xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision c0891ac1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60 
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85 
86 #ifdef CONFIG_ACPI_CPPC_LIB
87 #include <acpi/cppc_acpi.h>
88 #endif
89 
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 
98 /* representing HT, core, and die siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101 
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* Logical package management. We might want to allocate that dynamically */
109 unsigned int __max_logical_packages __read_mostly;
110 EXPORT_SYMBOL(__max_logical_packages);
111 static unsigned int logical_packages __read_mostly;
112 static unsigned int logical_die __read_mostly;
113 
114 /* Maximum number of SMT threads on any online core */
115 int __read_mostly __max_smt_threads = 1;
116 
117 /* Flag to indicate if a complete sched domain rebuild is required */
118 bool x86_topology_update;
119 
120 int arch_update_cpu_topology(void)
121 {
122 	int retval = x86_topology_update;
123 
124 	x86_topology_update = false;
125 	return retval;
126 }
127 
128 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129 {
130 	unsigned long flags;
131 
132 	spin_lock_irqsave(&rtc_lock, flags);
133 	CMOS_WRITE(0xa, 0xf);
134 	spin_unlock_irqrestore(&rtc_lock, flags);
135 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 							start_eip >> 4;
137 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 							start_eip & 0xf;
139 }
140 
141 static inline void smpboot_restore_warm_reset_vector(void)
142 {
143 	unsigned long flags;
144 
145 	/*
146 	 * Paranoid:  Set warm reset code and vector here back
147 	 * to default values.
148 	 */
149 	spin_lock_irqsave(&rtc_lock, flags);
150 	CMOS_WRITE(0, 0xf);
151 	spin_unlock_irqrestore(&rtc_lock, flags);
152 
153 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154 }
155 
156 static void init_freq_invariance(bool secondary, bool cppc_ready);
157 
158 /*
159  * Report back to the Boot Processor during boot time or to the caller processor
160  * during CPU online.
161  */
162 static void smp_callin(void)
163 {
164 	int cpuid;
165 
166 	/*
167 	 * If waken up by an INIT in an 82489DX configuration
168 	 * cpu_callout_mask guarantees we don't get here before
169 	 * an INIT_deassert IPI reaches our local APIC, so it is
170 	 * now safe to touch our local APIC.
171 	 */
172 	cpuid = smp_processor_id();
173 
174 	/*
175 	 * the boot CPU has finished the init stage and is spinning
176 	 * on callin_map until we finish. We are free to set up this
177 	 * CPU, first the APIC. (this is probably redundant on most
178 	 * boards)
179 	 */
180 	apic_ap_setup();
181 
182 	/*
183 	 * Save our processor parameters. Note: this information
184 	 * is needed for clock calibration.
185 	 */
186 	smp_store_cpu_info(cpuid);
187 
188 	/*
189 	 * The topology information must be up to date before
190 	 * calibrate_delay() and notify_cpu_starting().
191 	 */
192 	set_cpu_sibling_map(raw_smp_processor_id());
193 
194 	init_freq_invariance(true, false);
195 
196 	/*
197 	 * Get our bogomips.
198 	 * Update loops_per_jiffy in cpu_data. Previous call to
199 	 * smp_store_cpu_info() stored a value that is close but not as
200 	 * accurate as the value just calculated.
201 	 */
202 	calibrate_delay();
203 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
204 	pr_debug("Stack at about %p\n", &cpuid);
205 
206 	wmb();
207 
208 	notify_cpu_starting(cpuid);
209 
210 	/*
211 	 * Allow the master to continue.
212 	 */
213 	cpumask_set_cpu(cpuid, cpu_callin_mask);
214 }
215 
216 static int cpu0_logical_apicid;
217 static int enable_start_cpu0;
218 /*
219  * Activate a secondary processor.
220  */
221 static void notrace start_secondary(void *unused)
222 {
223 	/*
224 	 * Don't put *anything* except direct CPU state initialization
225 	 * before cpu_init(), SMP booting is too fragile that we want to
226 	 * limit the things done here to the most necessary things.
227 	 */
228 	cr4_init();
229 
230 #ifdef CONFIG_X86_32
231 	/* switch away from the initial page table */
232 	load_cr3(swapper_pg_dir);
233 	__flush_tlb_all();
234 #endif
235 	cpu_init_secondary();
236 	rcu_cpu_starting(raw_smp_processor_id());
237 	x86_cpuinit.early_percpu_clock_init();
238 	smp_callin();
239 
240 	enable_start_cpu0 = 0;
241 
242 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
243 	barrier();
244 	/*
245 	 * Check TSC synchronization with the boot CPU:
246 	 */
247 	check_tsc_sync_target();
248 
249 	speculative_store_bypass_ht_init();
250 
251 	/*
252 	 * Lock vector_lock, set CPU online and bring the vector
253 	 * allocator online. Online must be set with vector_lock held
254 	 * to prevent a concurrent irq setup/teardown from seeing a
255 	 * half valid vector space.
256 	 */
257 	lock_vector_lock();
258 	set_cpu_online(smp_processor_id(), true);
259 	lapic_online();
260 	unlock_vector_lock();
261 	cpu_set_state_online(smp_processor_id());
262 	x86_platform.nmi_init();
263 
264 	/* enable local interrupts */
265 	local_irq_enable();
266 
267 	x86_cpuinit.setup_percpu_clockev();
268 
269 	wmb();
270 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272 
273 /**
274  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
275  * @cpu:	CPU to check
276  */
277 bool topology_is_primary_thread(unsigned int cpu)
278 {
279 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
280 }
281 
282 /**
283  * topology_smt_supported - Check whether SMT is supported by the CPUs
284  */
285 bool topology_smt_supported(void)
286 {
287 	return smp_num_siblings > 1;
288 }
289 
290 /**
291  * topology_phys_to_logical_pkg - Map a physical package id to a logical
292  *
293  * Returns logical package id or -1 if not found
294  */
295 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
296 {
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		struct cpuinfo_x86 *c = &cpu_data(cpu);
301 
302 		if (c->initialized && c->phys_proc_id == phys_pkg)
303 			return c->logical_proc_id;
304 	}
305 	return -1;
306 }
307 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
308 /**
309  * topology_phys_to_logical_die - Map a physical die id to logical
310  *
311  * Returns logical die id or -1 if not found
312  */
313 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
314 {
315 	int cpu;
316 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
317 
318 	for_each_possible_cpu(cpu) {
319 		struct cpuinfo_x86 *c = &cpu_data(cpu);
320 
321 		if (c->initialized && c->cpu_die_id == die_id &&
322 		    c->phys_proc_id == proc_id)
323 			return c->logical_die_id;
324 	}
325 	return -1;
326 }
327 EXPORT_SYMBOL(topology_phys_to_logical_die);
328 
329 /**
330  * topology_update_package_map - Update the physical to logical package map
331  * @pkg:	The physical package id as retrieved via CPUID
332  * @cpu:	The cpu for which this is updated
333  */
334 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
335 {
336 	int new;
337 
338 	/* Already available somewhere? */
339 	new = topology_phys_to_logical_pkg(pkg);
340 	if (new >= 0)
341 		goto found;
342 
343 	new = logical_packages++;
344 	if (new != pkg) {
345 		pr_info("CPU %u Converting physical %u to logical package %u\n",
346 			cpu, pkg, new);
347 	}
348 found:
349 	cpu_data(cpu).logical_proc_id = new;
350 	return 0;
351 }
352 /**
353  * topology_update_die_map - Update the physical to logical die map
354  * @die:	The die id as retrieved via CPUID
355  * @cpu:	The cpu for which this is updated
356  */
357 int topology_update_die_map(unsigned int die, unsigned int cpu)
358 {
359 	int new;
360 
361 	/* Already available somewhere? */
362 	new = topology_phys_to_logical_die(die, cpu);
363 	if (new >= 0)
364 		goto found;
365 
366 	new = logical_die++;
367 	if (new != die) {
368 		pr_info("CPU %u Converting physical %u to logical die %u\n",
369 			cpu, die, new);
370 	}
371 found:
372 	cpu_data(cpu).logical_die_id = new;
373 	return 0;
374 }
375 
376 void __init smp_store_boot_cpu_info(void)
377 {
378 	int id = 0; /* CPU 0 */
379 	struct cpuinfo_x86 *c = &cpu_data(id);
380 
381 	*c = boot_cpu_data;
382 	c->cpu_index = id;
383 	topology_update_package_map(c->phys_proc_id, id);
384 	topology_update_die_map(c->cpu_die_id, id);
385 	c->initialized = true;
386 }
387 
388 /*
389  * The bootstrap kernel entry code has set these up. Save them for
390  * a given CPU
391  */
392 void smp_store_cpu_info(int id)
393 {
394 	struct cpuinfo_x86 *c = &cpu_data(id);
395 
396 	/* Copy boot_cpu_data only on the first bringup */
397 	if (!c->initialized)
398 		*c = boot_cpu_data;
399 	c->cpu_index = id;
400 	/*
401 	 * During boot time, CPU0 has this setup already. Save the info when
402 	 * bringing up AP or offlined CPU0.
