xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60 
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85 
86 #ifdef CONFIG_ACPI_CPPC_LIB
87 #include <acpi/cppc_acpi.h>
88 #endif
89 
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 
98 /* representing HT, core, and die siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101 
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* Logical package management. We might want to allocate that dynamically */
109 unsigned int __max_logical_packages __read_mostly;
110 EXPORT_SYMBOL(__max_logical_packages);
111 static unsigned int logical_packages __read_mostly;
112 static unsigned int logical_die __read_mostly;
113 
114 /* Maximum number of SMT threads on any online core */
115 int __read_mostly __max_smt_threads = 1;
116 
117 /* Flag to indicate if a complete sched domain rebuild is required */
118 bool x86_topology_update;
119 
120 int arch_update_cpu_topology(void)
121 {
122 	int retval = x86_topology_update;
123 
124 	x86_topology_update = false;
125 	return retval;
126 }
127 
128 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129 {
130 	unsigned long flags;
131 
132 	spin_lock_irqsave(&rtc_lock, flags);
133 	CMOS_WRITE(0xa, 0xf);
134 	spin_unlock_irqrestore(&rtc_lock, flags);
135 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 							start_eip >> 4;
137 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 							start_eip & 0xf;
139 }
140 
141 static inline void smpboot_restore_warm_reset_vector(void)
142 {
143 	unsigned long flags;
144 
145 	/*
146 	 * Paranoid:  Set warm reset code and vector here back
147 	 * to default values.
148 	 */
149 	spin_lock_irqsave(&rtc_lock, flags);
150 	CMOS_WRITE(0, 0xf);
151 	spin_unlock_irqrestore(&rtc_lock, flags);
152 
153 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154 }
155 
156 static void init_freq_invariance(bool secondary, bool cppc_ready);
157 
158 /*
159  * Report back to the Boot Processor during boot time or to the caller processor
160  * during CPU online.
161  */
162 static void smp_callin(void)
163 {
164 	int cpuid;
165 
166 	/*
167 	 * If waken up by an INIT in an 82489DX configuration
168 	 * cpu_callout_mask guarantees we don't get here before
169 	 * an INIT_deassert IPI reaches our local APIC, so it is
170 	 * now safe to touch our local APIC.
171 	 */
172 	cpuid = smp_processor_id();
173 
174 	/*
175 	 * the boot CPU has finished the init stage and is spinning
176 	 * on callin_map until we finish. We are free to set up this
177 	 * CPU, first the APIC. (this is probably redundant on most
178 	 * boards)
179 	 */
180 	apic_ap_setup();
181 
182 	/*
183 	 * Save our processor parameters. Note: this information
184 	 * is needed for clock calibration.
185 	 */
186 	smp_store_cpu_info(cpuid);
187 
188 	/*
189 	 * The topology information must be up to date before
190 	 * calibrate_delay() and notify_cpu_starting().
191 	 */
192 	set_cpu_sibling_map(raw_smp_processor_id());
193 
194 	init_freq_invariance(true, false);
195 
196 	/*
197 	 * Get our bogomips.
198 	 * Update loops_per_jiffy in cpu_data. Previous call to
199 	 * smp_store_cpu_info() stored a value that is close but not as
200 	 * accurate as the value just calculated.
201 	 */
202 	calibrate_delay();
203 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
204 	pr_debug("Stack at about %p\n", &cpuid);
205 
206 	wmb();
207 
208 	notify_cpu_starting(cpuid);
209 
210 	/*
211 	 * Allow the master to continue.
212 	 */
213 	cpumask_set_cpu(cpuid, cpu_callin_mask);
214 }
215 
216 static int cpu0_logical_apicid;
217 static int enable_start_cpu0;
218 /*
219  * Activate a secondary processor.
220  */
221 static void notrace start_secondary(void *unused)
222 {
223 	/*
224 	 * Don't put *anything* except direct CPU state initialization
225 	 * before cpu_init(), SMP booting is too fragile that we want to
226 	 * limit the things done here to the most necessary things.
227 	 */
228 	cr4_init();
229 
230 #ifdef CONFIG_X86_32
231 	/* switch away from the initial page table */
232 	load_cr3(swapper_pg_dir);
233 	__flush_tlb_all();
234 #endif
235 	cpu_init_exception_handling();
236 	cpu_init();
237 	rcu_cpu_starting(raw_smp_processor_id());
238 	x86_cpuinit.early_percpu_clock_init();
239 	preempt_disable();
240 	smp_callin();
241 
242 	enable_start_cpu0 = 0;
243 
244 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
245 	barrier();
246 	/*
247 	 * Check TSC synchronization with the boot CPU:
248 	 */
249 	check_tsc_sync_target();
250 
251 	speculative_store_bypass_ht_init();
252 
253 	/*
254 	 * Lock vector_lock, set CPU online and bring the vector
255 	 * allocator online. Online must be set with vector_lock held
256 	 * to prevent a concurrent irq setup/teardown from seeing a
257 	 * half valid vector space.
258 	 */
259 	lock_vector_lock();
260 	set_cpu_online(smp_processor_id(), true);
261 	lapic_online();
262 	unlock_vector_lock();
263 	cpu_set_state_online(smp_processor_id());
264 	x86_platform.nmi_init();
265 
266 	/* enable local interrupts */
267 	local_irq_enable();
268 
269 	x86_cpuinit.setup_percpu_clockev();
270 
271 	wmb();
272 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 }
274 
275 /**
276  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
277  * @cpu:	CPU to check
278  */
279 bool topology_is_primary_thread(unsigned int cpu)
280 {
281 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
282 }
283 
284 /**
285  * topology_smt_supported - Check whether SMT is supported by the CPUs
286  */
287 bool topology_smt_supported(void)
288 {
289 	return smp_num_siblings > 1;
290 }
291 
292 /**
293  * topology_phys_to_logical_pkg - Map a physical package id to a logical
294  *
295  * Returns logical package id or -1 if not found
296  */
297 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
298 {
299 	int cpu;
300 
301 	for_each_possible_cpu(cpu) {
302 		struct cpuinfo_x86 *c = &cpu_data(cpu);
303 
304 		if (c->initialized && c->phys_proc_id == phys_pkg)
305 			return c->logical_proc_id;
306 	}
307 	return -1;
308 }
309 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
310 /**
311  * topology_phys_to_logical_die - Map a physical die id to logical
312  *
313  * Returns logical die id or -1 if not found
314  */
315 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
316 {
317 	int cpu;
318 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
319 
320 	for_each_possible_cpu(cpu) {
321 		struct cpuinfo_x86 *c = &cpu_data(cpu);
322 
323 		if (c->initialized && c->cpu_die_id == die_id &&
324 		    c->phys_proc_id == proc_id)
325 			return c->logical_die_id;
326 	}
327 	return -1;
328 }
329 EXPORT_SYMBOL(topology_phys_to_logical_die);
330 
331 /**
332  * topology_update_package_map - Update the physical to logical package map
333  * @pkg:	The physical package id as retrieved via CPUID
334  * @cpu:	The cpu for which this is updated
335  */
336 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
337 {
338 	int new;
339 
340 	/* Already available somewhere? */
341 	new = topology_phys_to_logical_pkg(pkg);
342 	if (new >= 0)
343 		goto found;
344 
345 	new = logical_packages++;
346 	if (new != pkg) {
347 		pr_info("CPU %u Converting physical %u to logical package %u\n",
348 			cpu, pkg, new);
349 	}
350 found:
351 	cpu_data(cpu).logical_proc_id = new;
352 	return 0;
353 }
354 /**
355  * topology_update_die_map - Update the physical to logical die map
356  * @die:	The die id as retrieved via CPUID
357  * @cpu:	The cpu for which this is updated
358  */
359 int topology_update_die_map(unsigned int die, unsigned int cpu)
360 {
361 	int new;
362 
363 	/* Already available somewhere? */
364 	new = topology_phys_to_logical_die(die, cpu);
365 	if (new >= 0)
366 		goto found;
367 
368 	new = logical_die++;
369 	if (new != die) {
370 		pr_info("CPU %u Converting physical %u to logical die %u\n",
371 			cpu, die, new);
372 	}
373 found:
374 	cpu_data(cpu).logical_die_id = new;
375 	return 0;
376 }
377 
378 void __init smp_store_boot_cpu_info(void)
379 {
380 	int id = 0; /* CPU 0 */
381 	struct cpuinfo_x86 *c = &cpu_data(id);
382 
383 	*c = boot_cpu_data;
384 	c->cpu_index = id;
385 	topology_update_package_map(c->phys_proc_id, id);
386 	topology_update_die_map(c->cpu_die_id, id);
387 	c->initialized = true;
388 }
389 
390 /*
391  * The bootstrap kernel entry code has set these up. Save them for
392  * a given CPU
393  */
394 void smp_store_cpu_info(int id)
395 {
396 	struct cpuinfo_x86 *c = &cpu_data(id);
397 
398 	/* Copy boot_cpu_data only on the first bringup */
399 	if (!c->initialized)
400 		*c = boot_cpu_data;
401 	c->cpu_index = id;
402 	/*
403 	 * During boot time, CPU0 has this setup already. Save the info when
404 	 * bringing up AP or offlined CPU0.
