tsc_sync_target();
244 
245 	speculative_store_bypass_ht_init();
246 
247 	/*
248 	 * Lock vector_lock, set CPU online and bring the vector
249 	 * allocator online. Online must be set with vector_lock held
250 	 * to prevent a concurrent irq setup/teardown from seeing a
251 	 * half valid vector space.
252 	 */
253 	lock_vector_lock();
254 	set_cpu_online(smp_processor_id(), true);
255 	lapic_online();
256 	unlock_vector_lock();
257 	cpu_set_state_online(smp_processor_id());
258 	x86_platform.nmi_init();
259 
260 	/* enable local interrupts */
261 	local_irq_enable();
262 
263 	x86_cpuinit.setup_percpu_clockev();
264 
265 	wmb();
266 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
267 }
268 
269 /**
270  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271  * @cpu:	CPU to check
272  */
273 bool topology_is_primary_thread(unsigned int cpu)
274 {
275 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276 }
277 
278 /**
279  * topology_smt_supported - Check whether SMT is supported by the CPUs
280  */
281 bool topology_smt_supported(void)
282 {
283 	return smp_num_siblings > 1;
284 }
285 
286 /**
287  * topology_phys_to_logical_pkg - Map a physical package id to a logical
288  *
289  * Returns logical package id or -1 if not found
290  */
291 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292 {
293 	int cpu;
294 
295 	for_each_possible_cpu(cpu) {
296 		struct cpuinfo_x86 *c = &cpu_data(cpu);
297 
298 		if (c->initialized && c->phys_proc_id == phys_pkg)
299 			return c->logical_proc_id;
300 	}
301 	return -1;
302 }
303 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
304 /**
305  * topology_phys_to_logical_die - Map a physical die id to logical
306  *
307  * Returns logical die id or -1 if not found
308  */
309 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310 {
311 	int cpu;
312 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
313 
314 	for_each_possible_cpu(cpu) {
315 		struct cpuinfo_x86 *c = &cpu_data(cpu);
316 
317 		if (c->initialized && c->cpu_die_id == die_id &&
318 		    c->phys_proc_id == proc_id)
319 			return c->logical_die_id;
320 	}
321 	return -1;
322 }
323 EXPORT_SYMBOL(topology_phys_to_logical_die);
324 
325 /**
326  * topology_update_package_map - Update the physical to logical package map
327  * @pkg:	The physical package id as retrieved via CPUID
328  * @cpu:	The cpu for which this is updated
329  */
330 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
331 {
332 	int new;
333 
334 	/* Already available somewhere? */
335 	new = topology_phys_to_logical_pkg(pkg);
336 	if (new >= 0)
337 		goto found;
338 
339 	new = logical_packages++;
340 	if (new != pkg) {
341 		pr_info("CPU %u Converting physical %u to logical package %u\n",
342 			cpu, pkg, new);
343 	}
344 found:
345 	cpu_data(cpu).logical_proc_id = new;
346 	return 0;
347 }
348 /**
349  * topology_update_die_map - Update the physical to logical die map
350  * @die:	The die id as retrieved via CPUID
351  * @cpu:	The cpu for which this is updated
352  */
353 int topology_update_die_map(unsigned int die, unsigned int cpu)
354 {
355 	int new;
356 
357 	/* Already available somewhere? */
358 	new = topology_phys_to_logical_die(die, cpu);
359 	if (new >= 0)
360 		goto found;
361 
362 	new = logical_die++;
363 	if (new != die) {
364 		pr_info("CPU %u Converting physical %u to logical die %u\n",
365 			cpu, die, new);
366 	}
367 found:
368 	cpu_data(cpu).logical_die_id = new;
369 	return 0;
370 }
371 
372 void __init smp_store_boot_cpu_info(void)
373 {
374 	int id = 0; /* CPU 0 */
375 	struct cpuinfo_x86 *c = &cpu_data(id);
376 
377 	*c = boot_cpu_data;
378 	c->cpu_index = id;
379 	topology_update_package_map(c->phys_proc_id, id);
380 	topology_update_die_map(c->cpu_die_id, id);
381 	c->initialized = true;
382 }
383 
384 /*
385  * The bootstrap kernel entry code has set these up. Save them for
386  * a given CPU
387  */
388 void smp_store_cpu_info(int id)
389 {
390 	struct cpuinfo_x86 *c = &cpu_data(id);
391 
392 	/* Copy boot_cpu_data only on the first bringup */
393 	if (!c->initialized)
394 		*c = boot_cpu_data;
395 	c->cpu_index = id;
396 	/*
397 	 * During boot time, CPU0 has this setup already. Save the info when
398 	 * bringing up AP or offlined CPU0.
399 	 */
400 	identify_secondary_cpu(c);
401 	c->initialized = true;
402 }
403 
404 static bool
405 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408 
409 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410 }
411 
412 static bool
413 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
414 {
415 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416 
417 	return !WARN_ONCE(!topology_same_node(c, o),
418 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419 		"[node: %d != %d]. Ignoring dependency.\n",
420 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421 }
422 
423 #define link_mask(mfunc, c1, c2)					\
424 do {									\
425 	cpumask_set_cpu((c1), mfunc(c2));				\
426 	cpumask_set_cpu((c2), mfunc(c1));				\
427 } while (0)
428 
429 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
430 {
431 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
432 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433 
434 		if (c->phys_proc_id == o->phys_proc_id &&
435 		    c->cpu_die_id == o->cpu_die_id &&
436 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437 			if (c->cpu_core_id == o->cpu_core_id)
438 				return topology_sane(c, o, "smt");
439 
440 			if ((c->cu_id != 0xff) &&
441 			    (o->cu_id != 0xff) &&
442 			    (c->cu_id == o->cu_id))
443 				return topology_sane(c, o, "smt");
444 		}
445 
446 	} else if (c->phys_proc_id == o->phys_proc_id &&
447 		   c->cpu_die_id == o->cpu_die_id &&
448 		   c->cpu_core_id == o->cpu_core_id) {
449 		return topology_sane(c, o, "smt");
450 	}
451 
452 	return false;
453 }
454 
455 /*
456  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
457  *
458  * These are Intel CPUs that enumerate an LLC that is shared by
459  * multiple NUMA nodes. The LLC on these systems is shared for
460  * off-package data access but private to the NUMA node (half
461  * of the package) for on-package access.
462  *
463  * CPUID (the source of the information about the LLC) can only
464  * enumerate the cache as being shared *or* unshared, but not
465  * this particular configuration. The CPU in this case enumerates
466  * the cache to be shared across the entire package (spanning both
467  * NUMA nodes).