403 	 */
404 	identify_secondary_cpu(c);
405 	c->initialized = true;
406 }
407 
408 static bool
409 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
410 {
411 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
412 
413 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
414 }
415 
416 static bool
417 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
418 {
419 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
420 
421 	return !WARN_ONCE(!topology_same_node(c, o),
422 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
423 		"[node: %d != %d]. Ignoring dependency.\n",
424 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
425 }
426 
427 #define link_mask(mfunc, c1, c2)					\
428 do {									\
429 	cpumask_set_cpu((c1), mfunc(c2));				\
430 	cpumask_set_cpu((c2), mfunc(c1));				\
431 } while (0)
432 
433 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
434 {
435 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
436 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
437 
438 		if (c->phys_proc_id == o->phys_proc_id &&
439 		    c->cpu_die_id == o->cpu_die_id &&
440 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
441 			if (c->cpu_core_id == o->cpu_core_id)
442 				return topology_sane(c, o, "smt");
443 
444 			if ((c->cu_id != 0xff) &&
445 			    (o->cu_id != 0xff) &&
446 			    (c->cu_id == o->cu_id))
447 				return topology_sane(c, o, "smt");
448 		}
449 
450 	} else if (c->phys_proc_id == o->phys_proc_id &&
451 		   c->cpu_die_id == o->cpu_die_id &&
452 		   c->cpu_core_id == o->cpu_core_id) {
453 		return topology_sane(c, o, "smt");
454 	}
455 
456 	return false;
457 }
458 
459 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
460 {
461 	if (c->phys_proc_id == o->phys_proc_id &&
462 	    c->cpu_die_id == o->cpu_die_id)
463 		return true;
464 	return false;
465 }
466 
467 /*
468  * Unlike the other levels, we do not enforce keeping a
469  * multicore group inside a NUMA node.  If this happens, we will
470  * discard the MC level of the topology later.
471  */
472 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
473 {
474 	if (c->phys_proc_id == o->phys_proc_id)
475 		return true;
476 	return false;
477 }
478 
479 /*
480  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
481  *
482  * Any Intel CPU that has multiple nodes per package and does not
483  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
484  *
485  * When in SNC mode, these CPUs enumerate an LLC that is shared
486  * by multiple NUMA nodes. The LLC is shared for off-package data
487  * access but private to the NUMA node (half of the package) for
488  * on-package access. CPUID (the source of the information about
489  * the LLC) can only enumerate the cache as shared or unshared,
490  * but not this particular configuration.
491  */
492 
493 static const struct x86_cpu_id intel_cod_cpu[] = {
494 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
495 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
496 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
497 	{}
498 };
499 
500 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
501 {
502 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
503 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
504 	bool intel_snc = id && id->driver_data;
505 
506 	/* Do not match if we do not have a valid APICID for cpu: */
507 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
508 		return false;
509 
510 	/* Do not match if LLC id does not match: */
511 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
512 		return false;
513 
514 	/*
515 	 * Allow the SNC topology without warning. Return of false
516 	 * means 'c' does not share the LLC of 'o'. This will be
517 	 * reflected to userspace.
518 	 */
519 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
520 		return false;
521 
522 	return topology_sane(c, o, "llc");
523 }
524 
525 
526 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
527 static inline int x86_sched_itmt_flags(void)
528 {
529 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
530 }
531 
532 #ifdef CONFIG_SCHED_MC
533 static int x86_core_flags(void)
534 {
535 	return cpu_core_flags() | x86_sched_itmt_flags();
536 }
537 #endif
538 #ifdef CONFIG_SCHED_SMT
539 static int x86_smt_flags(void)
540 {
541 	return cpu_smt_flags() | x86_sched_itmt_flags();
542 }
543 #endif
544 #endif
545 
546 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
547 #ifdef CONFIG_SCHED_SMT
548 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
549 #endif
550 #ifdef CONFIG_SCHED_MC
551 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
552 #endif
553 	{ NULL, },
554 };
555 
556 static struct sched_domain_topology_level x86_topology[] = {
557 #ifdef CONFIG_SCHED_SMT
558 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
559 #endif
560 #ifdef CONFIG_SCHED_MC
561 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
562 #endif
563 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
564 	{ NULL, },
565 };
566 
567 /*
568  * Set if a package/die has multiple NUMA nodes inside.
569  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
570  * Sub-NUMA Clustering have this.
571  */
572 static bool x86_has_numa_in_package;
573 
574 void set_cpu_sibling_map(int cpu)
575 {
576 	bool has_smt = smp_num_siblings > 1;
577 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
578 	struct cpuinfo_x86 *c = &cpu_data(cpu);
579 	struct cpuinfo_x86 *o;
580 	int i, threads;
581 
582 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
583 
584 	if (!has_mp) {
585 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
586 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
587 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
588 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
589 		c->booted_cores = 1;
590 		return;
591 	}
592 
593 	for_each_cpu(i, cpu_sibling_setup_mask) {
594 		o = &cpu_data(i);
595 
596 		if (match_pkg(c, o) && !topology_same_node(c, o))
597 			x86_has_numa_in_package = true;
598 
599 		if ((i == cpu) || (has_smt && match_smt(c, o)))
600 			link_mask(topology_sibling_cpumask, cpu, i);
601 
602 		if ((i == cpu) || (has_mp && match_llc(c, o)))
603 			link_mask(cpu_llc_shared_mask, cpu, i);
604 
605 		if ((i == cpu) || (has_mp && match_die(c, o)))
606 			link_mask(topology_die_cpumask, cpu, i);
607 	}
608 
609 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
610 	if (threads > __max_smt_threads)
611 		__max_smt_threads = threads;
612 
613 	/*
614 	 * This needs a separate iteration over the cpus because we rely on all
615 	 * topology_sibling_cpumask links to be set-up.
