xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision dfe94d40)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84 
85 #ifdef CONFIG_ACPI_CPPC_LIB
86 #include <acpi/cppc_acpi.h>
87 #endif
88 
89 /* representing HT siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
92 
93 /* representing HT and core siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
96 
97 /* representing HT, core, and die siblings of each logical CPU */
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
99 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
100 
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
102 
103 /* Per CPU bogomips and other parameters */
104 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
105 EXPORT_PER_CPU_SYMBOL(cpu_info);
106 
107 /* Logical package management. We might want to allocate that dynamically */
108 unsigned int __max_logical_packages __read_mostly;
109 EXPORT_SYMBOL(__max_logical_packages);
110 static unsigned int logical_packages __read_mostly;
111 static unsigned int logical_die __read_mostly;
112 
113 /* Maximum number of SMT threads on any online core */
114 int __read_mostly __max_smt_threads = 1;
115 
116 /* Flag to indicate if a complete sched domain rebuild is required */
117 bool x86_topology_update;
118 
119 int arch_update_cpu_topology(void)
120 {
121 	int retval = x86_topology_update;
122 
123 	x86_topology_update = false;
124 	return retval;
125 }
126 
127 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
128 {
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&rtc_lock, flags);
132 	CMOS_WRITE(0xa, 0xf);
133 	spin_unlock_irqrestore(&rtc_lock, flags);
134 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
135 							start_eip >> 4;
136 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
137 							start_eip & 0xf;
138 }
139 
140 static inline void smpboot_restore_warm_reset_vector(void)
141 {
142 	unsigned long flags;
143 
144 	/*
145 	 * Paranoid:  Set warm reset code and vector here back
146 	 * to default values.
147 	 */
148 	spin_lock_irqsave(&rtc_lock, flags);
149 	CMOS_WRITE(0, 0xf);
150 	spin_unlock_irqrestore(&rtc_lock, flags);
151 
152 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
153 }
154 
155 static void init_freq_invariance(bool secondary, bool cppc_ready);
156 
157 /*
158  * Report back to the Boot Processor during boot time or to the caller processor
159  * during CPU online.
160  */
161 static void smp_callin(void)
162 {
163 	int cpuid;
164 
165 	/*
166 	 * If waken up by an INIT in an 82489DX configuration
167 	 * cpu_callout_mask guarantees we don't get here before
168 	 * an INIT_deassert IPI reaches our local APIC, so it is
169 	 * now safe to touch our local APIC.
170 	 */
171 	cpuid = smp_processor_id();
172 
173 	/*
174 	 * the boot CPU has finished the init stage and is spinning
175 	 * on callin_map until we finish. We are free to set up this
176 	 * CPU, first the APIC. (this is probably redundant on most
177 	 * boards)
178 	 */
179 	apic_ap_setup();
180 
181 	/*
182 	 * Save our processor parameters. Note: this information
183 	 * is needed for clock calibration.
184 	 */
185 	smp_store_cpu_info(cpuid);
186 
187 	/*
188 	 * The topology information must be up to date before
189 	 * calibrate_delay() and notify_cpu_starting().
190 	 */
191 	set_cpu_sibling_map(raw_smp_processor_id());
192 
193 	init_freq_invariance(true, false);
194 
195 	/*
196 	 * Get our bogomips.
197 	 * Update loops_per_jiffy in cpu_data. Previous call to
198 	 * smp_store_cpu_info() stored a value that is close but not as
199 	 * accurate as the value just calculated.
200 	 */
201 	calibrate_delay();
202 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
203 	pr_debug("Stack at about %p\n", &cpuid);
204 
205 	wmb();
206 
207 	notify_cpu_starting(cpuid);
208 
209 	/*
210 	 * Allow the master to continue.
211 	 */
212 	cpumask_set_cpu(cpuid, cpu_callin_mask);
213 }
214 
215 static int cpu0_logical_apicid;
216 static int enable_start_cpu0;
217 /*
218  * Activate a secondary processor.
219  */
220 static void notrace start_secondary(void *unused)
221 {
222 	/*
223 	 * Don't put *anything* except direct CPU state initialization
224 	 * before cpu_init(), SMP booting is too fragile that we want to
225 	 * limit the things done here to the most necessary things.
226 	 */
227 	cr4_init();
228 
229 #ifdef CONFIG_X86_32
230 	/* switch away from the initial page table */
231 	load_cr3(swapper_pg_dir);
232 	__flush_tlb_all();
233 #endif
234 	cpu_init_exception_handling();
235 	cpu_init();
236 	rcu_cpu_starting(raw_smp_processor_id());
237 	x86_cpuinit.early_percpu_clock_init();
238 	preempt_disable();
239 	smp_callin();
240 
241 	enable_start_cpu0 = 0;
242 
243 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
244 	barrier();
245 	/*
246 	 * Check TSC synchronization with the boot CPU:
247 	 */
248 	check_tsc_sync_target();
249 
250 	speculative_store_bypass_ht_init();
251 
252 	/*
253 	 * Lock vector_lock, set CPU online and bring the vector
254 	 * allocator online. Online must be set with vector_lock held
255 	 * to prevent a concurrent irq setup/teardown from seeing a
256 	 * half valid vector space.
257 	 */
258 	lock_vector_lock();
259 	set_cpu_online(smp_processor_id(), true);
260 	lapic_online();
261 	unlock_vector_lock();
262 	cpu_set_state_online(smp_processor_id());
263 	x86_platform.nmi_init();
264 
265 	/* enable local interrupts */
266 	local_irq_enable();
267 
268 	x86_cpuinit.setup_percpu_clockev();
269 
270 	wmb();
271 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
272 }
273 
274 /**
275  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
276  * @cpu:	CPU to check
277  */
278 bool topology_is_primary_thread(unsigned int cpu)
279 {
280 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
281 }
282 
283 /**
284  * topology_smt_supported - Check whether SMT is supported by the CPUs
285  */
286 bool topology_smt_supported(void)
287 {
288 	return smp_num_siblings > 1;
289 }
290 
291 /**
292  * topology_phys_to_logical_pkg - Map a physical package id to a logical
293  *
294  * Returns logical package id or -1 if not found
295  */
296 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
297 {
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		struct cpuinfo_x86 *c = &cpu_data(cpu);
302 
303 		if (c->initialized && c->phys_proc_id == phys_pkg)
304 			return c->logical_proc_id;
305 	}
306 	return -1;
307 }
308 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
309 /**
310  * topology_phys_to_logical_die - Map a physical die id to logical
311  *
312  * Returns logical die id or -1 if not found
313  */
314 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
315 {
316 	int cpu;
317 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
318 
319 	for_each_possible_cpu(cpu) {
320 		struct cpuinfo_x86 *c = &cpu_data(cpu);
321 
322 		if (c->initialized && c->cpu_die_id == die_id &&
323 		    c->phys_proc_id == proc_id)
324 			return c->logical_die_id;
325 	}
326 	return -1;
327 }
328 EXPORT_SYMBOL(topology_phys_to_logical_die);
329 
330 /**
331  * topology_update_package_map - Update the physical to logical package map
332  * @pkg:	The physical package id as retrieved via CPUID
333  * @cpu:	The cpu for which this is updated
334  */
335 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
336 {
337 	int new;
338 
339 	/* Already available somewhere? */
340 	new = topology_phys_to_logical_pkg(pkg);
341 	if (new >= 0)
342 		goto found;
343 
344 	new = logical_packages++;
345 	if (new != pkg) {
346 		pr_info("CPU %u Converting physical %u to logical package %u\n",
347 			cpu, pkg, new);
348 	}
349 found:
350 	cpu_data(cpu).logical_proc_id = new;
351 	return 0;
352 }
353 /**
354  * topology_update_die_map - Update the physical to logical die map
355  * @die:	The die id as retrieved via CPUID
356  * @cpu:	The cpu for which this is updated
357  */
358 int topology_update_die_map(unsigned int die, unsigned int cpu)
359 {
360 	int new;
361 
362 	/* Already available somewhere? */
363 	new = topology_phys_to_logical_die(die, cpu);
364 	if (new >= 0)
365 		goto found;
366 
367 	new = logical_die++;
368 	if (new != die) {
369 		pr_info("CPU %u Converting physical %u to logical die %u\n",
370 			cpu, die, new);
371 	}
372 found:
373 	cpu_data(cpu).logical_die_id = new;
374 	return 0;
375 }
376 
377 void __init smp_store_boot_cpu_info(void)
378 {
379 	int id = 0; /* CPU 0 */
380 	struct cpuinfo_x86 *c = &cpu_data(id);
381 
382 	*c = boot_cpu_data;
383 	c->cpu_index = id;
384 	topology_update_package_map(c->phys_proc_id, id);
385 	topology_update_die_map(c->cpu_die_id, id);
386 	c->initialized = true;
387 }
388 
389 /*
390  * The bootstrap kernel entry code has set these up. Save them for
391  * a given CPU
392  */
393 void smp_store_cpu_info(int id)
394 {
395 	struct cpuinfo_x86 *c = &cpu_data(id);
396 
397 	/* Copy boot_cpu_data only on the first bringup */
398 	if (!c->initialized)
399 		*c = boot_cpu_data;
400 	c->cpu_index = id;
401 	/*
402 	 * During boot time, CPU0 has this setup already. Save the info when
403 	 * bringing up AP or offlined CPU0.