405 	 */
406 	identify_secondary_cpu(c);
407 	c->initialized = true;
408 }
409 
410 static bool
411 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
412 {
413 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
414 
415 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
416 }
417 
418 static bool
419 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
420 {
421 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
422 
423 	return !WARN_ONCE(!topology_same_node(c, o),
424 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
425 		"[node: %d != %d]. Ignoring dependency.\n",
426 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
427 }
428 
429 #define link_mask(mfunc, c1, c2)					\
430 do {									\
431 	cpumask_set_cpu((c1), mfunc(c2));				\
432 	cpumask_set_cpu((c2), mfunc(c1));				\
433 } while (0)
434 
435 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
436 {
437 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
438 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
439 
440 		if (c->phys_proc_id == o->phys_proc_id &&
441 		    c->cpu_die_id == o->cpu_die_id &&
442 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
443 			if (c->cpu_core_id == o->cpu_core_id)
444 				return topology_sane(c, o, "smt");
445 
446 			if ((c->cu_id != 0xff) &&
447 			    (o->cu_id != 0xff) &&
448 			    (c->cu_id == o->cu_id))
449 				return topology_sane(c, o, "smt");
450 		}
451 
452 	} else if (c->phys_proc_id == o->phys_proc_id &&
453 		   c->cpu_die_id == o->cpu_die_id &&
454 		   c->cpu_core_id == o->cpu_core_id) {
455 		return topology_sane(c, o, "smt");
456 	}
457 
458 	return false;
459 }
460 
461 /*
462  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
463  *
464  * These are Intel CPUs that enumerate an LLC that is shared by
465  * multiple NUMA nodes. The LLC on these systems is shared for
466  * off-package data access but private to the NUMA node (half
467  * of the package) for on-package access.
468  *
469  * CPUID (the source of the information about the LLC) can only
470  * enumerate the cache as being shared *or* unshared, but not
471  * this particular configuration. The CPU in this case enumerates
472  * the cache to be shared across the entire package (spanning both
473  * NUMA nodes).
474  */
475 
476 static const struct x86_cpu_id snc_cpu[] = {
477 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
478 	{}
479 };
480 
481 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
482 {
483 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
484 
485 	/* Do not match if we do not have a valid APICID for cpu: */
486 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
487 		return false;
488 
489 	/* Do not match if LLC id does not match: */
490 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
491 		return false;
492 
493 	/*
494 	 * Allow the SNC topology without warning. Return of false
495 	 * means 'c' does not share the LLC of 'o'. This will be
496 	 * reflected to userspace.
497 	 */
498 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
499 		return false;
500 
501 	return topology_sane(c, o, "llc");
502 }
503 
504 /*
505  * Unlike the other levels, we do not enforce keeping a
506  * multicore group inside a NUMA node.  If this happens, we will
507  * discard the MC level of the topology later.
508  */
509 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
510 {
511 	if (c->phys_proc_id == o->phys_proc_id)
512 		return true;
513 	return false;
514 }
515 
516 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
517 {
518 	if ((c->phys_proc_id == o->phys_proc_id) &&
519 		(c->cpu_die_id == o->cpu_die_id))
520 		return true;
521 	return false;
522 }
523 
524 
525 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
526 static inline int x86_sched_itmt_flags(void)
527 {
528 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
529 }
530 
531 #ifdef CONFIG_SCHED_MC
532 static int x86_core_flags(void)
533 {
534 	return cpu_core_flags() | x86_sched_itmt_flags();
535 }
536 #endif
537 #ifdef CONFIG_SCHED_SMT
538 static int x86_smt_flags(void)
539 {
540 	return cpu_smt_flags() | x86_sched_itmt_flags();
541 }
542 #endif
543 #endif
544 
545 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
546 #ifdef CONFIG_SCHED_SMT
547 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
548 #endif
549 #ifdef CONFIG_SCHED_MC
550 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
551 #endif
552 	{ NULL, },
553 };
554 
555 static struct sched_domain_topology_level x86_topology[] = {
556 #ifdef CONFIG_SCHED_SMT
557 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
558 #endif
559 #ifdef CONFIG_SCHED_MC
560 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
561 #endif
562 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
563 	{ NULL, },
564 };
565 
566 /*
567  * Set if a package/die has multiple NUMA nodes inside.
568  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
569  * Sub-NUMA Clustering have this.
570  */
571 static bool x86_has_numa_in_package;
572 
573 void set_cpu_sibling_map(int cpu)
574 {
575 	bool has_smt = smp_num_siblings > 1;
576 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
577 	struct cpuinfo_x86 *c = &cpu_data(cpu);
578 	struct cpuinfo_x86 *o;
579 	int i, threads;
580 
581 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
582 
583 	if (!has_mp) {
584 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
585 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
586 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
587 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
588 		c->booted_cores = 1;
589 		return;
590 	}
591 
592 	for_each_cpu(i, cpu_sibling_setup_mask) {
593 		o = &cpu_data(i);
594 
595 		if ((i == cpu) || (has_smt && match_smt(c, o)))
596 			link_mask(topology_sibling_cpumask, cpu, i);
597 
598 		if ((i == cpu) || (has_mp && match_llc(c, o)))
599 			link_mask(cpu_llc_shared_mask, cpu, i);
600 
601 	}
602 
603 	/*
604 	 * This needs a separate iteration over the cpus because we rely on all
605 	 * topology_sibling_cpumask links to be set-up.
606 	 */
607 	for_each_cpu(i, cpu_sibling_setup_mask) {
608 		o = &cpu_data(i);
609 
610 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
611 			link_mask(topology_core_cpumask, cpu, i);
612 
613 			/*
614 			 *  Does this new cpu bringup a new core?