616 	 */
617 	for_each_cpu(i, cpu_sibling_setup_mask) {
618 		o = &cpu_data(i);
619 
620 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
621 			link_mask(topology_core_cpumask, cpu, i);
622 
623 			/*
624 			 *  Does this new cpu bringup a new core?
625 			 */
626 			if (threads == 1) {
627 				/*
628 				 * for each core in package, increment
629 				 * the booted_cores for this new cpu
630 				 */
631 				if (cpumask_first(
632 				    topology_sibling_cpumask(i)) == i)
633 					c->booted_cores++;
634 				/*
635 				 * increment the core count for all
636 				 * the other cpus in this package
637 				 */
638 				if (i != cpu)
639 					cpu_data(i).booted_cores++;
640 			} else if (i != cpu && !c->booted_cores)
641 				c->booted_cores = cpu_data(i).booted_cores;
642 		}
643 	}
644 }
645 
646 /* maps the cpu to the sched domain representing multi-core */
647 const struct cpumask *cpu_coregroup_mask(int cpu)
648 {
649 	return cpu_llc_shared_mask(cpu);
650 }
651 
652 static void impress_friends(void)
653 {
654 	int cpu;
655 	unsigned long bogosum = 0;
656 	/*
657 	 * Allow the user to impress friends.
658 	 */
659 	pr_debug("Before bogomips\n");
660 	for_each_possible_cpu(cpu)
661 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
662 			bogosum += cpu_data(cpu).loops_per_jiffy;
663 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
664 		num_online_cpus(),
665 		bogosum/(500000/HZ),
666 		(bogosum/(5000/HZ))%100);
667 
668 	pr_debug("Before bogocount - setting activated=1\n");
669 }
670 
671 void __inquire_remote_apic(int apicid)
672 {
673 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
674 	const char * const names[] = { "ID", "VERSION", "SPIV" };
675 	int timeout;
676 	u32 status;
677 
678 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
679 
680 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
681 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
682 
683 		/*
684 		 * Wait for idle.
685 		 */
686 		status = safe_apic_wait_icr_idle();
687 		if (status)
688 			pr_cont("a previous APIC delivery may have failed\n");
689 
690 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
691 
692 		timeout = 0;
693 		do {
694 			udelay(100);
695 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
696 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
697 
698 		switch (status) {
699 		case APIC_ICR_RR_VALID:
700 			status = apic_read(APIC_RRR);
701 			pr_cont("%08x\n", status);
702 			break;
703 		default:
704 			pr_cont("failed\n");
705 		}
706 	}
707 }
708 
709 /*
710  * The Multiprocessor Specification 1.4 (1997) example code suggests
711  * that there should be a 10ms delay between the BSP asserting INIT
712  * and de-asserting INIT, when starting a remote processor.
713  * But that slows boot and resume on modern processors, which include
714  * many cores and don't require that delay.
715  *
716  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
717  * Modern processor families are quirked to remove the delay entirely.
718  */
719 #define UDELAY_10MS_DEFAULT 10000
720 
721 static unsigned int init_udelay = UINT_MAX;
722 
723 static int __init cpu_init_udelay(char *str)
724 {
725 	get_option(&str, &init_udelay);
726 
727 	return 0;
728 }
729 early_param("cpu_init_udelay", cpu_init_udelay);
730 
731 static void __init smp_quirk_init_udelay(void)
732 {
733 	/* if cmdline changed it from default, leave it alone */
734 	if (init_udelay != UINT_MAX)
735 		return;
736 
737 	/* if modern processor, use no delay */
738 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
739 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
740 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
741 		init_udelay = 0;
742 		return;
743 	}
744 	/* else, use legacy delay */
745 	init_udelay = UDELAY_10MS_DEFAULT;
746 }
747 
748 /*
749  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
750  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
751  * won't ... remember to clear down the APIC, etc later.
752  */
753 int
754 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
755 {
756 	u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
757 	unsigned long send_status, accept_status = 0;
758 	int maxlvt;
759 
760 	/* Target chip */
761 	/* Boot on the stack */
762 	/* Kick the second */
763 	apic_icr_write(APIC_DM_NMI | dm, apicid);
764 
765 	pr_debug("Waiting for send to finish...\n");
766 	send_status = safe_apic_wait_icr_idle();
767 
768 	/*
769 	 * Give the other CPU some time to accept the IPI.
770 	 */
771 	udelay(200);
772 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
773 		maxlvt = lapic_get_maxlvt();
774 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
775 			apic_write(APIC_ESR, 0);
776 		accept_status = (apic_read(APIC_ESR) & 0xEF);
777 	}
778 	pr_debug("NMI sent\n");
779 
780 	if (send_status)
781 		pr_err("APIC never delivered???\n");
782 	if (accept_status)
783 		pr_err("APIC delivery error (%lx)\n", accept_status);
784 
785 	return (send_status | accept_status);
786 }
787 
788 static int
789 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
790 {
791 	unsigned long send_status = 0, accept_status = 0;
792 	int maxlvt, num_starts, j;
793 
794 	maxlvt = lapic_get_maxlvt();
795 
796 	/*
797 	 * Be paranoid about clearing APIC errors.
798 	 */
799 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
800 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
801 			apic_write(APIC_ESR, 0);
802 		apic_read(APIC_ESR);
803 	}
804 
805 	pr_debug("Asserting INIT\n");
806 
807 	/*
808 	 * Turn INIT on target chip
809 	 */
810 	/*
811 	 * Send IPI
812 	 */
813 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
814 		       phys_apicid);
815 
816 	pr_debug("Waiting for send to finish...\n");
817 	send_status = safe_apic_wait_icr_idle();
818 
819 	udelay(init_udelay);
820 
821 	pr_debug("Deasserting INIT\n");
822 
823 	/* Target chip */
824 	/* Send IPI */
825 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
826 
827 	pr_debug("Waiting for send to finish...\n");
828 	send_status = safe_apic_wait_icr_idle();
829 
830 	mb();
831 
832 	/*
833 	 * Should we send STARTUP IPIs ?
834 	 *
835 	 * Determine this based on the APIC version.
836 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
837 	 */
838 	if (APIC_INTEGRATED(boot_cpu_apic_version))
839 		num_starts = 2;
840 	else
841 		num_starts = 0;
842 
843 	/*
844 	 * Run STARTUP IPI loop.
845 	 */
846 	pr_debug("#startup loops: %d\n", num_starts);
847 
848 	for (j = 1; j <= num_starts; j++) {
849 		pr_debug("Sending STARTUP #%d\n", j);
850 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
851 			apic_write(APIC_ESR, 0);
852 		apic_read(APIC_ESR);
853 		pr_debug("After apic_write\n");
854 
855 		/*
856 		 * STARTUP IPI
857 		 */
858 
859 		/* Target chip */
860 		/* Boot on the stack */
861 		/* Kick the second */
862 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
863 			       phys_apicid);
864 
865 		/*
866 		 * Give the other CPU some time to accept the IPI.
867 		 */
868 		if (init_udelay == 0)
869 			udelay(10);
870 		else
871 			udelay(300);
872 
873 		pr_debug("Startup point 1\n");
874 
875 		pr_debug("Waiting for send to finish...\n");
876 		send_status = safe_apic_wait_icr_idle();
877 
878 		/*
879 		 * Give the other CPU some time to accept the IPI.