468  */
469 
470 static const struct x86_cpu_id snc_cpu[] = {
471 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
472 	{}
473 };
474 
475 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
476 {
477 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478 
479 	/* Do not match if we do not have a valid APICID for cpu: */
480 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
481 		return false;
482 
483 	/* Do not match if LLC id does not match: */
484 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
485 		return false;
486 
487 	/*
488 	 * Allow the SNC topology without warning. Return of false
489 	 * means 'c' does not share the LLC of 'o'. This will be
490 	 * reflected to userspace.
491 	 */
492 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
493 		return false;
494 
495 	return topology_sane(c, o, "llc");
496 }
497 
498 /*
499  * Unlike the other levels, we do not enforce keeping a
500  * multicore group inside a NUMA node.  If this happens, we will
501  * discard the MC level of the topology later.
502  */
503 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
504 {
505 	if (c->phys_proc_id == o->phys_proc_id)
506 		return true;
507 	return false;
508 }
509 
510 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
511 {
512 	if ((c->phys_proc_id == o->phys_proc_id) &&
513 		(c->cpu_die_id == o->cpu_die_id))
514 		return true;
515 	return false;
516 }
517 
518 
519 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
520 static inline int x86_sched_itmt_flags(void)
521 {
522 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
523 }
524 
525 #ifdef CONFIG_SCHED_MC
526 static int x86_core_flags(void)
527 {
528 	return cpu_core_flags() | x86_sched_itmt_flags();
529 }
530 #endif
531 #ifdef CONFIG_SCHED_SMT
532 static int x86_smt_flags(void)
533 {
534 	return cpu_smt_flags() | x86_sched_itmt_flags();
535 }
536 #endif
537 #endif
538 
539 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
540 #ifdef CONFIG_SCHED_SMT
541 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
542 #endif
543 #ifdef CONFIG_SCHED_MC
544 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
545 #endif
546 	{ NULL, },
547 };
548 
549 static struct sched_domain_topology_level x86_topology[] = {
550 #ifdef CONFIG_SCHED_SMT
551 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
552 #endif
553 #ifdef CONFIG_SCHED_MC
554 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
555 #endif
556 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
557 	{ NULL, },
558 };
559 
560 /*
561  * Set if a package/die has multiple NUMA nodes inside.
562  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
563  * Sub-NUMA Clustering have this.
564  */
565 static bool x86_has_numa_in_package;
566 
567 void set_cpu_sibling_map(int cpu)
568 {
569 	bool has_smt = smp_num_siblings > 1;
570 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
571 	struct cpuinfo_x86 *c = &cpu_data(cpu);
572 	struct cpuinfo_x86 *o;
573 	int i, threads;
574 
575 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
576 
577 	if (!has_mp) {
578 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
579 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
580 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
581 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
582 		c->booted_cores = 1;
583 		return;
584 	}
585 
586 	for_each_cpu(i, cpu_sibling_setup_mask) {
587 		o = &cpu_data(i);
588 
589 		if ((i == cpu) || (has_smt && match_smt(c, o)))
590 			link_mask(topology_sibling_cpumask, cpu, i);
591 
592 		if ((i == cpu) || (has_mp && match_llc(c, o)))
593 			link_mask(cpu_llc_shared_mask, cpu, i);
594 
595 	}
596 
597 	/*
598 	 * This needs a separate iteration over the cpus because we rely on all
599 	 * topology_sibling_cpumask links to be set-up.
600 	 */
601 	for_each_cpu(i, cpu_sibling_setup_mask) {
602 		o = &cpu_data(i);
603 
604 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
605 			link_mask(topology_core_cpumask, cpu, i);
606 
607 			/*
608 			 *  Does this new cpu bringup a new core?
609 			 */
610 			if (cpumask_weight(
611 			    topology_sibling_cpumask(cpu)) == 1) {
612 				/*
613 				 * for each core in package, increment
614 				 * the booted_cores for this new cpu
615 				 */
616 				if (cpumask_first(
617 				    topology_sibling_cpumask(i)) == i)
618 					c->booted_cores++;
619 				/*
620 				 * increment the core count for all
621 				 * the other cpus in this package
622 				 */
623 				if (i != cpu)
624 					cpu_data(i).booted_cores++;
625 			} else if (i != cpu && !c->booted_cores)
626 				c->booted_cores = cpu_data(i).booted_cores;
627 		}
628 		if (match_pkg(c, o) && !topology_same_node(c, o))
629 			x86_has_numa_in_package = true;
630 
631 		if ((i == cpu) || (has_mp && match_die(c, o)))
632 			link_mask(topology_die_cpumask, cpu, i);
633 	}
634 
635 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
636 	if (threads > __max_smt_threads)
637 		__max_smt_threads = threads;
638 }
639 
640 /* maps the cpu to the sched domain representing multi-core */
641 const struct cpumask *cpu_coregroup_mask(int cpu)
642 {
643 	return cpu_llc_shared_mask(cpu);
644 }
645 
646 static void impress_friends(void)
647 {
648 	int cpu;
649 	unsigned long bogosum = 0;
650 	/*
651 	 * Allow the user to impress friends.
652 	 */
653 	pr_debug("Before bogomips\n");
654 	for_each_possible_cpu(cpu)
655 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
656 			bogosum += cpu_data(cpu).loops_per_jiffy;
657 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
658 		num_online_cpus(),
659 		bogosum/(500000/HZ),
660 		(bogosum/(5000/HZ))%100);
661 
662 	pr_debug("Before bogocount - setting activated=1\n");
663 }
664 
665 void __inquire_remote_apic(int apicid)
666 {
667 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
668 	const char * const names[] = { "ID", "VERSION", "SPIV" };
669 	int timeout;
670 	u32 status;
671 
672 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
673 
674 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
675 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
676 
677 		/*
678 		 * Wait for idle.
679 		 */
680 		status = safe_apic_wait_icr_idle();
681 		if (status)
682 			pr_cont("a previous APIC delivery may have failed\n");
683 
684 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
685 
686 		timeout = 0;
687 		do {
688 			udelay(100);
689 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
690 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
691 
692 		switch (status) {
693 		case APIC_ICR_RR_VALID:
694 			status = apic_read(APIC_RRR);
695 			pr_cont("%08x\n", status);
696 			break;
697 		default:
698 			pr_cont("failed\n");
699 		}
700 	}
701 }
702 
703 /*
704  * The Multiprocessor Specification 1.4 (1997) example code suggests
705  * that there should be a 10ms delay between the BSP asserting INIT
706  * and de-asserting INIT, when starting a remote processor.