615 			 */
616 			if (cpumask_weight(
617 			    topology_sibling_cpumask(cpu)) == 1) {
618 				/*
619 				 * for each core in package, increment
620 				 * the booted_cores for this new cpu
621 				 */
622 				if (cpumask_first(
623 				    topology_sibling_cpumask(i)) == i)
624 					c->booted_cores++;
625 				/*
626 				 * increment the core count for all
627 				 * the other cpus in this package
628 				 */
629 				if (i != cpu)
630 					cpu_data(i).booted_cores++;
631 			} else if (i != cpu && !c->booted_cores)
632 				c->booted_cores = cpu_data(i).booted_cores;
633 		}
634 		if (match_pkg(c, o) && !topology_same_node(c, o))
635 			x86_has_numa_in_package = true;
636 
637 		if ((i == cpu) || (has_mp && match_die(c, o)))
638 			link_mask(topology_die_cpumask, cpu, i);
639 	}
640 
641 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
642 	if (threads > __max_smt_threads)
643 		__max_smt_threads = threads;
644 }
645 
646 /* maps the cpu to the sched domain representing multi-core */
647 const struct cpumask *cpu_coregroup_mask(int cpu)
648 {
649 	return cpu_llc_shared_mask(cpu);
650 }
651 
652 static void impress_friends(void)
653 {
654 	int cpu;
655 	unsigned long bogosum = 0;
656 	/*
657 	 * Allow the user to impress friends.
658 	 */
659 	pr_debug("Before bogomips\n");
660 	for_each_possible_cpu(cpu)
661 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
662 			bogosum += cpu_data(cpu).loops_per_jiffy;
663 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
664 		num_online_cpus(),
665 		bogosum/(500000/HZ),
666 		(bogosum/(5000/HZ))%100);
667 
668 	pr_debug("Before bogocount - setting activated=1\n");
669 }
670 
671 void __inquire_remote_apic(int apicid)
672 {
673 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
674 	const char * const names[] = { "ID", "VERSION", "SPIV" };
675 	int timeout;
676 	u32 status;
677 
678 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
679 
680 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
681 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
682 
683 		/*
684 		 * Wait for idle.
685 		 */
686 		status = safe_apic_wait_icr_idle();
687 		if (status)
688 			pr_cont("a previous APIC delivery may have failed\n");
689 
690 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
691 
692 		timeout = 0;
693 		do {
694 			udelay(100);
695 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
696 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
697 
698 		switch (status) {
699 		case APIC_ICR_RR_VALID:
700 			status = apic_read(APIC_RRR);
701 			pr_cont("%08x\n", status);
702 			break;
703 		default:
704 			pr_cont("failed\n");
705 		}
706 	}
707 }
708 
709 /*
710  * The Multiprocessor Specification 1.4 (1997) example code suggests
711  * that there should be a 10ms delay between the BSP asserting INIT
712  * and de-asserting INIT, when starting a remote processor.
713  * But that slows boot and resume on modern processors, which include
714  * many cores and don't require that delay.
715  *
716  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
717  * Modern processor families are quirked to remove the delay entirely.
718  */
719 #define UDELAY_10MS_DEFAULT 10000
720 
721 static unsigned int init_udelay = UINT_MAX;
722 
723 static int __init cpu_init_udelay(char *str)
724 {
725 	get_option(&str, &init_udelay);
726 
727 	return 0;
728 }
729 early_param("cpu_init_udelay", cpu_init_udelay);
730 
731 static void __init smp_quirk_init_udelay(void)
732 {
733 	/* if cmdline changed it from default, leave it alone */
734 	if (init_udelay != UINT_MAX)
735 		return;
736 
737 	/* if modern processor, use no delay */
738 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
739 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
740 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
741 		init_udelay = 0;
742 		return;
743 	}
744 	/* else, use legacy delay */
745 	init_udelay = UDELAY_10MS_DEFAULT;
746 }
747 
748 /*
749  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
750  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
751  * won't ... remember to clear down the APIC, etc later.
752  */
753 int
754 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
755 {
756 	u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
757 	unsigned long send_status, accept_status = 0;
758 	int maxlvt;
759 
760 	/* Target chip */
761 	/* Boot on the stack */
762 	/* Kick the second */
763 	apic_icr_write(APIC_DM_NMI | dm, apicid);
764 
765 	pr_debug("Waiting for send to finish...\n");
766 	send_status = safe_apic_wait_icr_idle();
767 
768 	/*
769 	 * Give the other CPU some time to accept the IPI.
770 	 */
771 	udelay(200);
772 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
773 		maxlvt = lapic_get_maxlvt();
774 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
775 			apic_write(APIC_ESR, 0);
776 		accept_status = (apic_read(APIC_ESR) & 0xEF);
777 	}
778 	pr_debug("NMI sent\n");
779 
780 	if (send_status)
781 		pr_err("APIC never delivered???\n");
782 	if (accept_status)
783 		pr_err("APIC delivery error (%lx)\n", accept_status);
784 
785 	return (send_status | accept_status);
786 }
787 
788 static int
789 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
790 {
791 	unsigned long send_status = 0, accept_status = 0;
792 	int maxlvt, num_starts, j;
793 
794 	maxlvt = lapic_get_maxlvt();
795 
796 	/*
797 	 * Be paranoid about clearing APIC errors.
798 	 */
799 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
800 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
801 			apic_write(APIC_ESR, 0);
802 		apic_read(APIC_ESR);
803 	}
804 
805 	pr_debug("Asserting INIT\n");
806 
807 	/*
808 	 * Turn INIT on target chip
809 	 */
810 	/*
811 	 * Send IPI
812 	 */
813 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
814 		       phys_apicid);
815 
816 	pr_debug("Waiting for send to finish...\n");
817 	send_status = safe_apic_wait_icr_idle();
818 
819 	udelay(init_udelay);
820 
821 	pr_debug("Deasserting INIT\n");
822 
823 	/* Target chip */
824 	/* Send IPI */
825 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
826 
827 	pr_debug("Waiting for send to finish...\n");
828 	send_status = safe_apic_wait_icr_idle();
829 
830 	mb();
831 
832 	/*
833 	 * Should we send STARTUP IPIs ?
834 	 *
835 	 * Determine this based on the APIC version.
836 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
837 	 */
838 	if (APIC_INTEGRATED(boot_cpu_apic_version))
839 		num_starts = 2;
840 	else
841 		num_starts = 0;
842 
843 	/*
844 	 * Run STARTUP IPI loop.
845 	 */
846 	pr_debug("#startup loops: %d\n", num_starts);
847 
848 	for (j = 1; j <= num_starts; j++) {
849 		pr_debug("Sending STARTUP #%d\n", j);
850 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
851 			apic_write(APIC_ESR, 0);
852 		apic_read(APIC_ESR);
853 		pr_debug("After apic_write\n");
854 
855 		/*
856 		 * STARTUP IPI
857 		 */
858 
859 		/* Target chip */
860 		/* Boot on the stack */
861 		/* Kick the second */
862 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
863 			       phys_apicid);
864 
865 		/*
866 		 * Give the other CPU some time to accept the IPI.
867 		 */
868 		if (init_udelay == 0)
869 			udelay(10);
870 		else
871 			udelay(300);
872 
873 		pr_debug("Startup point 1\n");
874 
875 		pr_debug("Waiting for send to finish...\n");
876 		send_status = safe_apic_wait_icr_idle();
877 
878 		/*
879 		 * Give the other CPU some time to accept the IPI.