880 		 */
881 		if (init_udelay == 0)
882 			udelay(10);
883 		else
884 			udelay(200);
885 
886 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
887 			apic_write(APIC_ESR, 0);
888 		accept_status = (apic_read(APIC_ESR) & 0xEF);
889 		if (send_status || accept_status)
890 			break;
891 	}
892 	pr_debug("After Startup\n");
893 
894 	if (send_status)
895 		pr_err("APIC never delivered???\n");
896 	if (accept_status)
897 		pr_err("APIC delivery error (%lx)\n", accept_status);
898 
899 	return (send_status | accept_status);
900 }
901 
902 /* reduce the number of lines printed when booting a large cpu count system */
903 static void announce_cpu(int cpu, int apicid)
904 {
905 	static int current_node = NUMA_NO_NODE;
906 	int node = early_cpu_to_node(cpu);
907 	static int width, node_width;
908 
909 	if (!width)
910 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
911 
912 	if (!node_width)
913 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
914 
915 	if (cpu == 1)
916 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
917 
918 	if (system_state < SYSTEM_RUNNING) {
919 		if (node != current_node) {
920 			if (current_node > (-1))
921 				pr_cont("\n");
922 			current_node = node;
923 
924 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
925 			       node_width - num_digits(node), " ", node);
926 		}
927 
928 		/* Add padding for the BSP */
929 		if (cpu == 1)
930 			pr_cont("%*s", width + 1, " ");
931 
932 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
933 
934 	} else
935 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
936 			node, cpu, apicid);
937 }
938 
939 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
940 {
941 	int cpu;
942 
943 	cpu = smp_processor_id();
944 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
945 		return NMI_HANDLED;
946 
947 	return NMI_DONE;
948 }
949 
950 /*
951  * Wake up AP by INIT, INIT, STARTUP sequence.
952  *
953  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
954  * boot-strap code which is not a desired behavior for waking up BSP. To
955  * void the boot-strap code, wake up CPU0 by NMI instead.
956  *
957  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
958  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
959  * We'll change this code in the future to wake up hard offlined CPU0 if
960  * real platform and request are available.
961  */
962 static int
963 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
964 	       int *cpu0_nmi_registered)
965 {
966 	int id;
967 	int boot_error;
968 
969 	preempt_disable();
970 
971 	/*
972 	 * Wake up AP by INIT, INIT, STARTUP sequence.
973 	 */
974 	if (cpu) {
975 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
976 		goto out;
977 	}
978 
979 	/*
980 	 * Wake up BSP by nmi.
981 	 *
982 	 * Register a NMI handler to help wake up CPU0.
983 	 */
984 	boot_error = register_nmi_handler(NMI_LOCAL,
985 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
986 
987 	if (!boot_error) {
988 		enable_start_cpu0 = 1;
989 		*cpu0_nmi_registered = 1;
990 		id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
991 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
992 	}
993 
994 out:
995 	preempt_enable();
996 
997 	return boot_error;
998 }
999 
1000 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1001 {
1002 	int ret;
1003 
1004 	/* Just in case we booted with a single CPU. */
1005 	alternatives_enable_smp();
1006 
1007 	per_cpu(current_task, cpu) = idle;
1008 	cpu_init_stack_canary(cpu, idle);
1009 
1010 	/* Initialize the interrupt stack(s) */
1011 	ret = irq_init_percpu_irqstack(cpu);
1012 	if (ret)
1013 		return ret;
1014 
1015 #ifdef CONFIG_X86_32
1016 	/* Stack for startup_32 can be just as for start_secondary onwards */
1017 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1018 #else
1019 	initial_gs = per_cpu_offset(cpu);
1020 #endif
1021 	return 0;
1022 }
1023 
1024 /*
1025  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1027  * Returns zero if CPU booted OK, else error code from
1028  * ->wakeup_secondary_cpu.
1029  */
1030 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1031 		       int *cpu0_nmi_registered)
1032 {
1033 	/* start_ip had better be page-aligned! */
1034 	unsigned long start_ip = real_mode_header->trampoline_start;
1035 
1036 	unsigned long boot_error = 0;
1037 	unsigned long timeout;
1038 
1039 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1040 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1041 	initial_code = (unsigned long)start_secondary;
1042 	initial_stack  = idle->thread.sp;
1043 
1044 	/* Enable the espfix hack for this CPU */
1045 	init_espfix_ap(cpu);
1046 
1047 	/* So we see what's up */
1048 	announce_cpu(cpu, apicid);
1049 
1050 	/*
1051 	 * This grunge runs the startup process for
1052 	 * the targeted processor.
1053 	 */
1054 
1055 	if (x86_platform.legacy.warm_reset) {
1056 
1057 		pr_debug("Setting warm reset code and vector.\n");
1058 
1059 		smpboot_setup_warm_reset_vector(start_ip);
1060 		/*
1061 		 * Be paranoid about clearing APIC errors.
1062 		*/
1063 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1064 			apic_write(APIC_ESR, 0);
1065 			apic_read(APIC_ESR);
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * AP might wait on cpu_callout_mask in cpu_init() with
1071 	 * cpu_initialized_mask set if previous attempt to online
1072 	 * it timed-out. Clear cpu_initialized_mask so that after
1073 	 * INIT/SIPI it could start with a clean state.
1074 	 */
1075 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1076 	smp_mb();
1077 
1078 	/*
1079 	 * Wake up a CPU in difference cases:
1080 	 * - Use the method in the APIC driver if it's defined
1081 	 * Otherwise,
1082 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1083 	 */
1084 	if (apic->wakeup_secondary_cpu)
1085 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1086 	else
1087 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1088 						     cpu0_nmi_registered);
1089 
1090 	if (!boot_error) {
1091 		/*
1092 		 * Wait 10s total for first sign of life from AP
1093 		 */
1094 		boot_error = -1;
1095 		timeout = jiffies + 10*HZ;
1096 		while (time_before(jiffies, timeout)) {
1097 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1098 				/*
1099 				 * Tell AP to proceed with initialization
1100 				 */
1101 				cpumask_set_cpu(cpu, cpu_callout_mask);
1102 				boot_error = 0;
1103 				break;
1104 			}
1105 			schedule();
1106 		}
1107 	}
1108 
1109 	if (!boot_error) {
1110 		/*
1111 		 * Wait till AP completes initial initialization
1112 		 */
1113 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1114 			/*
1115 			 * Allow other tasks to run while we wait for the
1116 			 * AP to come online. This also gives a chance
1117 			 * for the MTRR work(triggered by the AP coming online)
1118 			 * to be completed in the stop machine context.
1119 			 */
1120 			schedule();
1121 		}
1122 	}
1123 
1124 	if (x86_platform.legacy.warm_reset) {
1125 		/*
1126 		 * Cleanup possible dangling ends...
1127 		 */
1128 		smpboot_restore_warm_reset_vector();
1129 	}
1130 
1131 	return boot_error;
1132 }
1133 
1134 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1135 {
1136 	int apicid = apic->cpu_present_to_apicid(cpu);
1137 	int cpu0_nmi_registered = 0;
1138 	unsigned long flags;
1139 	int err, ret = 0;
1140 
1141 	lockdep_assert_irqs_enabled();
1142 
1143 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1144 
1145 	if (apicid == BAD_APICID ||
1146 	    !physid_isset(apicid, phys_cpu_present_map) ||
1147 	    !apic->apic_id_valid(apicid)) {
1148 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1149 		return -EINVAL;
1150 	}
1151 
1152 	/*
1153 	 * Already booted CPU?