404 	 */
405 	identify_secondary_cpu(c);
406 	c->initialized = true;
407 }
408 
409 static bool
410 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
411 {
412 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
413 
414 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
415 }
416 
417 static bool
418 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
419 {
420 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
421 
422 	return !WARN_ONCE(!topology_same_node(c, o),
423 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
424 		"[node: %d != %d]. Ignoring dependency.\n",
425 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
426 }
427 
428 #define link_mask(mfunc, c1, c2)					\
429 do {									\
430 	cpumask_set_cpu((c1), mfunc(c2));				\
431 	cpumask_set_cpu((c2), mfunc(c1));				\
432 } while (0)
433 
434 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
435 {
436 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
437 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
438 
439 		if (c->phys_proc_id == o->phys_proc_id &&
440 		    c->cpu_die_id == o->cpu_die_id &&
441 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
442 			if (c->cpu_core_id == o->cpu_core_id)
443 				return topology_sane(c, o, "smt");
444 
445 			if ((c->cu_id != 0xff) &&
446 			    (o->cu_id != 0xff) &&
447 			    (c->cu_id == o->cu_id))
448 				return topology_sane(c, o, "smt");
449 		}
450 
451 	} else if (c->phys_proc_id == o->phys_proc_id &&
452 		   c->cpu_die_id == o->cpu_die_id &&
453 		   c->cpu_core_id == o->cpu_core_id) {
454 		return topology_sane(c, o, "smt");
455 	}
456 
457 	return false;
458 }
459 
460 /*
461  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
462  *
463  * These are Intel CPUs that enumerate an LLC that is shared by
464  * multiple NUMA nodes. The LLC on these systems is shared for
465  * off-package data access but private to the NUMA node (half
466  * of the package) for on-package access.
467  *
468  * CPUID (the source of the information about the LLC) can only
469  * enumerate the cache as being shared *or* unshared, but not
470  * this particular configuration. The CPU in this case enumerates
471  * the cache to be shared across the entire package (spanning both
472  * NUMA nodes).
473  */
474 
475 static const struct x86_cpu_id snc_cpu[] = {
476 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
477 	{}
478 };
479 
480 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
481 {
482 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
483 
484 	/* Do not match if we do not have a valid APICID for cpu: */
485 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
486 		return false;
487 
488 	/* Do not match if LLC id does not match: */
489 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
490 		return false;
491 
492 	/*
493 	 * Allow the SNC topology without warning. Return of false
494 	 * means 'c' does not share the LLC of 'o'. This will be
495 	 * reflected to userspace.
496 	 */
497 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
498 		return false;
499 
500 	return topology_sane(c, o, "llc");
501 }
502 
503 /*
504  * Unlike the other levels, we do not enforce keeping a
505  * multicore group inside a NUMA node.  If this happens, we will
506  * discard the MC level of the topology later.
507  */
508 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
509 {
510 	if (c->phys_proc_id == o->phys_proc_id)
511 		return true;
512 	return false;
513 }
514 
515 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
516 {
517 	if ((c->phys_proc_id == o->phys_proc_id) &&
518 		(c->cpu_die_id == o->cpu_die_id))
519 		return true;
520 	return false;
521 }
522 
523 
524 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
525 static inline int x86_sched_itmt_flags(void)
526 {
527 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
528 }
529 
530 #ifdef CONFIG_SCHED_MC
531 static int x86_core_flags(void)
532 {
533 	return cpu_core_flags() | x86_sched_itmt_flags();
534 }
535 #endif
536 #ifdef CONFIG_SCHED_SMT
537 static int x86_smt_flags(void)
538 {
539 	return cpu_smt_flags() | x86_sched_itmt_flags();
540 }
541 #endif
542 #endif
543 
544 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
545 #ifdef CONFIG_SCHED_SMT
546 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
547 #endif
548 #ifdef CONFIG_SCHED_MC
549 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
550 #endif
551 	{ NULL, },
552 };
553 
554 static struct sched_domain_topology_level x86_topology[] = {
555 #ifdef CONFIG_SCHED_SMT
556 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
557 #endif
558 #ifdef CONFIG_SCHED_MC
559 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
560 #endif
561 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
562 	{ NULL, },
563 };
564 
565 /*
566  * Set if a package/die has multiple NUMA nodes inside.
567  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
568  * Sub-NUMA Clustering have this.
569  */
570 static bool x86_has_numa_in_package;
571 
572 void set_cpu_sibling_map(int cpu)
573 {
574 	bool has_smt = smp_num_siblings > 1;
575 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
576 	struct cpuinfo_x86 *c = &cpu_data(cpu);
577 	struct cpuinfo_x86 *o;
578 	int i, threads;
579 
580 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
581 
582 	if (!has_mp) {
583 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
584 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
585 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
586 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
587 		c->booted_cores = 1;
588 		return;
589 	}
590 
591 	for_each_cpu(i, cpu_sibling_setup_mask) {
592 		o = &cpu_data(i);
593 
594 		if ((i == cpu) || (has_smt && match_smt(c, o)))
595 			link_mask(topology_sibling_cpumask, cpu, i);
596 
597 		if ((i == cpu) || (has_mp && match_llc(c, o)))
598 			link_mask(cpu_llc_shared_mask, cpu, i);
599 
600 	}
601 
602 	/*
603 	 * This needs a separate iteration over the cpus because we rely on all
604 	 * topology_sibling_cpumask links to be set-up.