707  * But that slows boot and resume on modern processors, which include
708  * many cores and don't require that delay.
709  *
710  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
711  * Modern processor families are quirked to remove the delay entirely.
712  */
713 #define UDELAY_10MS_DEFAULT 10000
714 
715 static unsigned int init_udelay = UINT_MAX;
716 
717 static int __init cpu_init_udelay(char *str)
718 {
719 	get_option(&str, &init_udelay);
720 
721 	return 0;
722 }
723 early_param("cpu_init_udelay", cpu_init_udelay);
724 
725 static void __init smp_quirk_init_udelay(void)
726 {
727 	/* if cmdline changed it from default, leave it alone */
728 	if (init_udelay != UINT_MAX)
729 		return;
730 
731 	/* if modern processor, use no delay */
732 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
733 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
734 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
735 		init_udelay = 0;
736 		return;
737 	}
738 	/* else, use legacy delay */
739 	init_udelay = UDELAY_10MS_DEFAULT;
740 }
741 
742 /*
743  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
744  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
745  * won't ... remember to clear down the APIC, etc later.
746  */
747 int
748 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
749 {
750 	unsigned long send_status, accept_status = 0;
751 	int maxlvt;
752 
753 	/* Target chip */
754 	/* Boot on the stack */
755 	/* Kick the second */
756 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
757 
758 	pr_debug("Waiting for send to finish...\n");
759 	send_status = safe_apic_wait_icr_idle();
760 
761 	/*
762 	 * Give the other CPU some time to accept the IPI.
763 	 */
764 	udelay(200);
765 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
766 		maxlvt = lapic_get_maxlvt();
767 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
768 			apic_write(APIC_ESR, 0);
769 		accept_status = (apic_read(APIC_ESR) & 0xEF);
770 	}
771 	pr_debug("NMI sent\n");
772 
773 	if (send_status)
774 		pr_err("APIC never delivered???\n");
775 	if (accept_status)
776 		pr_err("APIC delivery error (%lx)\n", accept_status);
777 
778 	return (send_status | accept_status);
779 }
780 
781 static int
782 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
783 {
784 	unsigned long send_status = 0, accept_status = 0;
785 	int maxlvt, num_starts, j;
786 
787 	maxlvt = lapic_get_maxlvt();
788 
789 	/*
790 	 * Be paranoid about clearing APIC errors.
791 	 */
792 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
793 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
794 			apic_write(APIC_ESR, 0);
795 		apic_read(APIC_ESR);
796 	}
797 
798 	pr_debug("Asserting INIT\n");
799 
800 	/*
801 	 * Turn INIT on target chip
802 	 */
803 	/*
804 	 * Send IPI
805 	 */
806 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
807 		       phys_apicid);
808 
809 	pr_debug("Waiting for send to finish...\n");
810 	send_status = safe_apic_wait_icr_idle();
811 
812 	udelay(init_udelay);
813 
814 	pr_debug("Deasserting INIT\n");
815 
816 	/* Target chip */
817 	/* Send IPI */
818 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
819 
820 	pr_debug("Waiting for send to finish...\n");
821 	send_status = safe_apic_wait_icr_idle();
822 
823 	mb();
824 
825 	/*
826 	 * Should we send STARTUP IPIs ?
827 	 *
828 	 * Determine this based on the APIC version.
829 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
830 	 */
831 	if (APIC_INTEGRATED(boot_cpu_apic_version))
832 		num_starts = 2;
833 	else
834 		num_starts = 0;
835 
836 	/*
837 	 * Run STARTUP IPI loop.
838 	 */
839 	pr_debug("#startup loops: %d\n", num_starts);
840 
841 	for (j = 1; j <= num_starts; j++) {
842 		pr_debug("Sending STARTUP #%d\n", j);
843 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
844 			apic_write(APIC_ESR, 0);
845 		apic_read(APIC_ESR);
846 		pr_debug("After apic_write\n");
847 
848 		/*
849 		 * STARTUP IPI
850 		 */
851 
852 		/* Target chip */
853 		/* Boot on the stack */
854 		/* Kick the second */
855 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
856 			       phys_apicid);
857 
858 		/*
859 		 * Give the other CPU some time to accept the IPI.
860 		 */
861 		if (init_udelay == 0)
862 			udelay(10);
863 		else
864 			udelay(300);
865 
866 		pr_debug("Startup point 1\n");
867 
868 		pr_debug("Waiting for send to finish...\n");
869 		send_status = safe_apic_wait_icr_idle();
870 
871 		/*
872 		 * Give the other CPU some time to accept the IPI.
873 		 */
874 		if (init_udelay == 0)
875 			udelay(10);
876 		else
877 			udelay(200);
878 
879 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
880 			apic_write(APIC_ESR, 0);
881 		accept_status = (apic_read(APIC_ESR) & 0xEF);
882 		if (send_status || accept_status)
883 			break;
884 	}
885 	pr_debug("After Startup\n");
886 
887 	if (send_status)
888 		pr_err("APIC never delivered???\n");
889 	if (accept_status)
890 		pr_err("APIC delivery error (%lx)\n", accept_status);
891 
892 	return (send_status | accept_status);
893 }
894 
895 /* reduce the number of lines printed when booting a large cpu count system */
896 static void announce_cpu(int cpu, int apicid)
897 {
898 	static int current_node = NUMA_NO_NODE;
899 	int node = early_cpu_to_node(cpu);
900 	static int width, node_width;
901 
902 	if (!width)
903 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
904 
905 	if (!node_width)
906 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
907 
908 	if (cpu == 1)
909 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
910 
911 	if (system_state < SYSTEM_RUNNING) {
912 		if (node != current_node) {
913 			if (current_node > (-1))
914 				pr_cont("\n");
915 			current_node = node;
916 
917 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
918 			       node_width - num_digits(node), " ", node);
919 		}
920 
921 		/* Add padding for the BSP */
922 		if (cpu == 1)
923 			pr_cont("%*s", width + 1, " ");
924 
925 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
926 
927 	} else
928 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
929 			node, cpu, apicid);
930 }
931 
932 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
933 {
934 	int cpu;
935 
936 	cpu = smp_processor_id();
937 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
938 		return NMI_HANDLED;
939 
940 	return NMI_DONE;
941 }
942 
943 /*
944  * Wake up AP by INIT, INIT, STARTUP sequence.