1154 	 */
1155 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1156 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1157 		return -ENOSYS;
1158 	}
1159 
1160 	/*
1161 	 * Save current MTRR state in case it was changed since early boot
1162 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1163 	 */
1164 	mtrr_save_state();
1165 
1166 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1167 	err = cpu_check_up_prepare(cpu);
1168 	if (err && err != -EBUSY)
1169 		return err;
1170 
1171 	/* the FPU context is blank, nobody can own it */
1172 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1173 
1174 	err = common_cpu_up(cpu, tidle);
1175 	if (err)
1176 		return err;
1177 
1178 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1179 	if (err) {
1180 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1181 		ret = -EIO;
1182 		goto unreg_nmi;
1183 	}
1184 
1185 	/*
1186 	 * Check TSC synchronization with the AP (keep irqs disabled
1187 	 * while doing so):
1188 	 */
1189 	local_irq_save(flags);
1190 	check_tsc_sync_source(cpu);
1191 	local_irq_restore(flags);
1192 
1193 	while (!cpu_online(cpu)) {
1194 		cpu_relax();
1195 		touch_nmi_watchdog();
1196 	}
1197 
1198 unreg_nmi:
1199 	/*
1200 	 * Clean up the nmi handler. Do this after the callin and callout sync
1201 	 * to avoid impact of possible long unregister time.
1202 	 */
1203 	if (cpu0_nmi_registered)
1204 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1205 
1206 	return ret;
1207 }
1208 
1209 /**
1210  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1211  */
1212 void arch_disable_smp_support(void)
1213 {
1214 	disable_ioapic_support();
1215 }
1216 
1217 /*
1218  * Fall back to non SMP mode after errors.
1219  *
1220  * RED-PEN audit/test this more. I bet there is more state messed up here.
1221  */
1222 static __init void disable_smp(void)
1223 {
1224 	pr_info("SMP disabled\n");
1225 
1226 	disable_ioapic_support();
1227 
1228 	init_cpu_present(cpumask_of(0));
1229 	init_cpu_possible(cpumask_of(0));
1230 
1231 	if (smp_found_config)
1232 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1233 	else
1234 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1235 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1236 	cpumask_set_cpu(0, topology_core_cpumask(0));
1237 	cpumask_set_cpu(0, topology_die_cpumask(0));
1238 }
1239 
1240 /*
1241  * Various sanity checks.
1242  */
1243 static void __init smp_sanity_check(void)
1244 {
1245 	preempt_disable();
1246 
1247 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1248 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1249 		unsigned int cpu;
1250 		unsigned nr;
1251 
1252 		pr_warn("More than 8 CPUs detected - skipping them\n"
1253 			"Use CONFIG_X86_BIGSMP\n");
1254 
1255 		nr = 0;
1256 		for_each_present_cpu(cpu) {
1257 			if (nr >= 8)
1258 				set_cpu_present(cpu, false);
1259 			nr++;
1260 		}
1261 
1262 		nr = 0;
1263 		for_each_possible_cpu(cpu) {
1264 			if (nr >= 8)
1265 				set_cpu_possible(cpu, false);
1266 			nr++;
1267 		}
1268 
1269 		nr_cpu_ids = 8;
1270 	}
1271 #endif
1272 
1273 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1274 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1275 			hard_smp_processor_id());
1276 
1277 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1278 	}
1279 
1280 	/*
1281 	 * Should not be necessary because the MP table should list the boot
1282 	 * CPU too, but we do it for the sake of robustness anyway.
1283 	 */
1284 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1285 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1286 			  boot_cpu_physical_apicid);
1287 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1288 	}
1289 	preempt_enable();
1290 }
1291 
1292 static void __init smp_cpu_index_default(void)
1293 {
1294 	int i;
1295 	struct cpuinfo_x86 *c;
1296 
1297 	for_each_possible_cpu(i) {
1298 		c = &cpu_data(i);
1299 		/* mark all to hotplug */
1300 		c->cpu_index = nr_cpu_ids;
1301 	}
1302 }
1303 
1304 static void __init smp_get_logical_apicid(void)
1305 {
1306 	if (x2apic_mode)
1307 		cpu0_logical_apicid = apic_read(APIC_LDR);
1308 	else
1309 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1310 }
1311 
1312 /*
1313  * Prepare for SMP bootup.
1314  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1315  *            for common interface support.
1316  */
1317 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1318 {
1319 	unsigned int i;
1320 
1321 	smp_cpu_index_default();
1322 
1323 	/*
1324 	 * Setup boot CPU information
1325 	 */
1326 	smp_store_boot_cpu_info(); /* Final full version of the data */
1327 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1328 	mb();
1329 
1330 	for_each_possible_cpu(i) {
1331 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1332 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1333 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1334 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1335 	}
1336 
1337 	/*
1338 	 * Set 'default' x86 topology, this matches default_topology() in that
1339 	 * it has NUMA nodes as a topology level. See also
1340 	 * native_smp_cpus_done().
1341 	 *
1342 	 * Must be done before set_cpus_sibling_map() is ran.
1343 	 */
1344 	set_sched_topology(x86_topology);
1345 
1346 	set_cpu_sibling_map(0);
1347 	init_freq_invariance(false, false);
1348 	smp_sanity_check();
1349 
1350 	switch (apic_intr_mode) {
1351 	case APIC_PIC:
1352 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1353 		disable_smp();
1354 		return;
1355 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1356 		disable_smp();
1357 		/* Setup local timer */
1358 		x86_init.timers.setup_percpu_clockev();
1359 		return;
1360 	case APIC_VIRTUAL_WIRE:
1361 	case APIC_SYMMETRIC_IO:
1362 		break;
1363 	}
1364 
1365 	/* Setup local timer */
1366 	x86_init.timers.setup_percpu_clockev();
1367 
1368 	smp_get_logical_apicid();
1369 
1370 	pr_info("CPU0: ");
1371 	print_cpu_info(&cpu_data(0));
1372 
1373 	uv_system_init();
1374 
1375 	set_mtrr_aps_delayed_init();
1376 
1377 	smp_quirk_init_udelay();
1378 
1379 	speculative_store_bypass_ht_init();
1380 }
1381 
1382 void arch_thaw_secondary_cpus_begin(void)
1383 {
1384 	set_mtrr_aps_delayed_init();
1385 }
1386 
1387 void arch_thaw_secondary_cpus_end(void)
1388 {
1389 	mtrr_aps_init();
1390 }
1391 
1392 /*
1393  * Early setup to make printk work.
1394  */
1395 void __init native_smp_prepare_boot_cpu(void)
1396 {
1397 	int me = smp_processor_id();
1398 	switch_to_new_gdt(me);
1399 	/* already set me in cpu_online_mask in boot_cpu_init() */
1400 	cpumask_set_cpu(me, cpu_callout_mask);
1401 	cpu_set_state_online(me);
1402 	native_pv_lock_init();
1403 }
1404 
1405 void __init calculate_max_logical_packages(void)
1406 {
1407 	int ncpus;
1408 
1409 	/*
1410 	 * Today neither Intel nor AMD support heterogeneous systems so
1411 	 * extrapolate the boot cpu's data to all packages.