605 	 */
606 	for_each_cpu(i, cpu_sibling_setup_mask) {
607 		o = &cpu_data(i);
608 
609 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
610 			link_mask(topology_core_cpumask, cpu, i);
611 
612 			/*
613 			 *  Does this new cpu bringup a new core?
614 			 */
615 			if (cpumask_weight(
616 			    topology_sibling_cpumask(cpu)) == 1) {
617 				/*
618 				 * for each core in package, increment
619 				 * the booted_cores for this new cpu
620 				 */
621 				if (cpumask_first(
622 				    topology_sibling_cpumask(i)) == i)
623 					c->booted_cores++;
624 				/*
625 				 * increment the core count for all
626 				 * the other cpus in this package
627 				 */
628 				if (i != cpu)
629 					cpu_data(i).booted_cores++;
630 			} else if (i != cpu && !c->booted_cores)
631 				c->booted_cores = cpu_data(i).booted_cores;
632 		}
633 		if (match_pkg(c, o) && !topology_same_node(c, o))
634 			x86_has_numa_in_package = true;
635 
636 		if ((i == cpu) || (has_mp && match_die(c, o)))
637 			link_mask(topology_die_cpumask, cpu, i);
638 	}
639 
640 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
641 	if (threads > __max_smt_threads)
642 		__max_smt_threads = threads;
643 }
644 
645 /* maps the cpu to the sched domain representing multi-core */
646 const struct cpumask *cpu_coregroup_mask(int cpu)
647 {
648 	return cpu_llc_shared_mask(cpu);
649 }
650 
651 static void impress_friends(void)
652 {
653 	int cpu;
654 	unsigned long bogosum = 0;
655 	/*
656 	 * Allow the user to impress friends.
657 	 */
658 	pr_debug("Before bogomips\n");
659 	for_each_possible_cpu(cpu)
660 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
661 			bogosum += cpu_data(cpu).loops_per_jiffy;
662 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
663 		num_online_cpus(),
664 		bogosum/(500000/HZ),
665 		(bogosum/(5000/HZ))%100);
666 
667 	pr_debug("Before bogocount - setting activated=1\n");
668 }
669 
670 void __inquire_remote_apic(int apicid)
671 {
672 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
673 	const char * const names[] = { "ID", "VERSION", "SPIV" };
674 	int timeout;
675 	u32 status;
676 
677 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
678 
679 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
680 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
681 
682 		/*
683 		 * Wait for idle.
684 		 */
685 		status = safe_apic_wait_icr_idle();
686 		if (status)
687 			pr_cont("a previous APIC delivery may have failed\n");
688 
689 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
690 
691 		timeout = 0;
692 		do {
693 			udelay(100);
694 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
695 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
696 
697 		switch (status) {
698 		case APIC_ICR_RR_VALID:
699 			status = apic_read(APIC_RRR);
700 			pr_cont("%08x\n", status);
701 			break;
702 		default:
703 			pr_cont("failed\n");
704 		}
705 	}
706 }
707 
708 /*
709  * The Multiprocessor Specification 1.4 (1997) example code suggests
710  * that there should be a 10ms delay between the BSP asserting INIT
711  * and de-asserting INIT, when starting a remote processor.
712  * But that slows boot and resume on modern processors, which include
713  * many cores and don't require that delay.
714  *
715  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
716  * Modern processor families are quirked to remove the delay entirely.
717  */
718 #define UDELAY_10MS_DEFAULT 10000
719 
720 static unsigned int init_udelay = UINT_MAX;
721 
722 static int __init cpu_init_udelay(char *str)
723 {
724 	get_option(&str, &init_udelay);
725 
726 	return 0;
727 }
728 early_param("cpu_init_udelay", cpu_init_udelay);
729 
730 static void __init smp_quirk_init_udelay(void)
731 {
732 	/* if cmdline changed it from default, leave it alone */
733 	if (init_udelay != UINT_MAX)
734 		return;
735 
736 	/* if modern processor, use no delay */
737 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
738 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
739 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
740 		init_udelay = 0;
741 		return;
742 	}
743 	/* else, use legacy delay */
744 	init_udelay = UDELAY_10MS_DEFAULT;
745 }
746 
747 /*
748  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
749  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
750  * won't ... remember to clear down the APIC, etc later.
751  */
752 int
753 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
754 {
755 	u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
756 	unsigned long send_status, accept_status = 0;
757 	int maxlvt;
758 
759 	/* Target chip */
760 	/* Boot on the stack */
761 	/* Kick the second */
762 	apic_icr_write(APIC_DM_NMI | dm, apicid);
763 
764 	pr_debug("Waiting for send to finish...\n");
765 	send_status = safe_apic_wait_icr_idle();
766 
767 	/*
768 	 * Give the other CPU some time to accept the IPI.
769 	 */
770 	udelay(200);
771 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
772 		maxlvt = lapic_get_maxlvt();
773 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
774 			apic_write(APIC_ESR, 0);
775 		accept_status = (apic_read(APIC_ESR) & 0xEF);
776 	}
777 	pr_debug("NMI sent\n");
778 
779 	if (send_status)
780 		pr_err("APIC never delivered???\n");
781 	if (accept_status)
782 		pr_err("APIC delivery error (%lx)\n", accept_status);
783 
784 	return (send_status | accept_status);
785 }
786 
787 static int
788 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
789 {
790 	unsigned long send_status = 0, accept_status = 0;
791 	int maxlvt, num_starts, j;
792 
793 	maxlvt = lapic_get_maxlvt();
794 
795 	/*
796 	 * Be paranoid about clearing APIC errors.
797 	 */
798 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
799 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
800 			apic_write(APIC_ESR, 0);
801 		apic_read(APIC_ESR);
802 	}
803 
804 	pr_debug("Asserting INIT\n");
805 
806 	/*
807 	 * Turn INIT on target chip
808 	 */
809 	/*
810 	 * Send IPI
811 	 */
812 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
813 		       phys_apicid);
814 
815 	pr_debug("Waiting for send to finish...\n");
816 	send_status = safe_apic_wait_icr_idle();
817 
818 	udelay(init_udelay);
819 
820 	pr_debug("Deasserting INIT\n");
821 
822 	/* Target chip */
823 	/* Send IPI */
824 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
825 
826 	pr_debug("Waiting for send to finish...\n");
827 	send_status = safe_apic_wait_icr_idle();
828 
829 	mb();
830 
831 	/*
832 	 * Should we send STARTUP IPIs ?
833 	 *
834 	 * Determine this based on the APIC version.
835 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
836 	 */
837 	if (APIC_INTEGRATED(boot_cpu_apic_version))
838 		num_starts = 2;
839 	else
840 		num_starts = 0;
841 
842 	/*
843 	 * Run STARTUP IPI loop.
844 	 */
845 	pr_debug("#startup loops: %d\n", num_starts);
846 
847 	for (j = 1; j <= num_starts; j++) {
848 		pr_debug("Sending STARTUP #%d\n", j);
849 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
850 			apic_write(APIC_ESR, 0);
851 		apic_read(APIC_ESR);
852 		pr_debug("After apic_write\n");
853 
854 		/*
855 		 * STARTUP IPI
856 		 */
857 
858 		/* Target chip */
859 		/* Boot on the stack */
860 		/* Kick the second */
861 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
862 			       phys_apicid);
863 
864 		/*
865 		 * Give the other CPU some time to accept the IPI.