945  *
946  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
947  * boot-strap code which is not a desired behavior for waking up BSP. To
948  * void the boot-strap code, wake up CPU0 by NMI instead.
949  *
950  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
951  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
952  * We'll change this code in the future to wake up hard offlined CPU0 if
953  * real platform and request are available.
954  */
955 static int
956 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
957 	       int *cpu0_nmi_registered)
958 {
959 	int id;
960 	int boot_error;
961 
962 	preempt_disable();
963 
964 	/*
965 	 * Wake up AP by INIT, INIT, STARTUP sequence.
966 	 */
967 	if (cpu) {
968 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
969 		goto out;
970 	}
971 
972 	/*
973 	 * Wake up BSP by nmi.
974 	 *
975 	 * Register a NMI handler to help wake up CPU0.
976 	 */
977 	boot_error = register_nmi_handler(NMI_LOCAL,
978 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
979 
980 	if (!boot_error) {
981 		enable_start_cpu0 = 1;
982 		*cpu0_nmi_registered = 1;
983 		if (apic->dest_logical == APIC_DEST_LOGICAL)
984 			id = cpu0_logical_apicid;
985 		else
986 			id = apicid;
987 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
988 	}
989 
990 out:
991 	preempt_enable();
992 
993 	return boot_error;
994 }
995 
996 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
997 {
998 	int ret;
999 
1000 	/* Just in case we booted with a single CPU. */
1001 	alternatives_enable_smp();
1002 
1003 	per_cpu(current_task, cpu) = idle;
1004 	cpu_init_stack_canary(cpu, idle);
1005 
1006 	/* Initialize the interrupt stack(s) */
1007 	ret = irq_init_percpu_irqstack(cpu);
1008 	if (ret)
1009 		return ret;
1010 
1011 #ifdef CONFIG_X86_32
1012 	/* Stack for startup_32 can be just as for start_secondary onwards */
1013 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1014 #else
1015 	initial_gs = per_cpu_offset(cpu);
1016 #endif
1017 	return 0;
1018 }
1019 
1020 /*
1021  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1022  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1023  * Returns zero if CPU booted OK, else error code from
1024  * ->wakeup_secondary_cpu.
1025  */
1026 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1027 		       int *cpu0_nmi_registered)
1028 {
1029 	/* start_ip had better be page-aligned! */
1030 	unsigned long start_ip = real_mode_header->trampoline_start;
1031 
1032 	unsigned long boot_error = 0;
1033 	unsigned long timeout;
1034 
1035 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1036 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1037 	initial_code = (unsigned long)start_secondary;
1038 	initial_stack  = idle->thread.sp;
1039 
1040 	/* Enable the espfix hack for this CPU */
1041 	init_espfix_ap(cpu);
1042 
1043 	/* So we see what's up */
1044 	announce_cpu(cpu, apicid);
1045 
1046 	/*
1047 	 * This grunge runs the startup process for
1048 	 * the targeted processor.
1049 	 */
1050 
1051 	if (x86_platform.legacy.warm_reset) {
1052 
1053 		pr_debug("Setting warm reset code and vector.\n");
1054 
1055 		smpboot_setup_warm_reset_vector(start_ip);
1056 		/*
1057 		 * Be paranoid about clearing APIC errors.
1058 		*/
1059 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1060 			apic_write(APIC_ESR, 0);
1061 			apic_read(APIC_ESR);
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * AP might wait on cpu_callout_mask in cpu_init() with
1067 	 * cpu_initialized_mask set if previous attempt to online
1068 	 * it timed-out. Clear cpu_initialized_mask so that after
1069 	 * INIT/SIPI it could start with a clean state.
1070 	 */
1071 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1072 	smp_mb();
1073 
1074 	/*
1075 	 * Wake up a CPU in difference cases:
1076 	 * - Use the method in the APIC driver if it's defined
1077 	 * Otherwise,
1078 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1079 	 */
1080 	if (apic->wakeup_secondary_cpu)
1081 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1082 	else
1083 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1084 						     cpu0_nmi_registered);
1085 
1086 	if (!boot_error) {
1087 		/*
1088 		 * Wait 10s total for first sign of life from AP
1089 		 */
1090 		boot_error = -1;
1091 		timeout = jiffies + 10*HZ;
1092 		while (time_before(jiffies, timeout)) {
1093 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1094 				/*
1095 				 * Tell AP to proceed with initialization
1096 				 */
1097 				cpumask_set_cpu(cpu, cpu_callout_mask);
1098 				boot_error = 0;
1099 				break;
1100 			}
1101 			schedule();
1102 		}
1103 	}
1104 
1105 	if (!boot_error) {
1106 		/*
1107 		 * Wait till AP completes initial initialization
1108 		 */
1109 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1110 			/*
1111 			 * Allow other tasks to run while we wait for the
1112 			 * AP to come online. This also gives a chance
1113 			 * for the MTRR work(triggered by the AP coming online)
1114 			 * to be completed in the stop machine context.
1115 			 */
1116 			schedule();
1117 		}
1118 	}
1119 
1120 	if (x86_platform.legacy.warm_reset) {
1121 		/*
1122 		 * Cleanup possible dangling ends...
1123 		 */
1124 		smpboot_restore_warm_reset_vector();
1125 	}
1126 
1127 	return boot_error;
1128 }
1129 
1130 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1131 {
1132 	int apicid = apic->cpu_present_to_apicid(cpu);
1133 	int cpu0_nmi_registered = 0;
1134 	unsigned long flags;
1135 	int err, ret = 0;
1136 
1137 	lockdep_assert_irqs_enabled();
1138 
1139 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1140 
1141 	if (apicid == BAD_APICID ||
1142 	    !physid_isset(apicid, phys_cpu_present_map) ||
1143 	    !apic->apic_id_valid(apicid)) {
1144 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1145 		return -EINVAL;
1146 	}
1147 
1148 	/*
1149 	 * Already booted CPU?
1150 	 */
1151 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1152 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1153 		return -ENOSYS;
1154 	}
1155 
1156 	/*
1157 	 * Save current MTRR state in case it was changed since early boot
1158 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1159 	 */
1160 	mtrr_save_state();
1161 
1162 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1163 	err = cpu_check_up_prepare(cpu);
1164 	if (err && err != -EBUSY)
1165 		return err;
1166 
1167 	/* the FPU context is blank, nobody can own it */
1168 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1169 
1170 	err = common_cpu_up(cpu, tidle);
1171 	if (err)
1172 		return err;
1173 
1174 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1175 	if (err) {
1176 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1177 		ret = -EIO;
1178 		goto unreg_nmi;
1179 	}
1180 
1181 	/*
1182 	 * Check TSC synchronization with the AP (keep irqs disabled
1183 	 * while doing so):
1184 	 */
1185 	local_irq_save(flags);
1186 	check_tsc_sync_source(cpu);
1187 	local_irq_restore(flags);
1188 
1189 	while (!cpu_online(cpu)) {
1190 		cpu_relax();
1191 		touch_nmi_watchdog();
1192 	}
1193 
1194 unreg_nmi:
1195 	/*
1196 	 * Clean up the nmi handler. Do this after the callin and callout sync
1197 	 * to avoid impact of possible long unregister time.