1412 	 */
1413 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1414 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1415 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1416 }
1417 
1418 void __init native_smp_cpus_done(unsigned int max_cpus)
1419 {
1420 	pr_debug("Boot done\n");
1421 
1422 	calculate_max_logical_packages();
1423 
1424 	if (x86_has_numa_in_package)
1425 		set_sched_topology(x86_numa_in_package_topology);
1426 
1427 	nmi_selftest();
1428 	impress_friends();
1429 	mtrr_aps_init();
1430 }
1431 
1432 static int __initdata setup_possible_cpus = -1;
1433 static int __init _setup_possible_cpus(char *str)
1434 {
1435 	get_option(&str, &setup_possible_cpus);
1436 	return 0;
1437 }
1438 early_param("possible_cpus", _setup_possible_cpus);
1439 
1440 
1441 /*
1442  * cpu_possible_mask should be static, it cannot change as cpu's
1443  * are onlined, or offlined. The reason is per-cpu data-structures
1444  * are allocated by some modules at init time, and don't expect to
1445  * do this dynamically on cpu arrival/departure.
1446  * cpu_present_mask on the other hand can change dynamically.
1447  * In case when cpu_hotplug is not compiled, then we resort to current
1448  * behaviour, which is cpu_possible == cpu_present.
1449  * - Ashok Raj
1450  *
1451  * Three ways to find out the number of additional hotplug CPUs:
1452  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1453  * - The user can overwrite it with possible_cpus=NUM
1454  * - Otherwise don't reserve additional CPUs.
1455  * We do this because additional CPUs waste a lot of memory.
1456  * -AK
1457  */
1458 __init void prefill_possible_map(void)
1459 {
1460 	int i, possible;
1461 
1462 	/* No boot processor was found in mptable or ACPI MADT */
1463 	if (!num_processors) {
1464 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1465 			int apicid = boot_cpu_physical_apicid;
1466 			int cpu = hard_smp_processor_id();
1467 
1468 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1469 
1470 			/* Make sure boot cpu is enumerated */
1471 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1472 			    apic->apic_id_valid(apicid))
1473 				generic_processor_info(apicid, boot_cpu_apic_version);
1474 		}
1475 
1476 		if (!num_processors)
1477 			num_processors = 1;
1478 	}
1479 
1480 	i = setup_max_cpus ?: 1;
1481 	if (setup_possible_cpus == -1) {
1482 		possible = num_processors;
1483 #ifdef CONFIG_HOTPLUG_CPU
1484 		if (setup_max_cpus)
1485 			possible += disabled_cpus;
1486 #else
1487 		if (possible > i)
1488 			possible = i;
1489 #endif
1490 	} else
1491 		possible = setup_possible_cpus;
1492 
1493 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1494 
1495 	/* nr_cpu_ids could be reduced via nr_cpus= */
1496 	if (possible > nr_cpu_ids) {
1497 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1498 			possible, nr_cpu_ids);
1499 		possible = nr_cpu_ids;
1500 	}
1501 
1502 #ifdef CONFIG_HOTPLUG_CPU
1503 	if (!setup_max_cpus)
1504 #endif
1505 	if (possible > i) {
1506 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1507 			possible, setup_max_cpus);
1508 		possible = i;
1509 	}
1510 
1511 	nr_cpu_ids = possible;
1512 
1513 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1514 		possible, max_t(int, possible - num_processors, 0));
1515 
1516 	reset_cpu_possible_mask();
1517 
1518 	for (i = 0; i < possible; i++)
1519 		set_cpu_possible(i, true);
1520 }
1521 
1522 #ifdef CONFIG_HOTPLUG_CPU
1523 
1524 /* Recompute SMT state for all CPUs on offline */
1525 static void recompute_smt_state(void)
1526 {
1527 	int max_threads, cpu;
1528 
1529 	max_threads = 0;
1530 	for_each_online_cpu (cpu) {
1531 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1532 
1533 		if (threads > max_threads)
1534 			max_threads = threads;
1535 	}
1536 	__max_smt_threads = max_threads;
1537 }
1538 
1539 static void remove_siblinginfo(int cpu)
1540 {
1541 	int sibling;
1542 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1543 
1544 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1545 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1546 		/*/
1547 		 * last thread sibling in this cpu core going down
1548 		 */
1549 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1550 			cpu_data(sibling).booted_cores--;
1551 	}
1552 
1553 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1554 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1555 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1556 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1557 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1558 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1559 	cpumask_clear(cpu_llc_shared_mask(cpu));
1560 	cpumask_clear(topology_sibling_cpumask(cpu));
1561 	cpumask_clear(topology_core_cpumask(cpu));
1562 	cpumask_clear(topology_die_cpumask(cpu));
1563 	c->cpu_core_id = 0;
1564 	c->booted_cores = 0;
1565 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1566 	recompute_smt_state();
1567 }
1568 
1569 static void remove_cpu_from_maps(int cpu)
1570 {
1571 	set_cpu_online(cpu, false);
1572 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1573 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1574 	/* was set by cpu_init() */
1575 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1576 	numa_remove_cpu(cpu);
1577 }
1578 
1579 void cpu_disable_common(void)
1580 {
1581 	int cpu = smp_processor_id();
1582 
1583 	remove_siblinginfo(cpu);
1584 
1585 	/* It's now safe to remove this processor from the online map */
1586 	lock_vector_lock();
1587 	remove_cpu_from_maps(cpu);
1588 	unlock_vector_lock();
1589 	fixup_irqs();
1590 	lapic_offline();
1591 }
1592 
1593 int native_cpu_disable(void)
1594 {
1595 	int ret;
1596 
1597 	ret = lapic_can_unplug_cpu();
1598 	if (ret)
1599 		return ret;
1600 
1601 	cpu_disable_common();
1602 
1603         /*
1604          * Disable the local APIC. Otherwise IPI broadcasts will reach
1605          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1606          * messages.
1607          *
1608          * Disabling the APIC must happen after cpu_disable_common()
1609          * which invokes fixup_irqs().
1610          *
1611          * Disabling the APIC preserves already set bits in IRR, but
1612          * an interrupt arriving after disabling the local APIC does not
1613          * set the corresponding IRR bit.
1614          *
1615          * fixup_irqs() scans IRR for set bits so it can raise a not
1616          * yet handled interrupt on the new destination CPU via an IPI
1617          * but obviously it can't do so for IRR bits which are not set.
1618          * IOW, interrupts arriving after disabling the local APIC will
1619          * be lost.
1620          */
1621 	apic_soft_disable();
1622 
1623 	return 0;
1624 }
1625 
1626 int common_cpu_die(unsigned int cpu)
1627 {
1628 	int ret = 0;
1629 
1630 	/* We don't do anything here: idle task is faking death itself. */
1631 
1632 	/* They ack this in play_dead() by setting CPU_DEAD */
1633 	if (cpu_wait_death(cpu, 5)) {
1634 		if (system_state == SYSTEM_RUNNING)
1635 			pr_info("CPU %u is now offline\n", cpu);
1636 	} else {
1637 		pr_err("CPU %u didn't die...\n", cpu);
1638 		ret = -1;
1639 	}
1640 
1641 	return ret;
1642 }
1643 
1644 void native_cpu_die(unsigned int cpu)
1645 {
1646 	common_cpu_die(cpu);
1647 }
1648 
1649 void play_dead_common(void)
1650 {
1651 	idle_task_exit();
1652 
1653 	/* Ack it */
1654 	(void)cpu_report_death();
1655 
1656 	/*
1657 	 * With physical CPU hotplug, we should halt the cpu
1658 	 */
1659 	local_irq_disable();
1660 }
1661 
1662 /**
1663  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1664  *
1665  * If NMI wants to wake up CPU0, start CPU0.