866 		 */
867 		if (init_udelay == 0)
868 			udelay(10);
869 		else
870 			udelay(300);
871 
872 		pr_debug("Startup point 1\n");
873 
874 		pr_debug("Waiting for send to finish...\n");
875 		send_status = safe_apic_wait_icr_idle();
876 
877 		/*
878 		 * Give the other CPU some time to accept the IPI.
879 		 */
880 		if (init_udelay == 0)
881 			udelay(10);
882 		else
883 			udelay(200);
884 
885 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
886 			apic_write(APIC_ESR, 0);
887 		accept_status = (apic_read(APIC_ESR) & 0xEF);
888 		if (send_status || accept_status)
889 			break;
890 	}
891 	pr_debug("After Startup\n");
892 
893 	if (send_status)
894 		pr_err("APIC never delivered???\n");
895 	if (accept_status)
896 		pr_err("APIC delivery error (%lx)\n", accept_status);
897 
898 	return (send_status | accept_status);
899 }
900 
901 /* reduce the number of lines printed when booting a large cpu count system */
902 static void announce_cpu(int cpu, int apicid)
903 {
904 	static int current_node = NUMA_NO_NODE;
905 	int node = early_cpu_to_node(cpu);
906 	static int width, node_width;
907 
908 	if (!width)
909 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
910 
911 	if (!node_width)
912 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
913 
914 	if (cpu == 1)
915 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
916 
917 	if (system_state < SYSTEM_RUNNING) {
918 		if (node != current_node) {
919 			if (current_node > (-1))
920 				pr_cont("\n");
921 			current_node = node;
922 
923 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
924 			       node_width - num_digits(node), " ", node);
925 		}
926 
927 		/* Add padding for the BSP */
928 		if (cpu == 1)
929 			pr_cont("%*s", width + 1, " ");
930 
931 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
932 
933 	} else
934 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
935 			node, cpu, apicid);
936 }
937 
938 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
939 {
940 	int cpu;
941 
942 	cpu = smp_processor_id();
943 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
944 		return NMI_HANDLED;
945 
946 	return NMI_DONE;
947 }
948 
949 /*
950  * Wake up AP by INIT, INIT, STARTUP sequence.
951  *
952  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
953  * boot-strap code which is not a desired behavior for waking up BSP. To
954  * void the boot-strap code, wake up CPU0 by NMI instead.
955  *
956  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
957  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
958  * We'll change this code in the future to wake up hard offlined CPU0 if
959  * real platform and request are available.
960  */
961 static int
962 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
963 	       int *cpu0_nmi_registered)
964 {
965 	int id;
966 	int boot_error;
967 
968 	preempt_disable();
969 
970 	/*
971 	 * Wake up AP by INIT, INIT, STARTUP sequence.
972 	 */
973 	if (cpu) {
974 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
975 		goto out;
976 	}
977 
978 	/*
979 	 * Wake up BSP by nmi.
980 	 *
981 	 * Register a NMI handler to help wake up CPU0.
982 	 */
983 	boot_error = register_nmi_handler(NMI_LOCAL,
984 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
985 
986 	if (!boot_error) {
987 		enable_start_cpu0 = 1;
988 		*cpu0_nmi_registered = 1;
989 		id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
990 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
991 	}
992 
993 out:
994 	preempt_enable();
995 
996 	return boot_error;
997 }
998 
999 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1000 {
1001 	int ret;
1002 
1003 	/* Just in case we booted with a single CPU. */
1004 	alternatives_enable_smp();
1005 
1006 	per_cpu(current_task, cpu) = idle;
1007 	cpu_init_stack_canary(cpu, idle);
1008 
1009 	/* Initialize the interrupt stack(s) */
1010 	ret = irq_init_percpu_irqstack(cpu);
1011 	if (ret)
1012 		return ret;
1013 
1014 #ifdef CONFIG_X86_32
1015 	/* Stack for startup_32 can be just as for start_secondary onwards */
1016 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1017 #else
1018 	initial_gs = per_cpu_offset(cpu);
1019 #endif
1020 	return 0;
1021 }
1022 
1023 /*
1024  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1025  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1026  * Returns zero if CPU booted OK, else error code from
1027  * ->wakeup_secondary_cpu.
1028  */
1029 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1030 		       int *cpu0_nmi_registered)
1031 {
1032 	/* start_ip had better be page-aligned! */
1033 	unsigned long start_ip = real_mode_header->trampoline_start;
1034 
1035 	unsigned long boot_error = 0;
1036 	unsigned long timeout;
1037 
1038 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1039 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1040 	initial_code = (unsigned long)start_secondary;
1041 	initial_stack  = idle->thread.sp;
1042 
1043 	/* Enable the espfix hack for this CPU */
1044 	init_espfix_ap(cpu);
1045 
1046 	/* So we see what's up */
1047 	announce_cpu(cpu, apicid);
1048 
1049 	/*
1050 	 * This grunge runs the startup process for
1051 	 * the targeted processor.
1052 	 */
1053 
1054 	if (x86_platform.legacy.warm_reset) {
1055 
1056 		pr_debug("Setting warm reset code and vector.\n");
1057 
1058 		smpboot_setup_warm_reset_vector(start_ip);
1059 		/*
1060 		 * Be paranoid about clearing APIC errors.
1061 		*/
1062 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1063 			apic_write(APIC_ESR, 0);
1064 			apic_read(APIC_ESR);
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * AP might wait on cpu_callout_mask in cpu_init() with
1070 	 * cpu_initialized_mask set if previous attempt to online
1071 	 * it timed-out. Clear cpu_initialized_mask so that after
1072 	 * INIT/SIPI it could start with a clean state.
1073 	 */
1074 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1075 	smp_mb();
1076 
1077 	/*
1078 	 * Wake up a CPU in difference cases:
1079 	 * - Use the method in the APIC driver if it's defined
1080 	 * Otherwise,
1081 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1082 	 */
1083 	if (apic->wakeup_secondary_cpu)
1084 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1085 	else
1086 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1087 						     cpu0_nmi_registered);
1088 
1089 	if (!boot_error) {
1090 		/*
1091 		 * Wait 10s total for first sign of life from AP
1092 		 */
1093 		boot_error = -1;
1094 		timeout = jiffies + 10*HZ;
1095 		while (time_before(jiffies, timeout)) {
1096 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1097 				/*
1098 				 * Tell AP to proceed with initialization
1099 				 */
1100 				cpumask_set_cpu(cpu, cpu_callout_mask);
1101 				boot_error = 0;
1102 				break;
1103 			}
1104 			schedule();
1105 		}
1106 	}
1107 
1108 	if (!boot_error) {
1109 		/*
1110 		 * Wait till AP completes initial initialization
1111 		 */
1112 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1113 			/*
1114 			 * Allow other tasks to run while we wait for the
1115 			 * AP to come online. This also gives a chance
1116 			 * for the MTRR work(triggered by the AP coming online)
1117 			 * to be completed in the stop machine context.
1118 			 */
1119 			schedule();
1120 		}
1121 	}
1122 
1123 	if (x86_platform.legacy.warm_reset) {
1124 		/*
1125 		 * Cleanup possible dangling ends...