880 		 */
881 		if (init_udelay == 0)
882 			udelay(10);
883 		else
884 			udelay(200);
885 
886 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
887 			apic_write(APIC_ESR, 0);
888 		accept_status = (apic_read(APIC_ESR) & 0xEF);
889 		if (send_status || accept_status)
890 			break;
891 	}
892 	pr_debug("After Startup\n");
893 
894 	if (send_status)
895 		pr_err("APIC never delivered???\n");
896 	if (accept_status)
897 		pr_err("APIC delivery error (%lx)\n", accept_status);
898 
899 	return (send_status | accept_status);
900 }
901 
902 /* reduce the number of lines printed when booting a large cpu count system */
903 static void announce_cpu(int cpu, int apicid)
904 {
905 	static int current_node = NUMA_NO_NODE;
906 	int node = early_cpu_to_node(cpu);
907 	static int width, node_width;
908 
909 	if (!width)
910 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
911 
912 	if (!node_width)
913 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
914 
915 	if (cpu == 1)
916 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
917 
918 	if (system_state < SYSTEM_RUNNING) {
919 		if (node != current_node) {
920 			if (current_node > (-1))
921 				pr_cont("\n");
922 			current_node = node;
923 
924 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
925 			       node_width - num_digits(node), " ", node);
926 		}
927 
928 		/* Add padding for the BSP */
929 		if (cpu == 1)
930 			pr_cont("%*s", width + 1, " ");
931 
932 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
933 
934 	} else
935 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
936 			node, cpu, apicid);
937 }
938 
939 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
940 {
941 	int cpu;
942 
943 	cpu = smp_processor_id();
944 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
945 		return NMI_HANDLED;
946 
947 	return NMI_DONE;
948 }
949 
950 /*
951  * Wake up AP by INIT, INIT, STARTUP sequence.
952  *
953  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
954  * boot-strap code which is not a desired behavior for waking up BSP. To
955  * void the boot-strap code, wake up CPU0 by NMI instead.
956  *
957  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
958  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
959  * We'll change this code in the future to wake up hard offlined CPU0 if
960  * real platform and request are available.
961  */
962 static int
963 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
964 	       int *cpu0_nmi_registered)
965 {
966 	int id;
967 	int boot_error;
968 
969 	preempt_disable();
970 
971 	/*
972 	 * Wake up AP by INIT, INIT, STARTUP sequence.
973 	 */
974 	if (cpu) {
975 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
976 		goto out;
977 	}
978 
979 	/*
980 	 * Wake up BSP by nmi.
981 	 *
982 	 * Register a NMI handler to help wake up CPU0.
983 	 */
984 	boot_error = register_nmi_handler(NMI_LOCAL,
985 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
986 
987 	if (!boot_error) {
988 		enable_start_cpu0 = 1;
989 		*cpu0_nmi_registered = 1;
990 		id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
991 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
992 	}
993 
994 out:
995 	preempt_enable();
996 
997 	return boot_error;
998 }
999 
1000 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1001 {
1002 	int ret;
1003 
1004 	/* Just in case we booted with a single CPU. */
1005 	alternatives_enable_smp();
1006 
1007 	per_cpu(current_task, cpu) = idle;
1008 	cpu_init_stack_canary(cpu, idle);
1009 
1010 	/* Initialize the interrupt stack(s) */
1011 	ret = irq_init_percpu_irqstack(cpu);
1012 	if (ret)
1013 		return ret;
1014 
1015 #ifdef CONFIG_X86_32
1016 	/* Stack for startup_32 can be just as for start_secondary onwards */
1017 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1018 #else
1019 	initial_gs = per_cpu_offset(cpu);
1020 #endif
1021 	return 0;
1022 }
1023 
1024 /*
1025  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1027  * Returns zero if CPU booted OK, else error code from
1028  * ->wakeup_secondary_cpu.
1029  */
1030 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1031 		       int *cpu0_nmi_registered)
1032 {
1033 	/* start_ip had better be page-aligned! */
1034 	unsigned long start_ip = real_mode_header->trampoline_start;
1035 
1036 	unsigned long boot_error = 0;
1037 	unsigned long timeout;
1038 
1039 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1040 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1041 	initial_code = (unsigned long)start_secondary;
1042 	initial_stack  = idle->thread.sp;
1043 
1044 	/* Enable the espfix hack for this CPU */
1045 	init_espfix_ap(cpu);
1046 
1047 	/* So we see what's up */
1048 	announce_cpu(cpu, apicid);
1049 
1050 	/*
1051 	 * This grunge runs the startup process for
1052 	 * the targeted processor.
1053 	 */
1054 
1055 	if (x86_platform.legacy.warm_reset) {
1056 
1057 		pr_debug("Setting warm reset code and vector.\n");
1058 
1059 		smpboot_setup_warm_reset_vector(start_ip);
1060 		/*
1061 		 * Be paranoid about clearing APIC errors.
1062 		*/
1063 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1064 			apic_write(APIC_ESR, 0);
1065 			apic_read(APIC_ESR);
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * AP might wait on cpu_callout_mask in cpu_init() with
1071 	 * cpu_initialized_mask set if previous attempt to online
1072 	 * it timed-out. Clear cpu_initialized_mask so that after
1073 	 * INIT/SIPI it could start with a clean state.
1074 	 */
1075 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1076 	smp_mb();
1077 
1078 	/*
1079 	 * Wake up a CPU in difference cases:
1080 	 * - Use the method in the APIC driver if it's defined
1081 	 * Otherwise,
1082 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1083 	 */
1084 	if (apic->wakeup_secondary_cpu)
1085 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1086 	else
1087 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1088 						     cpu0_nmi_registered);
1089 
1090 	if (!boot_error) {
1091 		/*
1092 		 * Wait 10s total for first sign of life from AP
1093 		 */
1094 		boot_error = -1;
1095 		timeout = jiffies + 10*HZ;
1096 		while (time_before(jiffies, timeout)) {
1097 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1098 				/*
1099 				 * Tell AP to proceed with initialization
1100 				 */
1101 				cpumask_set_cpu(cpu, cpu_callout_mask);
1102 				boot_error = 0;
1103 				break;
1104 			}
1105 			schedule();
1106 		}
1107 	}
1108 
1109 	if (!boot_error) {
1110 		/*
1111 		 * Wait till AP completes initial initialization
1112 		 */
1113 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1114 			/*
1115 			 * Allow other tasks to run while we wait for the
1116 			 * AP to come online. This also gives a chance
1117 			 * for the MTRR work(triggered by the AP coming online)
1118 			 * to be completed in the stop machine context.
1119 			 */
1120 			schedule();
1121 		}
1122 	}
1123 
1124 	if (x86_platform.legacy.warm_reset) {
1125 		/*
1126 		 * Cleanup possible dangling ends...
1127 		 */
1128 		smpboot_restore_warm_reset_vector();
1129 	}
1130 
1131 	return boot_error;
1132 }
1133 
1134 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1135 {
1136 	int apicid = apic->cpu_present_to_apicid(cpu);
1137 	int cpu0_nmi_registered = 0;
1138 	unsigned long flags;
1139 	int err, ret = 0;
1140 
1141 	lockdep_assert_irqs_enabled();
1142 
1143 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1144 
1145 	if (apicid == BAD_APICID ||
1146 	    !physid_isset(apicid, phys_cpu_present_map) ||
1147 	    !apic->apic_id_valid(apicid)) {
1148 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1149 		return -EINVAL;
1150 	}
1151 
1152 	/*
1153 	 * Already booted CPU?