1198 	 */
1199 	if (cpu0_nmi_registered)
1200 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1201 
1202 	return ret;
1203 }
1204 
1205 /**
1206  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1207  */
1208 void arch_disable_smp_support(void)
1209 {
1210 	disable_ioapic_support();
1211 }
1212 
1213 /*
1214  * Fall back to non SMP mode after errors.
1215  *
1216  * RED-PEN audit/test this more. I bet there is more state messed up here.
1217  */
1218 static __init void disable_smp(void)
1219 {
1220 	pr_info("SMP disabled\n");
1221 
1222 	disable_ioapic_support();
1223 
1224 	init_cpu_present(cpumask_of(0));
1225 	init_cpu_possible(cpumask_of(0));
1226 
1227 	if (smp_found_config)
1228 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1229 	else
1230 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1231 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1232 	cpumask_set_cpu(0, topology_core_cpumask(0));
1233 	cpumask_set_cpu(0, topology_die_cpumask(0));
1234 }
1235 
1236 /*
1237  * Various sanity checks.
1238  */
1239 static void __init smp_sanity_check(void)
1240 {
1241 	preempt_disable();
1242 
1243 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1244 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1245 		unsigned int cpu;
1246 		unsigned nr;
1247 
1248 		pr_warn("More than 8 CPUs detected - skipping them\n"
1249 			"Use CONFIG_X86_BIGSMP\n");
1250 
1251 		nr = 0;
1252 		for_each_present_cpu(cpu) {
1253 			if (nr >= 8)
1254 				set_cpu_present(cpu, false);
1255 			nr++;
1256 		}
1257 
1258 		nr = 0;
1259 		for_each_possible_cpu(cpu) {
1260 			if (nr >= 8)
1261 				set_cpu_possible(cpu, false);
1262 			nr++;
1263 		}
1264 
1265 		nr_cpu_ids = 8;
1266 	}
1267 #endif
1268 
1269 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1270 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1271 			hard_smp_processor_id());
1272 
1273 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1274 	}
1275 
1276 	/*
1277 	 * Should not be necessary because the MP table should list the boot
1278 	 * CPU too, but we do it for the sake of robustness anyway.
1279 	 */
1280 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1281 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1282 			  boot_cpu_physical_apicid);
1283 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1284 	}
1285 	preempt_enable();
1286 }
1287 
1288 static void __init smp_cpu_index_default(void)
1289 {
1290 	int i;
1291 	struct cpuinfo_x86 *c;
1292 
1293 	for_each_possible_cpu(i) {
1294 		c = &cpu_data(i);
1295 		/* mark all to hotplug */
1296 		c->cpu_index = nr_cpu_ids;
1297 	}
1298 }
1299 
1300 static void __init smp_get_logical_apicid(void)
1301 {
1302 	if (x2apic_mode)
1303 		cpu0_logical_apicid = apic_read(APIC_LDR);
1304 	else
1305 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1306 }
1307 
1308 /*
1309  * Prepare for SMP bootup.
1310  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1311  *            for common interface support.
1312  */
1313 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1314 {
1315 	unsigned int i;
1316 
1317 	smp_cpu_index_default();
1318 
1319 	/*
1320 	 * Setup boot CPU information
1321 	 */
1322 	smp_store_boot_cpu_info(); /* Final full version of the data */
1323 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1324 	mb();
1325 
1326 	for_each_possible_cpu(i) {
1327 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1328 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1329 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1330 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1331 	}
1332 
1333 	/*
1334 	 * Set 'default' x86 topology, this matches default_topology() in that
1335 	 * it has NUMA nodes as a topology level. See also
1336 	 * native_smp_cpus_done().
1337 	 *
1338 	 * Must be done before set_cpus_sibling_map() is ran.
1339 	 */
1340 	set_sched_topology(x86_topology);
1341 
1342 	set_cpu_sibling_map(0);
1343 	init_freq_invariance(false);
1344 	smp_sanity_check();
1345 
1346 	switch (apic_intr_mode) {
1347 	case APIC_PIC:
1348 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1349 		disable_smp();
1350 		return;
1351 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1352 		disable_smp();
1353 		/* Setup local timer */
1354 		x86_init.timers.setup_percpu_clockev();
1355 		return;
1356 	case APIC_VIRTUAL_WIRE:
1357 	case APIC_SYMMETRIC_IO:
1358 		break;
1359 	}
1360 
1361 	/* Setup local timer */
1362 	x86_init.timers.setup_percpu_clockev();
1363 
1364 	smp_get_logical_apicid();
1365 
1366 	pr_info("CPU0: ");
1367 	print_cpu_info(&cpu_data(0));
1368 
1369 	uv_system_init();
1370 
1371 	set_mtrr_aps_delayed_init();
1372 
1373 	smp_quirk_init_udelay();
1374 
1375 	speculative_store_bypass_ht_init();
1376 }
1377 
1378 void arch_thaw_secondary_cpus_begin(void)
1379 {
1380 	set_mtrr_aps_delayed_init();
1381 }
1382 
1383 void arch_thaw_secondary_cpus_end(void)
1384 {
1385 	mtrr_aps_init();
1386 }
1387 
1388 /*
1389  * Early setup to make printk work.
1390  */
1391 void __init native_smp_prepare_boot_cpu(void)
1392 {
1393 	int me = smp_processor_id();
1394 	switch_to_new_gdt(me);
1395 	/* already set me in cpu_online_mask in boot_cpu_init() */
1396 	cpumask_set_cpu(me, cpu_callout_mask);
1397 	cpu_set_state_online(me);
1398 	native_pv_lock_init();
1399 }
1400 
1401 void __init calculate_max_logical_packages(void)
1402 {
1403 	int ncpus;
1404 
1405 	/*
1406 	 * Today neither Intel nor AMD support heterogenous systems so
1407 	 * extrapolate the boot cpu's data to all packages.