1666  */
1667 void cond_wakeup_cpu0(void)
1668 {
1669 	if (smp_processor_id() == 0 && enable_start_cpu0)
1670 		start_cpu0();
1671 }
1672 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1673 
1674 /*
1675  * We need to flush the caches before going to sleep, lest we have
1676  * dirty data in our caches when we come back up.
1677  */
1678 static inline void mwait_play_dead(void)
1679 {
1680 	unsigned int eax, ebx, ecx, edx;
1681 	unsigned int highest_cstate = 0;
1682 	unsigned int highest_subcstate = 0;
1683 	void *mwait_ptr;
1684 	int i;
1685 
1686 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1687 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1688 		return;
1689 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1690 		return;
1691 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1692 		return;
1693 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1694 		return;
1695 
1696 	eax = CPUID_MWAIT_LEAF;
1697 	ecx = 0;
1698 	native_cpuid(&eax, &ebx, &ecx, &edx);
1699 
1700 	/*
1701 	 * eax will be 0 if EDX enumeration is not valid.
1702 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1703 	 */
1704 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1705 		eax = 0;
1706 	} else {
1707 		edx >>= MWAIT_SUBSTATE_SIZE;
1708 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1709 			if (edx & MWAIT_SUBSTATE_MASK) {
1710 				highest_cstate = i;
1711 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1712 			}
1713 		}
1714 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1715 			(highest_subcstate - 1);
1716 	}
1717 
1718 	/*
1719 	 * This should be a memory location in a cache line which is
1720 	 * unlikely to be touched by other processors.  The actual
1721 	 * content is immaterial as it is not actually modified in any way.
1722 	 */
1723 	mwait_ptr = &current_thread_info()->flags;
1724 
1725 	wbinvd();
1726 
1727 	while (1) {
1728 		/*
1729 		 * The CLFLUSH is a workaround for erratum AAI65 for
1730 		 * the Xeon 7400 series.  It's not clear it is actually
1731 		 * needed, but it should be harmless in either case.
1732 		 * The WBINVD is insufficient due to the spurious-wakeup
1733 		 * case where we return around the loop.
1734 		 */
1735 		mb();
1736 		clflush(mwait_ptr);
1737 		mb();
1738 		__monitor(mwait_ptr, 0, 0);
1739 		mb();
1740 		__mwait(eax, 0);
1741 
1742 		cond_wakeup_cpu0();
1743 	}
1744 }
1745 
1746 void hlt_play_dead(void)
1747 {
1748 	if (__this_cpu_read(cpu_info.x86) >= 4)
1749 		wbinvd();
1750 
1751 	while (1) {
1752 		native_halt();
1753 
1754 		cond_wakeup_cpu0();
1755 	}
1756 }
1757 
1758 void native_play_dead(void)
1759 {
1760 	play_dead_common();
1761 	tboot_shutdown(TB_SHUTDOWN_WFS);
1762 
1763 	mwait_play_dead();	/* Only returns on failure */
1764 	if (cpuidle_play_dead())
1765 		hlt_play_dead();
1766 }
1767 
1768 #else /* ... !CONFIG_HOTPLUG_CPU */
1769 int native_cpu_disable(void)
1770 {
1771 	return -ENOSYS;
1772 }
1773 
1774 void native_cpu_die(unsigned int cpu)
1775 {
1776 	/* We said "no" in __cpu_disable */
1777 	BUG();
1778 }
1779 
1780 void native_play_dead(void)
1781 {
1782 	BUG();
1783 }
1784 
1785 #endif
1786 
1787 #ifdef CONFIG_X86_64
1788 /*
1789  * APERF/MPERF frequency ratio computation.
1790  *
1791  * The scheduler wants to do frequency invariant accounting and needs a <1
1792  * ratio to account for the 'current' frequency, corresponding to
1793  * freq_curr / freq_max.
1794  *
1795  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1796  * our P-state setting is little more than a request/hint, we need to observe
1797  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1798  * interval after discarding idle time. This is given by:
1799  *
1800  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1801  *
1802  * where freq_base is the max non-turbo P-state.
1803  *
1804  * The freq_max term has to be set to a somewhat arbitrary value, because we
1805  * can't know which turbo states will be available at a given point in time:
1806  * it all depends on the thermal headroom of the entire package. We set it to
1807  * the turbo level with 4 cores active.
1808  *
1809  * Benchmarks show that's a good compromise between the 1C turbo ratio
1810  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1811  * which would ignore the entire turbo range (a conspicuous part, making
1812  * freq_curr/freq_max always maxed out).
1813  *
1814  * An exception to the heuristic above is the Atom uarch, where we choose the
1815  * highest turbo level for freq_max since Atom's are generally oriented towards
1816  * power efficiency.
1817  *
1818  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1819  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1820  */
1821 
1822 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1823 
1824 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1825 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1826 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1827 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1828 
1829 void arch_set_max_freq_ratio(bool turbo_disabled)
1830 {
1831 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1832 					arch_turbo_freq_ratio;
1833 }
1834 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1835 
1836 static bool turbo_disabled(void)
1837 {
1838 	u64 misc_en;
1839 	int err;
1840 
1841 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1842 	if (err)
1843 		return false;
1844 
1845 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1846 }
1847 
1848 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1849 {
1850 	int err;
1851 
1852 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1853 	if (err)
1854 		return false;
1855 
1856 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1857 	if (err)
1858 		return false;
1859 
1860 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1861 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1862 
1863 	return true;
1864 }
1865 
1866 #define X86_MATCH(model)					\
1867 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1868 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1869 
1870 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1871 	X86_MATCH(XEON_PHI_KNL),
1872 	X86_MATCH(XEON_PHI_KNM),
1873 	{}
1874 };
1875 
1876 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1877 	X86_MATCH(SKYLAKE_X),
1878 	{}
1879 };
1880 
1881 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1882 	X86_MATCH(ATOM_GOLDMONT),
1883 	X86_MATCH(ATOM_GOLDMONT_D),
1884 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1885 	{}
1886 };
1887 
1888 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1889 				int num_delta_fratio)
1890 {
1891 	int fratio, delta_fratio, found;
1892 	int err, i;
1893 	u64 msr;
1894 
1895 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1896 	if (err)
1897 		return false;
1898 
1899 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1900 
1901 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1902 	if (err)
1903 		return false;
1904 
1905 	fratio = (msr >> 8) & 0xFF;
1906 	i = 16;
1907 	found = 0;
1908 	do {
1909 		if (found >= num_delta_fratio) {
1910 			*turbo_freq = fratio;
1911 			return true;
1912 		}
1913 
1914 		delta_fratio = (msr >> (i + 5)) & 0x7;
1915 
1916 		if (delta_fratio) {
1917 			found += 1;
1918 			fratio -= delta_fratio;
1919 		}
1920 
1921 		i += 8;
1922 	} while (i < 64);
1923 
1924 	return true;
1925 }
1926 
1927 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1928 {
1929 	u64 ratios, counts;
1930 	u32 group_size;
1931 	int err, i;
1932 
1933 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1934 	if (err)
1935 		return false;
1936 
1937 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1938 
1939 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1940 	if (err)
1941 		return false;
1942 
1943 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1944 	if (err)
1945 		return false;
1946 
1947 	for (i = 0; i < 64; i += 8) {
1948 		group_size = (counts >> i) & 0xFF;
1949 		if (group_size >= size) {
1950 			*turbo_freq = (ratios >> i) & 0xFF;
1951 			return true;
1952 		}
1953 	}
1954 
1955 	return false;
1956 }
1957 
1958 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1959 {
1960 	u64 msr;
1961 	int err;
1962 
1963 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1964 	if (err)
1965 		return false;
1966 
1967 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1968 	if (err)
1969 		return false;
1970 
1971 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1972 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1973 
1974 	/* The CPU may have less than 4 cores */
1975 	if (!*turbo_freq)
1976 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1977 
1978 	return true;
1979 }
1980 
1981 static bool intel_set_max_freq_ratio(void)
1982 {
1983 	u64 base_freq, turbo_freq;
1984 	u64 turbo_ratio;
1985 
1986 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1987 		goto out;
1988 
1989 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1990 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1991 		goto out;
1992 
1993 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1994 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1995 		goto out;
1996 
1997 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1998 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1999 		goto out;
2000 
2001 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2002 		goto out;
2003 
2004 	return false;
2005 
2006 out:
2007 	/*
2008 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2009 	 * but then fill all MSR's with zeroes.