1154 	 */
1155 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1156 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1157 		return -ENOSYS;
1158 	}
1159 
1160 	/*
1161 	 * Save current MTRR state in case it was changed since early boot
1162 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1163 	 */
1164 	mtrr_save_state();
1165 
1166 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1167 	err = cpu_check_up_prepare(cpu);
1168 	if (err && err != -EBUSY)
1169 		return err;
1170 
1171 	/* the FPU context is blank, nobody can own it */
1172 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1173 
1174 	err = common_cpu_up(cpu, tidle);
1175 	if (err)
1176 		return err;
1177 
1178 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1179 	if (err) {
1180 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1181 		ret = -EIO;
1182 		goto unreg_nmi;
1183 	}
1184 
1185 	/*
1186 	 * Check TSC synchronization with the AP (keep irqs disabled
1187 	 * while doing so):
1188 	 */
1189 	local_irq_save(flags);
1190 	check_tsc_sync_source(cpu);
1191 	local_irq_restore(flags);
1192 
1193 	while (!cpu_online(cpu)) {
1194 		cpu_relax();
1195 		touch_nmi_watchdog();
1196 	}
1197 
1198 unreg_nmi:
1199 	/*
1200 	 * Clean up the nmi handler. Do this after the callin and callout sync
1201 	 * to avoid impact of possible long unregister time.
1202 	 */
1203 	if (cpu0_nmi_registered)
1204 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1205 
1206 	return ret;
1207 }
1208 
1209 /**
1210  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211  */
1212 void arch_disable_smp_support(void)
1213 {
1214 	disable_ioapic_support();
1215 }
1216 
1217 /*
1218  * Fall back to non SMP mode after errors.
1219  *
1220  * RED-PEN audit/test this more. I bet there is more state messed up here.
1221  */
1222 static __init void disable_smp(void)
1223 {
1224 	pr_info("SMP disabled\n");
1225 
1226 	disable_ioapic_support();
1227 
1228 	init_cpu_present(cpumask_of(0));
1229 	init_cpu_possible(cpumask_of(0));
1230 
1231 	if (smp_found_config)
1232 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1233 	else
1234 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1235 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1236 	cpumask_set_cpu(0, topology_core_cpumask(0));
1237 	cpumask_set_cpu(0, topology_die_cpumask(0));
1238 }
1239 
1240 /*
1241  * Various sanity checks.
1242  */
1243 static void __init smp_sanity_check(void)
1244 {
1245 	preempt_disable();
1246 
1247 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1248 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1249 		unsigned int cpu;
1250 		unsigned nr;
1251 
1252 		pr_warn("More than 8 CPUs detected - skipping them\n"
1253 			"Use CONFIG_X86_BIGSMP\n");
1254 
1255 		nr = 0;
1256 		for_each_present_cpu(cpu) {
1257 			if (nr >= 8)
1258 				set_cpu_present(cpu, false);
1259 			nr++;
1260 		}
1261 
1262 		nr = 0;
1263 		for_each_possible_cpu(cpu) {
1264 			if (nr >= 8)
1265 				set_cpu_possible(cpu, false);
1266 			nr++;
1267 		}
1268 
1269 		nr_cpu_ids = 8;
1270 	}
1271 #endif
1272 
1273 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1274 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1275 			hard_smp_processor_id());
1276 
1277 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1278 	}
1279 
1280 	/*
1281 	 * Should not be necessary because the MP table should list the boot
1282 	 * CPU too, but we do it for the sake of robustness anyway.
1283 	 */
1284 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1285 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1286 			  boot_cpu_physical_apicid);
1287 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288 	}
1289 	preempt_enable();
1290 }
1291 
1292 static void __init smp_cpu_index_default(void)
1293 {
1294 	int i;
1295 	struct cpuinfo_x86 *c;
1296 
1297 	for_each_possible_cpu(i) {
1298 		c = &cpu_data(i);
1299 		/* mark all to hotplug */
1300 		c->cpu_index = nr_cpu_ids;
1301 	}
1302 }
1303 
1304 static void __init smp_get_logical_apicid(void)
1305 {
1306 	if (x2apic_mode)
1307 		cpu0_logical_apicid = apic_read(APIC_LDR);
1308 	else
1309 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1310 }
1311 
1312 /*
1313  * Prepare for SMP bootup.
1314  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1315  *            for common interface support.
1316  */
1317 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1318 {
1319 	unsigned int i;
1320 
1321 	smp_cpu_index_default();
1322 
1323 	/*
1324 	 * Setup boot CPU information
1325 	 */
1326 	smp_store_boot_cpu_info(); /* Final full version of the data */
1327 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1328 	mb();
1329 
1330 	for_each_possible_cpu(i) {
1331 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1332 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1333 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1334 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1335 	}
1336 
1337 	/*
1338 	 * Set 'default' x86 topology, this matches default_topology() in that
1339 	 * it has NUMA nodes as a topology level. See also
1340 	 * native_smp_cpus_done().
1341 	 *
1342 	 * Must be done before set_cpus_sibling_map() is ran.
1343 	 */
1344 	set_sched_topology(x86_topology);
1345 
1346 	set_cpu_sibling_map(0);
1347 	init_freq_invariance(false, false);
1348 	smp_sanity_check();
1349 
1350 	switch (apic_intr_mode) {
1351 	case APIC_PIC:
1352 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1353 		disable_smp();
1354 		return;
1355 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1356 		disable_smp();
1357 		/* Setup local timer */
1358 		x86_init.timers.setup_percpu_clockev();
1359 		return;
1360 	case APIC_VIRTUAL_WIRE:
1361 	case APIC_SYMMETRIC_IO:
1362 		break;
1363 	}
1364 
1365 	/* Setup local timer */
1366 	x86_init.timers.setup_percpu_clockev();
1367 
1368 	smp_get_logical_apicid();
1369 
1370 	pr_info("CPU0: ");
1371 	print_cpu_info(&cpu_data(0));
1372 
1373 	uv_system_init();
1374 
1375 	set_mtrr_aps_delayed_init();
1376 
1377 	smp_quirk_init_udelay();
1378 
1379 	speculative_store_bypass_ht_init();
1380 }
1381 
1382 void arch_thaw_secondary_cpus_begin(void)
1383 {
1384 	set_mtrr_aps_delayed_init();
1385 }
1386 
1387 void arch_thaw_secondary_cpus_end(void)
1388 {
1389 	mtrr_aps_init();
1390 }
1391 
1392 /*
1393  * Early setup to make printk work.
1394  */
1395 void __init native_smp_prepare_boot_cpu(void)
1396 {
1397 	int me = smp_processor_id();
1398 	switch_to_new_gdt(me);
1399 	/* already set me in cpu_online_mask in boot_cpu_init() */
1400 	cpumask_set_cpu(me, cpu_callout_mask);
1401 	cpu_set_state_online(me);
1402 	native_pv_lock_init();
1403 }
1404 
1405 void __init calculate_max_logical_packages(void)
1406 {
1407 	int ncpus;
1408 
1409 	/*
1410 	 * Today neither Intel nor AMD support heterogenous systems so
1411 	 * extrapolate the boot cpu's data to all packages.