1408 	 */
1409 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1410 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1411 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1412 }
1413 
1414 void __init native_smp_cpus_done(unsigned int max_cpus)
1415 {
1416 	pr_debug("Boot done\n");
1417 
1418 	calculate_max_logical_packages();
1419 
1420 	if (x86_has_numa_in_package)
1421 		set_sched_topology(x86_numa_in_package_topology);
1422 
1423 	nmi_selftest();
1424 	impress_friends();
1425 	mtrr_aps_init();
1426 }
1427 
1428 static int __initdata setup_possible_cpus = -1;
1429 static int __init _setup_possible_cpus(char *str)
1430 {
1431 	get_option(&str, &setup_possible_cpus);
1432 	return 0;
1433 }
1434 early_param("possible_cpus", _setup_possible_cpus);
1435 
1436 
1437 /*
1438  * cpu_possible_mask should be static, it cannot change as cpu's
1439  * are onlined, or offlined. The reason is per-cpu data-structures
1440  * are allocated by some modules at init time, and don't expect to
1441  * do this dynamically on cpu arrival/departure.
1442  * cpu_present_mask on the other hand can change dynamically.
1443  * In case when cpu_hotplug is not compiled, then we resort to current
1444  * behaviour, which is cpu_possible == cpu_present.
1445  * - Ashok Raj
1446  *
1447  * Three ways to find out the number of additional hotplug CPUs:
1448  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1449  * - The user can overwrite it with possible_cpus=NUM
1450  * - Otherwise don't reserve additional CPUs.
1451  * We do this because additional CPUs waste a lot of memory.
1452  * -AK
1453  */
1454 __init void prefill_possible_map(void)
1455 {
1456 	int i, possible;
1457 
1458 	/* No boot processor was found in mptable or ACPI MADT */
1459 	if (!num_processors) {
1460 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1461 			int apicid = boot_cpu_physical_apicid;
1462 			int cpu = hard_smp_processor_id();
1463 
1464 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1465 
1466 			/* Make sure boot cpu is enumerated */
1467 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1468 			    apic->apic_id_valid(apicid))
1469 				generic_processor_info(apicid, boot_cpu_apic_version);
1470 		}
1471 
1472 		if (!num_processors)
1473 			num_processors = 1;
1474 	}
1475 
1476 	i = setup_max_cpus ?: 1;
1477 	if (setup_possible_cpus == -1) {
1478 		possible = num_processors;
1479 #ifdef CONFIG_HOTPLUG_CPU
1480 		if (setup_max_cpus)
1481 			possible += disabled_cpus;
1482 #else
1483 		if (possible > i)
1484 			possible = i;
1485 #endif
1486 	} else
1487 		possible = setup_possible_cpus;
1488 
1489 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1490 
1491 	/* nr_cpu_ids could be reduced via nr_cpus= */
1492 	if (possible > nr_cpu_ids) {
1493 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1494 			possible, nr_cpu_ids);
1495 		possible = nr_cpu_ids;
1496 	}
1497 
1498 #ifdef CONFIG_HOTPLUG_CPU
1499 	if (!setup_max_cpus)
1500 #endif
1501 	if (possible > i) {
1502 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1503 			possible, setup_max_cpus);
1504 		possible = i;
1505 	}
1506 
1507 	nr_cpu_ids = possible;
1508 
1509 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1510 		possible, max_t(int, possible - num_processors, 0));
1511 
1512 	reset_cpu_possible_mask();
1513 
1514 	for (i = 0; i < possible; i++)
1515 		set_cpu_possible(i, true);
1516 }
1517 
1518 #ifdef CONFIG_HOTPLUG_CPU
1519 
1520 /* Recompute SMT state for all CPUs on offline */
1521 static void recompute_smt_state(void)
1522 {
1523 	int max_threads, cpu;
1524 
1525 	max_threads = 0;
1526 	for_each_online_cpu (cpu) {
1527 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1528 
1529 		if (threads > max_threads)
1530 			max_threads = threads;
1531 	}
1532 	__max_smt_threads = max_threads;
1533 }
1534 
1535 static void remove_siblinginfo(int cpu)
1536 {
1537 	int sibling;
1538 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1539 
1540 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1541 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1542 		/*/
1543 		 * last thread sibling in this cpu core going down
1544 		 */
1545 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1546 			cpu_data(sibling).booted_cores--;
1547 	}
1548 
1549 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1550 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1551 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1552 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1553 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1554 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1555 	cpumask_clear(cpu_llc_shared_mask(cpu));
1556 	cpumask_clear(topology_sibling_cpumask(cpu));
1557 	cpumask_clear(topology_core_cpumask(cpu));
1558 	cpumask_clear(topology_die_cpumask(cpu));
1559 	c->cpu_core_id = 0;
1560 	c->booted_cores = 0;
1561 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1562 	recompute_smt_state();
1563 }
1564 
1565 static void remove_cpu_from_maps(int cpu)
1566 {
1567 	set_cpu_online(cpu, false);
1568 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1569 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1570 	/* was set by cpu_init() */
1571 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1572 	numa_remove_cpu(cpu);
1573 }
1574 
1575 void cpu_disable_common(void)
1576 {
1577 	int cpu = smp_processor_id();
1578 
1579 	remove_siblinginfo(cpu);
1580 
1581 	/* It's now safe to remove this processor from the online map */
1582 	lock_vector_lock();
1583 	remove_cpu_from_maps(cpu);
1584 	unlock_vector_lock();
1585 	fixup_irqs();
1586 	lapic_offline();
1587 }
1588 
1589 int native_cpu_disable(void)
1590 {
1591 	int ret;
1592 
1593 	ret = lapic_can_unplug_cpu();
1594 	if (ret)
1595 		return ret;
1596 
1597 	cpu_disable_common();
1598 
1599         /*
1600          * Disable the local APIC. Otherwise IPI broadcasts will reach
1601          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1602          * messages.
1603          *
1604          * Disabling the APIC must happen after cpu_disable_common()
1605          * which invokes fixup_irqs().
1606          *
1607          * Disabling the APIC preserves already set bits in IRR, but
1608          * an interrupt arriving after disabling the local APIC does not
1609          * set the corresponding IRR bit.
1610          *
1611          * fixup_irqs() scans IRR for set bits so it can raise a not
1612          * yet handled interrupt on the new destination CPU via an IPI
1613          * but obviously it can't do so for IRR bits which are not set.
1614          * IOW, interrupts arriving after disabling the local APIC will
1615          * be lost.