1126 		 */
1127 		smpboot_restore_warm_reset_vector();
1128 	}
1129 
1130 	return boot_error;
1131 }
1132 
1133 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1134 {
1135 	int apicid = apic->cpu_present_to_apicid(cpu);
1136 	int cpu0_nmi_registered = 0;
1137 	unsigned long flags;
1138 	int err, ret = 0;
1139 
1140 	lockdep_assert_irqs_enabled();
1141 
1142 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1143 
1144 	if (apicid == BAD_APICID ||
1145 	    !physid_isset(apicid, phys_cpu_present_map) ||
1146 	    !apic->apic_id_valid(apicid)) {
1147 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1148 		return -EINVAL;
1149 	}
1150 
1151 	/*
1152 	 * Already booted CPU?
1153 	 */
1154 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1155 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1156 		return -ENOSYS;
1157 	}
1158 
1159 	/*
1160 	 * Save current MTRR state in case it was changed since early boot
1161 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1162 	 */
1163 	mtrr_save_state();
1164 
1165 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1166 	err = cpu_check_up_prepare(cpu);
1167 	if (err && err != -EBUSY)
1168 		return err;
1169 
1170 	/* the FPU context is blank, nobody can own it */
1171 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1172 
1173 	err = common_cpu_up(cpu, tidle);
1174 	if (err)
1175 		return err;
1176 
1177 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1178 	if (err) {
1179 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1180 		ret = -EIO;
1181 		goto unreg_nmi;
1182 	}
1183 
1184 	/*
1185 	 * Check TSC synchronization with the AP (keep irqs disabled
1186 	 * while doing so):
1187 	 */
1188 	local_irq_save(flags);
1189 	check_tsc_sync_source(cpu);
1190 	local_irq_restore(flags);
1191 
1192 	while (!cpu_online(cpu)) {
1193 		cpu_relax();
1194 		touch_nmi_watchdog();
1195 	}
1196 
1197 unreg_nmi:
1198 	/*
1199 	 * Clean up the nmi handler. Do this after the callin and callout sync
1200 	 * to avoid impact of possible long unregister time.
1201 	 */
1202 	if (cpu0_nmi_registered)
1203 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1204 
1205 	return ret;
1206 }
1207 
1208 /**
1209  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1210  */
1211 void arch_disable_smp_support(void)
1212 {
1213 	disable_ioapic_support();
1214 }
1215 
1216 /*
1217  * Fall back to non SMP mode after errors.
1218  *
1219  * RED-PEN audit/test this more. I bet there is more state messed up here.
1220  */
1221 static __init void disable_smp(void)
1222 {
1223 	pr_info("SMP disabled\n");
1224 
1225 	disable_ioapic_support();
1226 
1227 	init_cpu_present(cpumask_of(0));
1228 	init_cpu_possible(cpumask_of(0));
1229 
1230 	if (smp_found_config)
1231 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1232 	else
1233 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1234 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1235 	cpumask_set_cpu(0, topology_core_cpumask(0));
1236 	cpumask_set_cpu(0, topology_die_cpumask(0));
1237 }
1238 
1239 /*
1240  * Various sanity checks.
1241  */
1242 static void __init smp_sanity_check(void)
1243 {
1244 	preempt_disable();
1245 
1246 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1247 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1248 		unsigned int cpu;
1249 		unsigned nr;
1250 
1251 		pr_warn("More than 8 CPUs detected - skipping them\n"
1252 			"Use CONFIG_X86_BIGSMP\n");
1253 
1254 		nr = 0;
1255 		for_each_present_cpu(cpu) {
1256 			if (nr >= 8)
1257 				set_cpu_present(cpu, false);
1258 			nr++;
1259 		}
1260 
1261 		nr = 0;
1262 		for_each_possible_cpu(cpu) {
1263 			if (nr >= 8)
1264 				set_cpu_possible(cpu, false);
1265 			nr++;
1266 		}
1267 
1268 		nr_cpu_ids = 8;
1269 	}
1270 #endif
1271 
1272 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1273 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1274 			hard_smp_processor_id());
1275 
1276 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1277 	}
1278 
1279 	/*
1280 	 * Should not be necessary because the MP table should list the boot
1281 	 * CPU too, but we do it for the sake of robustness anyway.
1282 	 */
1283 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1284 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1285 			  boot_cpu_physical_apicid);
1286 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1287 	}
1288 	preempt_enable();
1289 }
1290 
1291 static void __init smp_cpu_index_default(void)
1292 {
1293 	int i;
1294 	struct cpuinfo_x86 *c;
1295 
1296 	for_each_possible_cpu(i) {
1297 		c = &cpu_data(i);
1298 		/* mark all to hotplug */
1299 		c->cpu_index = nr_cpu_ids;
1300 	}
1301 }
1302 
1303 static void __init smp_get_logical_apicid(void)
1304 {
1305 	if (x2apic_mode)
1306 		cpu0_logical_apicid = apic_read(APIC_LDR);
1307 	else
1308 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1309 }
1310 
1311 /*
1312  * Prepare for SMP bootup.
1313  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1314  *            for common interface support.
1315  */
1316 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1317 {
1318 	unsigned int i;
1319 
1320 	smp_cpu_index_default();
1321 
1322 	/*
1323 	 * Setup boot CPU information
1324 	 */
1325 	smp_store_boot_cpu_info(); /* Final full version of the data */
1326 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1327 	mb();
1328 
1329 	for_each_possible_cpu(i) {
1330 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1331 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1332 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1333 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1334 	}
1335 
1336 	/*
1337 	 * Set 'default' x86 topology, this matches default_topology() in that
1338 	 * it has NUMA nodes as a topology level. See also
1339 	 * native_smp_cpus_done().
1340 	 *
1341 	 * Must be done before set_cpus_sibling_map() is ran.
1342 	 */
1343 	set_sched_topology(x86_topology);
1344 
1345 	set_cpu_sibling_map(0);
1346 	init_freq_invariance(false, false);
1347 	smp_sanity_check();
1348 
1349 	switch (apic_intr_mode) {
1350 	case APIC_PIC:
1351 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1352 		disable_smp();
1353 		return;
1354 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1355 		disable_smp();
1356 		/* Setup local timer */
1357 		x86_init.timers.setup_percpu_clockev();
1358 		return;
1359 	case APIC_VIRTUAL_WIRE:
1360 	case APIC_SYMMETRIC_IO:
1361 		break;
1362 	}
1363 
1364 	/* Setup local timer */
1365 	x86_init.timers.setup_percpu_clockev();
1366 
1367 	smp_get_logical_apicid();
1368 
1369 	pr_info("CPU0: ");
1370 	print_cpu_info(&cpu_data(0));
1371 
1372 	uv_system_init();
1373 
1374 	set_mtrr_aps_delayed_init();
1375 
1376 	smp_quirk_init_udelay();
1377 
1378 	speculative_store_bypass_ht_init();
1379 }
1380 
1381 void arch_thaw_secondary_cpus_begin(void)
1382 {
1383 	set_mtrr_aps_delayed_init();
1384 }
1385 
1386 void arch_thaw_secondary_cpus_end(void)
1387 {
1388 	mtrr_aps_init();
1389 }
1390 
1391 /*
1392  * Early setup to make printk work.