1412 	 */
1413 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1414 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1415 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1416 }
1417 
1418 void __init native_smp_cpus_done(unsigned int max_cpus)
1419 {
1420 	pr_debug("Boot done\n");
1421 
1422 	calculate_max_logical_packages();
1423 
1424 	if (x86_has_numa_in_package)
1425 		set_sched_topology(x86_numa_in_package_topology);
1426 
1427 	nmi_selftest();
1428 	impress_friends();
1429 	mtrr_aps_init();
1430 }
1431 
1432 static int __initdata setup_possible_cpus = -1;
1433 static int __init _setup_possible_cpus(char *str)
1434 {
1435 	get_option(&str, &setup_possible_cpus);
1436 	return 0;
1437 }
1438 early_param("possible_cpus", _setup_possible_cpus);
1439 
1440 
1441 /*
1442  * cpu_possible_mask should be static, it cannot change as cpu's
1443  * are onlined, or offlined. The reason is per-cpu data-structures
1444  * are allocated by some modules at init time, and don't expect to
1445  * do this dynamically on cpu arrival/departure.
1446  * cpu_present_mask on the other hand can change dynamically.
1447  * In case when cpu_hotplug is not compiled, then we resort to current
1448  * behaviour, which is cpu_possible == cpu_present.
1449  * - Ashok Raj
1450  *
1451  * Three ways to find out the number of additional hotplug CPUs:
1452  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1453  * - The user can overwrite it with possible_cpus=NUM
1454  * - Otherwise don't reserve additional CPUs.
1455  * We do this because additional CPUs waste a lot of memory.
1456  * -AK
1457  */
1458 __init void prefill_possible_map(void)
1459 {
1460 	int i, possible;
1461 
1462 	/* No boot processor was found in mptable or ACPI MADT */
1463 	if (!num_processors) {
1464 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1465 			int apicid = boot_cpu_physical_apicid;
1466 			int cpu = hard_smp_processor_id();
1467 
1468 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1469 
1470 			/* Make sure boot cpu is enumerated */
1471 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1472 			    apic->apic_id_valid(apicid))
1473 				generic_processor_info(apicid, boot_cpu_apic_version);
1474 		}
1475 
1476 		if (!num_processors)
1477 			num_processors = 1;
1478 	}
1479 
1480 	i = setup_max_cpus ?: 1;
1481 	if (setup_possible_cpus == -1) {
1482 		possible = num_processors;
1483 #ifdef CONFIG_HOTPLUG_CPU
1484 		if (setup_max_cpus)
1485 			possible += disabled_cpus;
1486 #else
1487 		if (possible > i)
1488 			possible = i;
1489 #endif
1490 	} else
1491 		possible = setup_possible_cpus;
1492 
1493 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1494 
1495 	/* nr_cpu_ids could be reduced via nr_cpus= */
1496 	if (possible > nr_cpu_ids) {
1497 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1498 			possible, nr_cpu_ids);
1499 		possible = nr_cpu_ids;
1500 	}
1501 
1502 #ifdef CONFIG_HOTPLUG_CPU
1503 	if (!setup_max_cpus)
1504 #endif
1505 	if (possible > i) {
1506 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1507 			possible, setup_max_cpus);
1508 		possible = i;
1509 	}
1510 
1511 	nr_cpu_ids = possible;
1512 
1513 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1514 		possible, max_t(int, possible - num_processors, 0));
1515 
1516 	reset_cpu_possible_mask();
1517 
1518 	for (i = 0; i < possible; i++)
1519 		set_cpu_possible(i, true);
1520 }
1521 
1522 #ifdef CONFIG_HOTPLUG_CPU
1523 
1524 /* Recompute SMT state for all CPUs on offline */
1525 static void recompute_smt_state(void)
1526 {
1527 	int max_threads, cpu;
1528 
1529 	max_threads = 0;
1530 	for_each_online_cpu (cpu) {
1531 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1532 
1533 		if (threads > max_threads)
1534 			max_threads = threads;
1535 	}
1536 	__max_smt_threads = max_threads;
1537 }
1538 
1539 static void remove_siblinginfo(int cpu)
1540 {
1541 	int sibling;
1542 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1543 
1544 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1545 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1546 		/*/
1547 		 * last thread sibling in this cpu core going down
1548 		 */
1549 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1550 			cpu_data(sibling).booted_cores--;
1551 	}
1552 
1553 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1554 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1555 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1556 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1557 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1558 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1559 	cpumask_clear(cpu_llc_shared_mask(cpu));
1560 	cpumask_clear(topology_sibling_cpumask(cpu));
1561 	cpumask_clear(topology_core_cpumask(cpu));
1562 	cpumask_clear(topology_die_cpumask(cpu));
1563 	c->cpu_core_id = 0;
1564 	c->booted_cores = 0;
1565 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1566 	recompute_smt_state();
1567 }
1568 
1569 static void remove_cpu_from_maps(int cpu)
1570 {
1571 	set_cpu_online(cpu, false);
1572 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1573 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1574 	/* was set by cpu_init() */
1575 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1576 	numa_remove_cpu(cpu);
1577 }
1578 
1579 void cpu_disable_common(void)
1580 {
1581 	int cpu = smp_processor_id();
1582 
1583 	remove_siblinginfo(cpu);
1584 
1585 	/* It's now safe to remove this processor from the online map */
1586 	lock_vector_lock();
1587 	remove_cpu_from_maps(cpu);
1588 	unlock_vector_lock();
1589 	fixup_irqs();
1590 	lapic_offline();
1591 }
1592 
1593 int native_cpu_disable(void)
1594 {
1595 	int ret;
1596 
1597 	ret = lapic_can_unplug_cpu();
1598 	if (ret)
1599 		return ret;
1600 
1601 	cpu_disable_common();
1602 
1603         /*
1604          * Disable the local APIC. Otherwise IPI broadcasts will reach
1605          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1606          * messages.
1607          *
1608          * Disabling the APIC must happen after cpu_disable_common()
1609          * which invokes fixup_irqs().
1610          *
1611          * Disabling the APIC preserves already set bits in IRR, but
1612          * an interrupt arriving after disabling the local APIC does not
1613          * set the corresponding IRR bit.
1614          *
1615          * fixup_irqs() scans IRR for set bits so it can raise a not
1616          * yet handled interrupt on the new destination CPU via an IPI
1617          * but obviously it can't do so for IRR bits which are not set.
1618          * IOW, interrupts arriving after disabling the local APIC will
1619          * be lost.
1620          */
1621 	apic_soft_disable();
1622 
1623 	return 0;
1624 }
1625 
1626 int common_cpu_die(unsigned int cpu)
1627 {
1628 	int ret = 0;
1629 
1630 	/* We don't do anything here: idle task is faking death itself. */
1631 
1632 	/* They ack this in play_dead() by setting CPU_DEAD */
1633 	if (cpu_wait_death(cpu, 5)) {
1634 		if (system_state == SYSTEM_RUNNING)
1635 			pr_info("CPU %u is now offline\n", cpu);
1636 	} else {
1637 		pr_err("CPU %u didn't die...\n", cpu);
1638 		ret = -1;
1639 	}
1640 
1641 	return ret;
1642 }
1643 
1644 void native_cpu_die(unsigned int cpu)
1645 {
1646 	common_cpu_die(cpu);
1647 }
1648 
1649 void play_dead_common(void)
1650 {
1651 	idle_task_exit();
1652 
1653 	/* Ack it */
1654 	(void)cpu_report_death();
1655 
1656 	/*
1657 	 * With physical CPU hotplug, we should halt the cpu
1658 	 */
1659 	local_irq_disable();
1660 }
1661 
1662 static bool wakeup_cpu0(void)
1663 {
1664 	if (smp_processor_id() == 0 && enable_start_cpu0)
1665 		return true;
1666 
1667 	return false;
1668 }
1669 
1670 /*
1671  * We need to flush the caches before going to sleep, lest we have
1672  * dirty data in our caches when we come back up.