1616          */
1617 	apic_soft_disable();
1618 
1619 	return 0;
1620 }
1621 
1622 int common_cpu_die(unsigned int cpu)
1623 {
1624 	int ret = 0;
1625 
1626 	/* We don't do anything here: idle task is faking death itself. */
1627 
1628 	/* They ack this in play_dead() by setting CPU_DEAD */
1629 	if (cpu_wait_death(cpu, 5)) {
1630 		if (system_state == SYSTEM_RUNNING)
1631 			pr_info("CPU %u is now offline\n", cpu);
1632 	} else {
1633 		pr_err("CPU %u didn't die...\n", cpu);
1634 		ret = -1;
1635 	}
1636 
1637 	return ret;
1638 }
1639 
1640 void native_cpu_die(unsigned int cpu)
1641 {
1642 	common_cpu_die(cpu);
1643 }
1644 
1645 void play_dead_common(void)
1646 {
1647 	idle_task_exit();
1648 
1649 	/* Ack it */
1650 	(void)cpu_report_death();
1651 
1652 	/*
1653 	 * With physical CPU hotplug, we should halt the cpu
1654 	 */
1655 	local_irq_disable();
1656 }
1657 
1658 static bool wakeup_cpu0(void)
1659 {
1660 	if (smp_processor_id() == 0 && enable_start_cpu0)
1661 		return true;
1662 
1663 	return false;
1664 }
1665 
1666 /*
1667  * We need to flush the caches before going to sleep, lest we have
1668  * dirty data in our caches when we come back up.
1669  */
1670 static inline void mwait_play_dead(void)
1671 {
1672 	unsigned int eax, ebx, ecx, edx;
1673 	unsigned int highest_cstate = 0;
1674 	unsigned int highest_subcstate = 0;
1675 	void *mwait_ptr;
1676 	int i;
1677 
1678 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1679 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1680 		return;
1681 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1682 		return;
1683 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1684 		return;
1685 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1686 		return;
1687 
1688 	eax = CPUID_MWAIT_LEAF;
1689 	ecx = 0;
1690 	native_cpuid(&eax, &ebx, &ecx, &edx);
1691 
1692 	/*
1693 	 * eax will be 0 if EDX enumeration is not valid.
1694 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1695 	 */
1696 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1697 		eax = 0;
1698 	} else {
1699 		edx >>= MWAIT_SUBSTATE_SIZE;
1700 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1701 			if (edx & MWAIT_SUBSTATE_MASK) {
1702 				highest_cstate = i;
1703 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1704 			}
1705 		}
1706 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1707 			(highest_subcstate - 1);
1708 	}
1709 
1710 	/*
1711 	 * This should be a memory location in a cache line which is
1712 	 * unlikely to be touched by other processors.  The actual
1713 	 * content is immaterial as it is not actually modified in any way.
1714 	 */
1715 	mwait_ptr = &current_thread_info()->flags;
1716 
1717 	wbinvd();
1718 
1719 	while (1) {
1720 		/*
1721 		 * The CLFLUSH is a workaround for erratum AAI65 for
1722 		 * the Xeon 7400 series.  It's not clear it is actually
1723 		 * needed, but it should be harmless in either case.
1724 		 * The WBINVD is insufficient due to the spurious-wakeup
1725 		 * case where we return around the loop.
1726 		 */
1727 		mb();
1728 		clflush(mwait_ptr);
1729 		mb();
1730 		__monitor(mwait_ptr, 0, 0);
1731 		mb();
1732 		__mwait(eax, 0);
1733 		/*
1734 		 * If NMI wants to wake up CPU0, start CPU0.
1735 		 */
1736 		if (wakeup_cpu0())
1737 			start_cpu0();
1738 	}
1739 }
1740 
1741 void hlt_play_dead(void)
1742 {
1743 	if (__this_cpu_read(cpu_info.x86) >= 4)
1744 		wbinvd();
1745 
1746 	while (1) {
1747 		native_halt();
1748 		/*
1749 		 * If NMI wants to wake up CPU0, start CPU0.
1750 		 */
1751 		if (wakeup_cpu0())
1752 			start_cpu0();
1753 	}
1754 }
1755 
1756 void native_play_dead(void)
1757 {
1758 	play_dead_common();
1759 	tboot_shutdown(TB_SHUTDOWN_WFS);
1760 
1761 	mwait_play_dead();	/* Only returns on failure */
1762 	if (cpuidle_play_dead())
1763 		hlt_play_dead();
1764 }
1765 
1766 #else /* ... !CONFIG_HOTPLUG_CPU */
1767 int native_cpu_disable(void)
1768 {
1769 	return -ENOSYS;
1770 }
1771 
1772 void native_cpu_die(unsigned int cpu)
1773 {
1774 	/* We said "no" in __cpu_disable */
1775 	BUG();
1776 }
1777 
1778 void native_play_dead(void)
1779 {
1780 	BUG();
1781 }
1782 
1783 #endif
1784 
1785 #ifdef CONFIG_X86_64
1786 /*
1787  * APERF/MPERF frequency ratio computation.
1788  *
1789  * The scheduler wants to do frequency invariant accounting and needs a <1
1790  * ratio to account for the 'current' frequency, corresponding to
1791  * freq_curr / freq_max.
1792  *
1793  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1794  * our P-state setting is little more than a request/hint, we need to observe
1795  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1796  * interval after discarding idle time. This is given by:
1797  *
1798  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1799  *
1800  * where freq_base is the max non-turbo P-state.
1801  *
1802  * The freq_max term has to be set to a somewhat arbitrary value, because we
1803  * can't know which turbo states will be available at a given point in time:
1804  * it all depends on the thermal headroom of the entire package. We set it to
1805  * the turbo level with 4 cores active.
1806  *
1807  * Benchmarks show that's a good compromise between the 1C turbo ratio
1808  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1809  * which would ignore the entire turbo range (a conspicuous part, making
1810  * freq_curr/freq_max always maxed out).
1811  *
1812  * An exception to the heuristic above is the Atom uarch, where we choose the
1813  * highest turbo level for freq_max since Atom's are generally oriented towards
1814  * power efficiency.