1393  */
1394 void __init native_smp_prepare_boot_cpu(void)
1395 {
1396 	int me = smp_processor_id();
1397 	switch_to_new_gdt(me);
1398 	/* already set me in cpu_online_mask in boot_cpu_init() */
1399 	cpumask_set_cpu(me, cpu_callout_mask);
1400 	cpu_set_state_online(me);
1401 	native_pv_lock_init();
1402 }
1403 
1404 void __init calculate_max_logical_packages(void)
1405 {
1406 	int ncpus;
1407 
1408 	/*
1409 	 * Today neither Intel nor AMD support heterogenous systems so
1410 	 * extrapolate the boot cpu's data to all packages.
1411 	 */
1412 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1413 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1414 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1415 }
1416 
1417 void __init native_smp_cpus_done(unsigned int max_cpus)
1418 {
1419 	pr_debug("Boot done\n");
1420 
1421 	calculate_max_logical_packages();
1422 
1423 	if (x86_has_numa_in_package)
1424 		set_sched_topology(x86_numa_in_package_topology);
1425 
1426 	nmi_selftest();
1427 	impress_friends();
1428 	mtrr_aps_init();
1429 }
1430 
1431 static int __initdata setup_possible_cpus = -1;
1432 static int __init _setup_possible_cpus(char *str)
1433 {
1434 	get_option(&str, &setup_possible_cpus);
1435 	return 0;
1436 }
1437 early_param("possible_cpus", _setup_possible_cpus);
1438 
1439 
1440 /*
1441  * cpu_possible_mask should be static, it cannot change as cpu's
1442  * are onlined, or offlined. The reason is per-cpu data-structures
1443  * are allocated by some modules at init time, and don't expect to
1444  * do this dynamically on cpu arrival/departure.
1445  * cpu_present_mask on the other hand can change dynamically.
1446  * In case when cpu_hotplug is not compiled, then we resort to current
1447  * behaviour, which is cpu_possible == cpu_present.
1448  * - Ashok Raj
1449  *
1450  * Three ways to find out the number of additional hotplug CPUs:
1451  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1452  * - The user can overwrite it with possible_cpus=NUM
1453  * - Otherwise don't reserve additional CPUs.
1454  * We do this because additional CPUs waste a lot of memory.
1455  * -AK
1456  */
1457 __init void prefill_possible_map(void)
1458 {
1459 	int i, possible;
1460 
1461 	/* No boot processor was found in mptable or ACPI MADT */
1462 	if (!num_processors) {
1463 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1464 			int apicid = boot_cpu_physical_apicid;
1465 			int cpu = hard_smp_processor_id();
1466 
1467 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1468 
1469 			/* Make sure boot cpu is enumerated */
1470 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1471 			    apic->apic_id_valid(apicid))
1472 				generic_processor_info(apicid, boot_cpu_apic_version);
1473 		}
1474 
1475 		if (!num_processors)
1476 			num_processors = 1;
1477 	}
1478 
1479 	i = setup_max_cpus ?: 1;
1480 	if (setup_possible_cpus == -1) {
1481 		possible = num_processors;
1482 #ifdef CONFIG_HOTPLUG_CPU
1483 		if (setup_max_cpus)
1484 			possible += disabled_cpus;
1485 #else
1486 		if (possible > i)
1487 			possible = i;
1488 #endif
1489 	} else
1490 		possible = setup_possible_cpus;
1491 
1492 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1493 
1494 	/* nr_cpu_ids could be reduced via nr_cpus= */
1495 	if (possible > nr_cpu_ids) {
1496 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1497 			possible, nr_cpu_ids);
1498 		possible = nr_cpu_ids;
1499 	}
1500 
1501 #ifdef CONFIG_HOTPLUG_CPU
1502 	if (!setup_max_cpus)
1503 #endif
1504 	if (possible > i) {
1505 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1506 			possible, setup_max_cpus);
1507 		possible = i;
1508 	}
1509 
1510 	nr_cpu_ids = possible;
1511 
1512 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1513 		possible, max_t(int, possible - num_processors, 0));
1514 
1515 	reset_cpu_possible_mask();
1516 
1517 	for (i = 0; i < possible; i++)
1518 		set_cpu_possible(i, true);
1519 }
1520 
1521 #ifdef CONFIG_HOTPLUG_CPU
1522 
1523 /* Recompute SMT state for all CPUs on offline */
1524 static void recompute_smt_state(void)
1525 {
1526 	int max_threads, cpu;
1527 
1528 	max_threads = 0;
1529 	for_each_online_cpu (cpu) {
1530 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1531 
1532 		if (threads > max_threads)
1533 			max_threads = threads;
1534 	}
1535 	__max_smt_threads = max_threads;
1536 }
1537 
1538 static void remove_siblinginfo(int cpu)
1539 {
1540 	int sibling;
1541 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1542 
1543 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1544 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1545 		/*/
1546 		 * last thread sibling in this cpu core going down
1547 		 */
1548 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1549 			cpu_data(sibling).booted_cores--;
1550 	}
1551 
1552 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1553 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1554 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1555 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1556 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1557 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1558 	cpumask_clear(cpu_llc_shared_mask(cpu));
1559 	cpumask_clear(topology_sibling_cpumask(cpu));
1560 	cpumask_clear(topology_core_cpumask(cpu));
1561 	cpumask_clear(topology_die_cpumask(cpu));
1562 	c->cpu_core_id = 0;
1563 	c->booted_cores = 0;
1564 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1565 	recompute_smt_state();
1566 }
1567 
1568 static void remove_cpu_from_maps(int cpu)
1569 {
1570 	set_cpu_online(cpu, false);
1571 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1572 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1573 	/* was set by cpu_init() */
1574 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1575 	numa_remove_cpu(cpu);
1576 }
1577 
1578 void cpu_disable_common(void)
1579 {
1580 	int cpu = smp_processor_id();
1581 
1582 	remove_siblinginfo(cpu);
1583 
1584 	/* It's now safe to remove this processor from the online map */
1585 	lock_vector_lock();
1586 	remove_cpu_from_maps(cpu);
1587 	unlock_vector_lock();
1588 	fixup_irqs();
1589 	lapic_offline();
1590 }
1591 
1592 int native_cpu_disable(void)
1593 {
1594 	int ret;
1595 
1596 	ret = lapic_can_unplug_cpu();
1597 	if (ret)
1598 		return ret;
1599 
1600 	cpu_disable_common();
1601 
1602         /*
1603          * Disable the local APIC. Otherwise IPI broadcasts will reach
1604          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1605          * messages.
1606          *
1607          * Disabling the APIC must happen after cpu_disable_common()
1608          * which invokes fixup_irqs().
1609          *
1610          * Disabling the APIC preserves already set bits in IRR, but
1611          * an interrupt arriving after disabling the local APIC does not
1612          * set the corresponding IRR bit.
1613          *
1614          * fixup_irqs() scans IRR for set bits so it can raise a not
1615          * yet handled interrupt on the new destination CPU via an IPI
1616          * but obviously it can't do so for IRR bits which are not set.
1617          * IOW, interrupts arriving after disabling the local APIC will
1618          * be lost.