2010 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2011 	 * in MSR_TURBO_RATIO_LIMIT.
2012 	 */
2013 	if (!base_freq || !turbo_freq) {
2014 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2015 		return false;
2016 	}
2017 
2018 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2019 	if (!turbo_ratio) {
2020 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2021 		return false;
2022 	}
2023 
2024 	arch_turbo_freq_ratio = turbo_ratio;
2025 	arch_set_max_freq_ratio(turbo_disabled());
2026 
2027 	return true;
2028 }
2029 
2030 #ifdef CONFIG_ACPI_CPPC_LIB
2031 static bool amd_set_max_freq_ratio(void)
2032 {
2033 	struct cppc_perf_caps perf_caps;
2034 	u64 highest_perf, nominal_perf;
2035 	u64 perf_ratio;
2036 	int rc;
2037 
2038 	rc = cppc_get_perf_caps(0, &perf_caps);
2039 	if (rc) {
2040 		pr_debug("Could not retrieve perf counters (%d)\n", rc);
2041 		return false;
2042 	}
2043 
2044 	highest_perf = amd_get_highest_perf();
2045 	nominal_perf = perf_caps.nominal_perf;
2046 
2047 	if (!highest_perf || !nominal_perf) {
2048 		pr_debug("Could not retrieve highest or nominal performance\n");
2049 		return false;
2050 	}
2051 
2052 	perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2053 	/* midpoint between max_boost and max_P */
2054 	perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2055 	if (!perf_ratio) {
2056 		pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2057 		return false;
2058 	}
2059 
2060 	arch_turbo_freq_ratio = perf_ratio;
2061 	arch_set_max_freq_ratio(false);
2062 
2063 	return true;
2064 }
2065 #else
2066 static bool amd_set_max_freq_ratio(void)
2067 {
2068 	return false;
2069 }
2070 #endif
2071 
2072 static void init_counter_refs(void)
2073 {
2074 	u64 aperf, mperf;
2075 
2076 	rdmsrl(MSR_IA32_APERF, aperf);
2077 	rdmsrl(MSR_IA32_MPERF, mperf);
2078 
2079 	this_cpu_write(arch_prev_aperf, aperf);
2080 	this_cpu_write(arch_prev_mperf, mperf);
2081 }
2082 
2083 #ifdef CONFIG_PM_SLEEP
2084 static struct syscore_ops freq_invariance_syscore_ops = {
2085 	.resume = init_counter_refs,
2086 };
2087 
2088 static void register_freq_invariance_syscore_ops(void)
2089 {
2090 	/* Bail out if registered already. */
2091 	if (freq_invariance_syscore_ops.node.prev)
2092 		return;
2093 
2094 	register_syscore_ops(&freq_invariance_syscore_ops);
2095 }
2096 #else
2097 static inline void register_freq_invariance_syscore_ops(void) {}
2098 #endif
2099 
2100 static void init_freq_invariance(bool secondary, bool cppc_ready)
2101 {
2102 	bool ret = false;
2103 
2104 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2105 		return;
2106 
2107 	if (secondary) {
2108 		if (static_branch_likely(&arch_scale_freq_key)) {
2109 			init_counter_refs();
2110 		}
2111 		return;
2112 	}
2113 
2114 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2115 		ret = intel_set_max_freq_ratio();
2116 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2117 		if (!cppc_ready) {
2118 			return;
2119 		}
2120 		ret = amd_set_max_freq_ratio();
2121 	}
2122 
2123 	if (ret) {
2124 		init_counter_refs();
2125 		static_branch_enable(&arch_scale_freq_key);
2126 		register_freq_invariance_syscore_ops();
2127 		pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2128 	} else {
2129 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2130 	}
2131 }
2132 
2133 #ifdef CONFIG_ACPI_CPPC_LIB
2134 static DEFINE_MUTEX(freq_invariance_lock);
2135 
2136 void init_freq_invariance_cppc(void)
2137 {
2138 	static bool secondary;
2139 
2140 	mutex_lock(&freq_invariance_lock);
2141 
2142 	init_freq_invariance(secondary, true);
2143 	secondary = true;
2144 
2145 	mutex_unlock(&freq_invariance_lock);
2146 }
2147 #endif
2148 
2149 static void disable_freq_invariance_workfn(struct work_struct *work)
2150 {
2151 	static_branch_disable(&arch_scale_freq_key);
2152 }
2153 
2154 static DECLARE_WORK(disable_freq_invariance_work,
2155 		    disable_freq_invariance_workfn);
2156 
2157 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2158 
2159 void arch_scale_freq_tick(void)
2160 {
2161 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2162 	u64 aperf, mperf;
2163 	u64 acnt, mcnt;
2164 
2165 	if (!arch_scale_freq_invariant())
2166 		return;
2167 
2168 	rdmsrl(MSR_IA32_APERF, aperf);
2169 	rdmsrl(MSR_IA32_MPERF, mperf);
2170 
2171 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2172 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2173 
2174 	this_cpu_write(arch_prev_aperf, aperf);
2175 	this_cpu_write(arch_prev_mperf, mperf);
2176 
2177 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2178 		goto error;
2179 
2180 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2181 		goto error;
2182 
2183 	freq_scale = div64_u64(acnt, mcnt);
2184 	if (!freq_scale)
2185 		goto error;
2186 
2187 	if (freq_scale > SCHED_CAPACITY_SCALE)
2188 		freq_scale = SCHED_CAPACITY_SCALE;
2189 
2190 	this_cpu_write(arch_freq_scale, freq_scale);
2191 	return;
2192 
2193 error:
2194 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2195 	schedule_work(&disable_freq_invariance_work);
2196 }
2197 #else
2198 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2199 {
2200 }
2201 #endif /* CONFIG_X86_64 */
2202