1673  */
1674 static inline void mwait_play_dead(void)
1675 {
1676 	unsigned int eax, ebx, ecx, edx;
1677 	unsigned int highest_cstate = 0;
1678 	unsigned int highest_subcstate = 0;
1679 	void *mwait_ptr;
1680 	int i;
1681 
1682 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1683 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1684 		return;
1685 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1686 		return;
1687 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1688 		return;
1689 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1690 		return;
1691 
1692 	eax = CPUID_MWAIT_LEAF;
1693 	ecx = 0;
1694 	native_cpuid(&eax, &ebx, &ecx, &edx);
1695 
1696 	/*
1697 	 * eax will be 0 if EDX enumeration is not valid.
1698 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1699 	 */
1700 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1701 		eax = 0;
1702 	} else {
1703 		edx >>= MWAIT_SUBSTATE_SIZE;
1704 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1705 			if (edx & MWAIT_SUBSTATE_MASK) {
1706 				highest_cstate = i;
1707 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1708 			}
1709 		}
1710 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1711 			(highest_subcstate - 1);
1712 	}
1713 
1714 	/*
1715 	 * This should be a memory location in a cache line which is
1716 	 * unlikely to be touched by other processors.  The actual
1717 	 * content is immaterial as it is not actually modified in any way.
1718 	 */
1719 	mwait_ptr = &current_thread_info()->flags;
1720 
1721 	wbinvd();
1722 
1723 	while (1) {
1724 		/*
1725 		 * The CLFLUSH is a workaround for erratum AAI65 for
1726 		 * the Xeon 7400 series.  It's not clear it is actually
1727 		 * needed, but it should be harmless in either case.
1728 		 * The WBINVD is insufficient due to the spurious-wakeup
1729 		 * case where we return around the loop.
1730 		 */
1731 		mb();
1732 		clflush(mwait_ptr);
1733 		mb();
1734 		__monitor(mwait_ptr, 0, 0);
1735 		mb();
1736 		__mwait(eax, 0);
1737 		/*
1738 		 * If NMI wants to wake up CPU0, start CPU0.
1739 		 */
1740 		if (wakeup_cpu0())
1741 			start_cpu0();
1742 	}
1743 }
1744 
1745 void hlt_play_dead(void)
1746 {
1747 	if (__this_cpu_read(cpu_info.x86) >= 4)
1748 		wbinvd();
1749 
1750 	while (1) {
1751 		native_halt();
1752 		/*
1753 		 * If NMI wants to wake up CPU0, start CPU0.
1754 		 */
1755 		if (wakeup_cpu0())
1756 			start_cpu0();
1757 	}
1758 }
1759 
1760 void native_play_dead(void)
1761 {
1762 	play_dead_common();
1763 	tboot_shutdown(TB_SHUTDOWN_WFS);
1764 
1765 	mwait_play_dead();	/* Only returns on failure */
1766 	if (cpuidle_play_dead())
1767 		hlt_play_dead();
1768 }
1769 
1770 #else /* ... !CONFIG_HOTPLUG_CPU */
1771 int native_cpu_disable(void)
1772 {
1773 	return -ENOSYS;
1774 }
1775 
1776 void native_cpu_die(unsigned int cpu)
1777 {
1778 	/* We said "no" in __cpu_disable */
1779 	BUG();
1780 }
1781 
1782 void native_play_dead(void)
1783 {
1784 	BUG();
1785 }
1786 
1787 #endif
1788 
1789 #ifdef CONFIG_X86_64
1790 /*
1791  * APERF/MPERF frequency ratio computation.
1792  *
1793  * The scheduler wants to do frequency invariant accounting and needs a <1
1794  * ratio to account for the 'current' frequency, corresponding to
1795  * freq_curr / freq_max.
1796  *
1797  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1798  * our P-state setting is little more than a request/hint, we need to observe
1799  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1800  * interval after discarding idle time. This is given by:
1801  *
1802  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1803  *
1804  * where freq_base is the max non-turbo P-state.
1805  *
1806  * The freq_max term has to be set to a somewhat arbitrary value, because we
1807  * can't know which turbo states will be available at a given point in time:
1808  * it all depends on the thermal headroom of the entire package. We set it to
1809  * the turbo level with 4 cores active.
1810  *
1811  * Benchmarks show that's a good compromise between the 1C turbo ratio
1812  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1813  * which would ignore the entire turbo range (a conspicuous part, making
1814  * freq_curr/freq_max always maxed out).
1815  *
1816  * An exception to the heuristic above is the Atom uarch, where we choose the
1817  * highest turbo level for freq_max since Atom's are generally oriented towards
1818  * power efficiency.
1819  *
1820  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1821  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1822  */
1823 
1824 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1825 
1826 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1827 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1828 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1829 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1830 
1831 void arch_set_max_freq_ratio(bool turbo_disabled)
1832 {
1833 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1834 					arch_turbo_freq_ratio;
1835 }
1836 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1837 
1838 static bool turbo_disabled(void)
1839 {
1840 	u64 misc_en;
1841 	int err;
1842 
1843 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1844 	if (err)
1845 		return false;
1846 
1847 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1848 }
1849 
1850 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1851 {
1852 	int err;
1853 
1854 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1855 	if (err)
1856 		return false;
1857 
1858 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1859 	if (err)
1860 		return false;
1861 
1862 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1863 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1864 
1865 	return true;
1866 }
1867 
1868 #include <asm/cpu_device_id.h>
1869 #include <asm/intel-family.h>
1870 
1871 #define X86_MATCH(model)					\
1872 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1873 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1874 
1875 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1876 	X86_MATCH(XEON_PHI_KNL),
1877 	X86_MATCH(XEON_PHI_KNM),
1878 	{}
1879 };
1880 
1881 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1882 	X86_MATCH(SKYLAKE_X),
1883 	{}
1884 };
1885 
1886 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1887 	X86_MATCH(ATOM_GOLDMONT),
1888 	X86_MATCH(ATOM_GOLDMONT_D),
1889 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1890 	{}
1891 };
1892 
1893 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1894 				int num_delta_fratio)
1895 {
1896 	int fratio, delta_fratio, found;
1897 	int err, i;
1898 	u64 msr;
1899 
1900 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1901 	if (err)
1902 		return false;
1903 
1904 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1905 
1906 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1907 	if (err)
1908 		return false;
1909 
1910 	fratio = (msr >> 8) & 0xFF;
1911 	i = 16;
1912 	found = 0;
1913 	do {
1914 		if (found >= num_delta_fratio) {
1915 			*turbo_freq = fratio;
1916 			return true;
1917 		}
1918 
1919 		delta_fratio = (msr >> (i + 5)) & 0x7;
1920 
1921 		if (delta_fratio) {
1922 			found += 1;
1923 			fratio -= delta_fratio;
1924 		}
1925 
1926 		i += 8;
1927 	} while (i < 64);
1928 
1929 	return true;
1930 }
1931 
1932 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1933 {
1934 	u64 ratios, counts;
1935 	u32 group_size;
1936 	int err, i;
1937 
1938 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1939 	if (err)
1940 		return false;
1941 
1942 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1943 
1944 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1945 	if (err)
1946 		return false;
1947 
1948 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1949 	if (err)
1950 		return false;
1951 
1952 	for (i = 0; i < 64; i += 8) {
1953 		group_size = (counts >> i) & 0xFF;
1954 		if (group_size >= size) {
1955 			*turbo_freq = (ratios >> i) & 0xFF;
1956 			return true;
1957 		}
1958 	}
1959 
1960 	return false;
1961 }
1962 
1963 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1964 {
1965 	u64 msr;
1966 	int err;
1967 
1968 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1969 	if (err)
1970 		return false;
1971 
1972 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1973 	if (err)
1974 		return false;
1975 
1976 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1977 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1978 
1979 	/* The CPU may have less than 4 cores */
1980 	if (!*turbo_freq)
1981 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1982 
1983 	return true;
1984 }
1985 
1986 static bool intel_set_max_freq_ratio(void)
1987 {
1988 	u64 base_freq, turbo_freq;
1989 	u64 turbo_ratio;
1990 
1991 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1992 		goto out;
1993 
1994 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1995 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1996 		goto out;
1997 
1998 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1999 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2000 		goto out;
2001 
2002 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2003 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2004 		goto out;
2005 
2006 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2007 		goto out;
2008 
2009 	return false;
2010 
2011 out:
2012 	/*
2013 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2014 	 * but then fill all MSR's with zeroes.