1619          */
1620 	apic_soft_disable();
1621 
1622 	return 0;
1623 }
1624 
1625 int common_cpu_die(unsigned int cpu)
1626 {
1627 	int ret = 0;
1628 
1629 	/* We don't do anything here: idle task is faking death itself. */
1630 
1631 	/* They ack this in play_dead() by setting CPU_DEAD */
1632 	if (cpu_wait_death(cpu, 5)) {
1633 		if (system_state == SYSTEM_RUNNING)
1634 			pr_info("CPU %u is now offline\n", cpu);
1635 	} else {
1636 		pr_err("CPU %u didn't die...\n", cpu);
1637 		ret = -1;
1638 	}
1639 
1640 	return ret;
1641 }
1642 
1643 void native_cpu_die(unsigned int cpu)
1644 {
1645 	common_cpu_die(cpu);
1646 }
1647 
1648 void play_dead_common(void)
1649 {
1650 	idle_task_exit();
1651 
1652 	/* Ack it */
1653 	(void)cpu_report_death();
1654 
1655 	/*
1656 	 * With physical CPU hotplug, we should halt the cpu
1657 	 */
1658 	local_irq_disable();
1659 }
1660 
1661 static bool wakeup_cpu0(void)
1662 {
1663 	if (smp_processor_id() == 0 && enable_start_cpu0)
1664 		return true;
1665 
1666 	return false;
1667 }
1668 
1669 /*
1670  * We need to flush the caches before going to sleep, lest we have
1671  * dirty data in our caches when we come back up.
1672  */
1673 static inline void mwait_play_dead(void)
1674 {
1675 	unsigned int eax, ebx, ecx, edx;
1676 	unsigned int highest_cstate = 0;
1677 	unsigned int highest_subcstate = 0;
1678 	void *mwait_ptr;
1679 	int i;
1680 
1681 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1682 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1683 		return;
1684 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1685 		return;
1686 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1687 		return;
1688 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1689 		return;
1690 
1691 	eax = CPUID_MWAIT_LEAF;
1692 	ecx = 0;
1693 	native_cpuid(&eax, &ebx, &ecx, &edx);
1694 
1695 	/*
1696 	 * eax will be 0 if EDX enumeration is not valid.
1697 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1698 	 */
1699 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1700 		eax = 0;
1701 	} else {
1702 		edx >>= MWAIT_SUBSTATE_SIZE;
1703 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1704 			if (edx & MWAIT_SUBSTATE_MASK) {
1705 				highest_cstate = i;
1706 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1707 			}
1708 		}
1709 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1710 			(highest_subcstate - 1);
1711 	}
1712 
1713 	/*
1714 	 * This should be a memory location in a cache line which is
1715 	 * unlikely to be touched by other processors.  The actual
1716 	 * content is immaterial as it is not actually modified in any way.
1717 	 */
1718 	mwait_ptr = &current_thread_info()->flags;
1719 
1720 	wbinvd();
1721 
1722 	while (1) {
1723 		/*
1724 		 * The CLFLUSH is a workaround for erratum AAI65 for
1725 		 * the Xeon 7400 series.  It's not clear it is actually
1726 		 * needed, but it should be harmless in either case.
1727 		 * The WBINVD is insufficient due to the spurious-wakeup
1728 		 * case where we return around the loop.
1729 		 */
1730 		mb();
1731 		clflush(mwait_ptr);
1732 		mb();
1733 		__monitor(mwait_ptr, 0, 0);
1734 		mb();
1735 		__mwait(eax, 0);
1736 		/*
1737 		 * If NMI wants to wake up CPU0, start CPU0.
1738 		 */
1739 		if (wakeup_cpu0())
1740 			start_cpu0();
1741 	}
1742 }
1743 
1744 void hlt_play_dead(void)
1745 {
1746 	if (__this_cpu_read(cpu_info.x86) >= 4)
1747 		wbinvd();
1748 
1749 	while (1) {
1750 		native_halt();
1751 		/*
1752 		 * If NMI wants to wake up CPU0, start CPU0.
1753 		 */
1754 		if (wakeup_cpu0())
1755 			start_cpu0();
1756 	}
1757 }
1758 
1759 void native_play_dead(void)
1760 {
1761 	play_dead_common();
1762 	tboot_shutdown(TB_SHUTDOWN_WFS);
1763 
1764 	mwait_play_dead();	/* Only returns on failure */
1765 	if (cpuidle_play_dead())
1766 		hlt_play_dead();
1767 }
1768 
1769 #else /* ... !CONFIG_HOTPLUG_CPU */
1770 int native_cpu_disable(void)
1771 {
1772 	return -ENOSYS;
1773 }
1774 
1775 void native_cpu_die(unsigned int cpu)
1776 {
1777 	/* We said "no" in __cpu_disable */
1778 	BUG();
1779 }
1780 
1781 void native_play_dead(void)
1782 {
1783 	BUG();
1784 }
1785 
1786 #endif
1787 
1788 #ifdef CONFIG_X86_64
1789 /*
1790  * APERF/MPERF frequency ratio computation.
1791  *
1792  * The scheduler wants to do frequency invariant accounting and needs a <1
1793  * ratio to account for the 'current' frequency, corresponding to
1794  * freq_curr / freq_max.
1795  *
1796  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1797  * our P-state setting is little more than a request/hint, we need to observe
1798  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1799  * interval after discarding idle time. This is given by:
1800  *
1801  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1802  *
1803  * where freq_base is the max non-turbo P-state.
1804  *
1805  * The freq_max term has to be set to a somewhat arbitrary value, because we
1806  * can't know which turbo states will be available at a given point in time:
1807  * it all depends on the thermal headroom of the entire package. We set it to
1808  * the turbo level with 4 cores active.
1809  *
1810  * Benchmarks show that's a good compromise between the 1C turbo ratio
1811  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1812  * which would ignore the entire turbo range (a conspicuous part, making
1813  * freq_curr/freq_max always maxed out).
1814  *
1815  * An exception to the heuristic above is the Atom uarch, where we choose the
1816  * highest turbo level for freq_max since Atom's are generally oriented towards
1817  * power efficiency.