1815  *
1816  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1817  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1818  */
1819 
1820 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1821 
1822 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1823 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1824 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1825 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1826 
1827 void arch_set_max_freq_ratio(bool turbo_disabled)
1828 {
1829 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1830 					arch_turbo_freq_ratio;
1831 }
1832 
1833 static bool turbo_disabled(void)
1834 {
1835 	u64 misc_en;
1836 	int err;
1837 
1838 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1839 	if (err)
1840 		return false;
1841 
1842 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1843 }
1844 
1845 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1846 {
1847 	int err;
1848 
1849 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1850 	if (err)
1851 		return false;
1852 
1853 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1854 	if (err)
1855 		return false;
1856 
1857 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1858 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1859 
1860 	return true;
1861 }
1862 
1863 #include <asm/cpu_device_id.h>
1864 #include <asm/intel-family.h>
1865 
1866 #define X86_MATCH(model)					\
1867 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1868 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1869 
1870 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1871 	X86_MATCH(XEON_PHI_KNL),
1872 	X86_MATCH(XEON_PHI_KNM),
1873 	{}
1874 };
1875 
1876 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1877 	X86_MATCH(SKYLAKE_X),
1878 	{}
1879 };
1880 
1881 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1882 	X86_MATCH(ATOM_GOLDMONT),
1883 	X86_MATCH(ATOM_GOLDMONT_D),
1884 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1885 	{}
1886 };
1887 
1888 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1889 				int num_delta_fratio)
1890 {
1891 	int fratio, delta_fratio, found;
1892 	int err, i;
1893 	u64 msr;
1894 
1895 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1896 	if (err)
1897 		return false;
1898 
1899 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1900 
1901 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1902 	if (err)
1903 		return false;
1904 
1905 	fratio = (msr >> 8) & 0xFF;
1906 	i = 16;
1907 	found = 0;
1908 	do {
1909 		if (found >= num_delta_fratio) {
1910 			*turbo_freq = fratio;
1911 			return true;
1912 		}
1913 
1914 		delta_fratio = (msr >> (i + 5)) & 0x7;
1915 
1916 		if (delta_fratio) {
1917 			found += 1;
1918 			fratio -= delta_fratio;
1919 		}
1920 
1921 		i += 8;
1922 	} while (i < 64);
1923 
1924 	return true;
1925 }
1926 
1927 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1928 {
1929 	u64 ratios, counts;
1930 	u32 group_size;
1931 	int err, i;
1932 
1933 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1934 	if (err)
1935 		return false;
1936 
1937 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1938 
1939 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1940 	if (err)
1941 		return false;
1942 
1943 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1944 	if (err)
1945 		return false;
1946 
1947 	for (i = 0; i < 64; i += 8) {
1948 		group_size = (counts >> i) & 0xFF;
1949 		if (group_size >= size) {
1950 			*turbo_freq = (ratios >> i) & 0xFF;
1951 			return true;
1952 		}
1953 	}
1954 
1955 	return false;
1956 }
1957 
1958 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1959 {
1960 	u64 msr;
1961 	int err;
1962 
1963 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1964 	if (err)
1965 		return false;
1966 
1967 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1968 	if (err)
1969 		return false;
1970 
1971 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1972 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1973 
1974 	/* The CPU may have less than 4 cores */
1975 	if (!*turbo_freq)
1976 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1977 
1978 	return true;
1979 }
1980 
1981 static bool intel_set_max_freq_ratio(void)
1982 {
1983 	u64 base_freq, turbo_freq;
1984 	u64 turbo_ratio;
1985 
1986 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1987 		goto out;
1988 
1989 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1990 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1991 		goto out;
1992 
1993 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1994 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995 		goto out;
1996 
1997 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1998 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1999 		goto out;
2000 
2001 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2002 		goto out;
2003 
2004 	return false;
2005 
2006 out:
2007 	/*
2008 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2009 	 * but then fill all MSR's with zeroes.
2010 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2011 	 * in MSR_TURBO_RATIO_LIMIT.
2012 	 */
2013 	if (!base_freq || !turbo_freq) {
2014 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2015 		return false;
2016 	}
2017 
2018 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2019 	if (!turbo_ratio) {
2020 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2021 		return false;
2022 	}
2023 
2024 	arch_turbo_freq_ratio = turbo_ratio;
2025 	arch_set_max_freq_ratio(turbo_disabled());
2026 
2027 	return true;
2028 }
2029 
2030 static void init_counter_refs(void)
2031 {
2032 	u64 aperf, mperf;
2033 
2034 	rdmsrl(MSR_IA32_APERF, aperf);
2035 	rdmsrl(MSR_IA32_MPERF, mperf);
2036 
2037 	this_cpu_write(arch_prev_aperf, aperf);
2038 	this_cpu_write(arch_prev_mperf, mperf);
2039 }
2040 
2041 static void init_freq_invariance(bool secondary)
2042 {
2043 	bool ret = false;
2044 
2045 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2046 		return;
2047 
2048 	if (secondary) {
2049 		if (static_branch_likely(&arch_scale_freq_key)) {
2050 			init_counter_refs();
2051 		}
2052 		return;
2053 	}
2054 
2055 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2056 		ret = intel_set_max_freq_ratio();
2057 
2058 	if (ret) {
2059 		init_counter_refs();
2060 		static_branch_enable(&arch_scale_freq_key);
2061 	} else {
2062 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2063 	}
2064 }
2065 
2066 static void disable_freq_invariance_workfn(struct work_struct *work)
2067 {
2068 	static_branch_disable(&arch_scale_freq_key);
2069 }
2070 
2071 static DECLARE_WORK(disable_freq_invariance_work,
2072 		    disable_freq_invariance_workfn);
2073 
2074 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2075 
2076 void arch_scale_freq_tick(void)
2077 {
2078 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2079 	u64 aperf, mperf;
2080 	u64 acnt, mcnt;
2081 
2082 	if (!arch_scale_freq_invariant())
2083 		return;
2084 
2085 	rdmsrl(MSR_IA32_APERF, aperf);
2086 	rdmsrl(MSR_IA32_MPERF, mperf);
2087 
2088 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2089 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2090 
2091 	this_cpu_write(arch_prev_aperf, aperf);
2092 	this_cpu_write(arch_prev_mperf, mperf);
2093 
2094 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2095 		goto error;
2096 
2097 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2098 		goto error;
2099 
2100 	freq_scale = div64_u64(acnt, mcnt);
2101 	if (!freq_scale)
2102 		goto error;
2103 
2104 	if (freq_scale > SCHED_CAPACITY_SCALE)
2105 		freq_scale = SCHED_CAPACITY_SCALE;
2106 
2107 	this_cpu_write(arch_freq_scale, freq_scale);
2108 	return;
2109 
2110 error:
2111 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2112 	schedule_work(&disable_freq_invariance_work);
2113 }
2114 #else
2115 static inline void init_freq_invariance(bool secondary)
2116 {
2117 }
2118 #endif /* CONFIG_X86_64 */
2119