2015 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2016 	 * in MSR_TURBO_RATIO_LIMIT.
2017 	 */
2018 	if (!base_freq || !turbo_freq) {
2019 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2020 		return false;
2021 	}
2022 
2023 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2024 	if (!turbo_ratio) {
2025 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2026 		return false;
2027 	}
2028 
2029 	arch_turbo_freq_ratio = turbo_ratio;
2030 	arch_set_max_freq_ratio(turbo_disabled());
2031 
2032 	return true;
2033 }
2034 
2035 #ifdef CONFIG_ACPI_CPPC_LIB
2036 static bool amd_set_max_freq_ratio(void)
2037 {
2038 	struct cppc_perf_caps perf_caps;
2039 	u64 highest_perf, nominal_perf;
2040 	u64 perf_ratio;
2041 	int rc;
2042 
2043 	rc = cppc_get_perf_caps(0, &perf_caps);
2044 	if (rc) {
2045 		pr_debug("Could not retrieve perf counters (%d)\n", rc);
2046 		return false;
2047 	}
2048 
2049 	highest_perf = perf_caps.highest_perf;
2050 	nominal_perf = perf_caps.nominal_perf;
2051 
2052 	if (!highest_perf || !nominal_perf) {
2053 		pr_debug("Could not retrieve highest or nominal performance\n");
2054 		return false;
2055 	}
2056 
2057 	perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2058 	/* midpoint between max_boost and max_P */
2059 	perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2060 	if (!perf_ratio) {
2061 		pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2062 		return false;
2063 	}
2064 
2065 	arch_turbo_freq_ratio = perf_ratio;
2066 	arch_set_max_freq_ratio(false);
2067 
2068 	return true;
2069 }
2070 #else
2071 static bool amd_set_max_freq_ratio(void)
2072 {
2073 	return false;
2074 }
2075 #endif
2076 
2077 static void init_counter_refs(void)
2078 {
2079 	u64 aperf, mperf;
2080 
2081 	rdmsrl(MSR_IA32_APERF, aperf);
2082 	rdmsrl(MSR_IA32_MPERF, mperf);
2083 
2084 	this_cpu_write(arch_prev_aperf, aperf);
2085 	this_cpu_write(arch_prev_mperf, mperf);
2086 }
2087 
2088 #ifdef CONFIG_PM_SLEEP
2089 static struct syscore_ops freq_invariance_syscore_ops = {
2090 	.resume = init_counter_refs,
2091 };
2092 
2093 static void register_freq_invariance_syscore_ops(void)
2094 {
2095 	/* Bail out if registered already. */
2096 	if (freq_invariance_syscore_ops.node.prev)
2097 		return;
2098 
2099 	register_syscore_ops(&freq_invariance_syscore_ops);
2100 }
2101 #else
2102 static inline void register_freq_invariance_syscore_ops(void) {}
2103 #endif
2104 
2105 static void init_freq_invariance(bool secondary, bool cppc_ready)
2106 {
2107 	bool ret = false;
2108 
2109 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2110 		return;
2111 
2112 	if (secondary) {
2113 		if (static_branch_likely(&arch_scale_freq_key)) {
2114 			init_counter_refs();
2115 		}
2116 		return;
2117 	}
2118 
2119 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2120 		ret = intel_set_max_freq_ratio();
2121 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2122 		if (!cppc_ready) {
2123 			return;
2124 		}
2125 		ret = amd_set_max_freq_ratio();
2126 	}
2127 
2128 	if (ret) {
2129 		init_counter_refs();
2130 		static_branch_enable(&arch_scale_freq_key);
2131 		register_freq_invariance_syscore_ops();
2132 		pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2133 	} else {
2134 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2135 	}
2136 }
2137 
2138 #ifdef CONFIG_ACPI_CPPC_LIB
2139 static DEFINE_MUTEX(freq_invariance_lock);
2140 
2141 void init_freq_invariance_cppc(void)
2142 {
2143 	static bool secondary;
2144 
2145 	mutex_lock(&freq_invariance_lock);
2146 
2147 	init_freq_invariance(secondary, true);
2148 	secondary = true;
2149 
2150 	mutex_unlock(&freq_invariance_lock);
2151 }
2152 #endif
2153 
2154 static void disable_freq_invariance_workfn(struct work_struct *work)
2155 {
2156 	static_branch_disable(&arch_scale_freq_key);
2157 }
2158 
2159 static DECLARE_WORK(disable_freq_invariance_work,
2160 		    disable_freq_invariance_workfn);
2161 
2162 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2163 
2164 void arch_scale_freq_tick(void)
2165 {
2166 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2167 	u64 aperf, mperf;
2168 	u64 acnt, mcnt;
2169 
2170 	if (!arch_scale_freq_invariant())
2171 		return;
2172 
2173 	rdmsrl(MSR_IA32_APERF, aperf);
2174 	rdmsrl(MSR_IA32_MPERF, mperf);
2175 
2176 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2177 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2178 
2179 	this_cpu_write(arch_prev_aperf, aperf);
2180 	this_cpu_write(arch_prev_mperf, mperf);
2181 
2182 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2183 		goto error;
2184 
2185 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2186 		goto error;
2187 
2188 	freq_scale = div64_u64(acnt, mcnt);
2189 	if (!freq_scale)
2190 		goto error;
2191 
2192 	if (freq_scale > SCHED_CAPACITY_SCALE)
2193 		freq_scale = SCHED_CAPACITY_SCALE;
2194 
2195 	this_cpu_write(arch_freq_scale, freq_scale);
2196 	return;
2197 
2198 error:
2199 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2200 	schedule_work(&disable_freq_invariance_work);
2201 }
2202 #else
2203 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2204 {
2205 }
2206 #endif /* CONFIG_X86_64 */
2207