1818  *
1819  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1820  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1821  */
1822 
1823 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1824 
1825 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1826 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1827 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1828 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1829 
1830 void arch_set_max_freq_ratio(bool turbo_disabled)
1831 {
1832 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1833 					arch_turbo_freq_ratio;
1834 }
1835 
1836 static bool turbo_disabled(void)
1837 {
1838 	u64 misc_en;
1839 	int err;
1840 
1841 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1842 	if (err)
1843 		return false;
1844 
1845 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1846 }
1847 
1848 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1849 {
1850 	int err;
1851 
1852 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1853 	if (err)
1854 		return false;
1855 
1856 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1857 	if (err)
1858 		return false;
1859 
1860 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1861 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1862 
1863 	return true;
1864 }
1865 
1866 #include <asm/cpu_device_id.h>
1867 #include <asm/intel-family.h>
1868 
1869 #define X86_MATCH(model)					\
1870 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1871 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1872 
1873 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1874 	X86_MATCH(XEON_PHI_KNL),
1875 	X86_MATCH(XEON_PHI_KNM),
1876 	{}
1877 };
1878 
1879 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1880 	X86_MATCH(SKYLAKE_X),
1881 	{}
1882 };
1883 
1884 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1885 	X86_MATCH(ATOM_GOLDMONT),
1886 	X86_MATCH(ATOM_GOLDMONT_D),
1887 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1888 	{}
1889 };
1890 
1891 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1892 				int num_delta_fratio)
1893 {
1894 	int fratio, delta_fratio, found;
1895 	int err, i;
1896 	u64 msr;
1897 
1898 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1899 	if (err)
1900 		return false;
1901 
1902 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1903 
1904 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1905 	if (err)
1906 		return false;
1907 
1908 	fratio = (msr >> 8) & 0xFF;
1909 	i = 16;
1910 	found = 0;
1911 	do {
1912 		if (found >= num_delta_fratio) {
1913 			*turbo_freq = fratio;
1914 			return true;
1915 		}
1916 
1917 		delta_fratio = (msr >> (i + 5)) & 0x7;
1918 
1919 		if (delta_fratio) {
1920 			found += 1;
1921 			fratio -= delta_fratio;
1922 		}
1923 
1924 		i += 8;
1925 	} while (i < 64);
1926 
1927 	return true;
1928 }
1929 
1930 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1931 {
1932 	u64 ratios, counts;
1933 	u32 group_size;
1934 	int err, i;
1935 
1936 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1937 	if (err)
1938 		return false;
1939 
1940 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1941 
1942 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1943 	if (err)
1944 		return false;
1945 
1946 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1947 	if (err)
1948 		return false;
1949 
1950 	for (i = 0; i < 64; i += 8) {
1951 		group_size = (counts >> i) & 0xFF;
1952 		if (group_size >= size) {
1953 			*turbo_freq = (ratios >> i) & 0xFF;
1954 			return true;
1955 		}
1956 	}
1957 
1958 	return false;
1959 }
1960 
1961 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1962 {
1963 	u64 msr;
1964 	int err;
1965 
1966 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1967 	if (err)
1968 		return false;
1969 
1970 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1971 	if (err)
1972 		return false;
1973 
1974 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1975 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1976 
1977 	/* The CPU may have less than 4 cores */
1978 	if (!*turbo_freq)
1979 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1980 
1981 	return true;
1982 }
1983 
1984 static bool intel_set_max_freq_ratio(void)
1985 {
1986 	u64 base_freq, turbo_freq;
1987 	u64 turbo_ratio;
1988 
1989 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1990 		goto out;
1991 
1992 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1993 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1994 		goto out;
1995 
1996 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1997 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1998 		goto out;
1999 
2000 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2001 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2002 		goto out;
2003 
2004 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2005 		goto out;
2006 
2007 	return false;
2008 
2009 out:
2010 	/*
2011 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2012 	 * but then fill all MSR's with zeroes.
2013 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2014 	 * in MSR_TURBO_RATIO_LIMIT.
2015 	 */
2016 	if (!base_freq || !turbo_freq) {
2017 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2018 		return false;
2019 	}
2020 
2021 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2022 	if (!turbo_ratio) {
2023 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2024 		return false;
2025 	}
2026 
2027 	arch_turbo_freq_ratio = turbo_ratio;
2028 	arch_set_max_freq_ratio(turbo_disabled());
2029 
2030 	return true;
2031 }
2032 
2033 #ifdef CONFIG_ACPI_CPPC_LIB
2034 static bool amd_set_max_freq_ratio(void)
2035 {
2036 	struct cppc_perf_caps perf_caps;
2037 	u64 highest_perf, nominal_perf;
2038 	u64 perf_ratio;
2039 	int rc;
2040 
2041 	rc = cppc_get_perf_caps(0, &perf_caps);
2042 	if (rc) {
2043 		pr_debug("Could not retrieve perf counters (%d)\n", rc);
2044 		return false;
2045 	}
2046 
2047 	highest_perf = perf_caps.highest_perf;
2048 	nominal_perf = perf_caps.nominal_perf;
2049 
2050 	if (!highest_perf || !nominal_perf) {
2051 		pr_debug("Could not retrieve highest or nominal performance\n");
2052 		return false;
2053 	}
2054 
2055 	perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2056 	/* midpoint between max_boost and max_P */
2057 	perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2058 	if (!perf_ratio) {
2059 		pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2060 		return false;
2061 	}
2062 
2063 	arch_turbo_freq_ratio = perf_ratio;
2064 	arch_set_max_freq_ratio(false);
2065 
2066 	return true;
2067 }
2068 #else
2069 static bool amd_set_max_freq_ratio(void)
2070 {
2071 	return false;
2072 }
2073 #endif
2074 
2075 static void init_counter_refs(void)
2076 {
2077 	u64 aperf, mperf;
2078 
2079 	rdmsrl(MSR_IA32_APERF, aperf);
2080 	rdmsrl(MSR_IA32_MPERF, mperf);
2081 
2082 	this_cpu_write(arch_prev_aperf, aperf);
2083 	this_cpu_write(arch_prev_mperf, mperf);
2084 }
2085 
2086 static void init_freq_invariance(bool secondary, bool cppc_ready)
2087 {
2088 	bool ret = false;
2089 
2090 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2091 		return;
2092 
2093 	if (secondary) {
2094 		if (static_branch_likely(&arch_scale_freq_key)) {
2095 			init_counter_refs();
2096 		}
2097 		return;
2098 	}
2099 
2100 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2101 		ret = intel_set_max_freq_ratio();
2102 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2103 		if (!cppc_ready) {
2104 			return;
2105 		}
2106 		ret = amd_set_max_freq_ratio();
2107 	}
2108 
2109 	if (ret) {
2110 		init_counter_refs();
2111 		static_branch_enable(&arch_scale_freq_key);
2112 		pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2113 	} else {
2114 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2115 	}
2116 }
2117 
2118 #ifdef CONFIG_ACPI_CPPC_LIB
2119 static DEFINE_MUTEX(freq_invariance_lock);
2120 
2121 void init_freq_invariance_cppc(void)
2122 {
2123 	static bool secondary;
2124 
2125 	mutex_lock(&freq_invariance_lock);
2126 
2127 	init_freq_invariance(secondary, true);
2128 	secondary = true;
2129 
2130 	mutex_unlock(&freq_invariance_lock);
2131 }
2132 #endif
2133 
2134 static void disable_freq_invariance_workfn(struct work_struct *work)
2135 {
2136 	static_branch_disable(&arch_scale_freq_key);
2137 }
2138 
2139 static DECLARE_WORK(disable_freq_invariance_work,
2140 		    disable_freq_invariance_workfn);
2141 
2142 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2143 
2144 void arch_scale_freq_tick(void)
2145 {
2146 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2147 	u64 aperf, mperf;
2148 	u64 acnt, mcnt;
2149 
2150 	if (!arch_scale_freq_invariant())
2151 		return;
2152 
2153 	rdmsrl(MSR_IA32_APERF, aperf);
2154 	rdmsrl(MSR_IA32_MPERF, mperf);
2155 
2156 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2157 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2158 
2159 	this_cpu_write(arch_prev_aperf, aperf);
2160 	this_cpu_write(arch_prev_mperf, mperf);
2161 
2162 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2163 		goto error;
2164 
2165 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2166 		goto error;
2167 
2168 	freq_scale = div64_u64(acnt, mcnt);
2169 	if (!freq_scale)
2170 		goto error;
2171 
2172 	if (freq_scale > SCHED_CAPACITY_SCALE)
2173 		freq_scale = SCHED_CAPACITY_SCALE;
2174 
2175 	this_cpu_write(arch_freq_scale, freq_scale);
2176 	return;
2177 
2178 error:
2179 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2180 	schedule_work(&disable_freq_invariance_work);
2181 }
2182 #else
2183 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2184 {
2185 }
2186 #endif /* CONFIG_X86_64 */
2187