xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision c040c748)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90 
91 /* representing HT siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
94 
95 /* representing HT and core siblings of each logical CPU */
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
97 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
98 
99 /* representing HT, core, and die siblings of each logical CPU */
100 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
101 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
102 
103 /* Per CPU bogomips and other parameters */
104 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
105 EXPORT_PER_CPU_SYMBOL(cpu_info);
106 
107 /* CPUs which are the primary SMT threads */
108 struct cpumask __cpu_primary_thread_mask __read_mostly;
109 
110 /* Representing CPUs for which sibling maps can be computed */
111 static cpumask_var_t cpu_sibling_setup_mask;
112 
113 struct mwait_cpu_dead {
114 	unsigned int	control;
115 	unsigned int	status;
116 };
117 
118 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
119 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
120 
121 /*
122  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
123  * that it's unlikely to be touched by other CPUs.
124  */
125 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
126 
127 /* Logical package management. We might want to allocate that dynamically */
128 unsigned int __max_logical_packages __read_mostly;
129 EXPORT_SYMBOL(__max_logical_packages);
130 static unsigned int logical_packages __read_mostly;
131 static unsigned int logical_die __read_mostly;
132 
133 /* Maximum number of SMT threads on any online core */
134 int __read_mostly __max_smt_threads = 1;
135 
136 /* Flag to indicate if a complete sched domain rebuild is required */
137 bool x86_topology_update;
138 
139 int arch_update_cpu_topology(void)
140 {
141 	int retval = x86_topology_update;
142 
143 	x86_topology_update = false;
144 	return retval;
145 }
146 
147 static unsigned int smpboot_warm_reset_vector_count;
148 
149 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
150 {
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&rtc_lock, flags);
154 	if (!smpboot_warm_reset_vector_count++) {
155 		CMOS_WRITE(0xa, 0xf);
156 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
157 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
158 	}
159 	spin_unlock_irqrestore(&rtc_lock, flags);
160 }
161 
162 static inline void smpboot_restore_warm_reset_vector(void)
163 {
164 	unsigned long flags;
165 
166 	/*
167 	 * Paranoid:  Set warm reset code and vector here back
168 	 * to default values.
169 	 */
170 	spin_lock_irqsave(&rtc_lock, flags);
171 	if (!--smpboot_warm_reset_vector_count) {
172 		CMOS_WRITE(0, 0xf);
173 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
174 	}
175 	spin_unlock_irqrestore(&rtc_lock, flags);
176 
177 }
178 
179 /* Run the next set of setup steps for the upcoming CPU */
180 static void ap_starting(void)
181 {
182 	int cpuid = smp_processor_id();
183 
184 	/* Mop up eventual mwait_play_dead() wreckage */
185 	this_cpu_write(mwait_cpu_dead.status, 0);
186 	this_cpu_write(mwait_cpu_dead.control, 0);
187 
188 	/*
189 	 * If woken up by an INIT in an 82489DX configuration the alive
190 	 * synchronization guarantees that the CPU does not reach this
191 	 * point before an INIT_deassert IPI reaches the local APIC, so it
192 	 * is now safe to touch the local APIC.
193 	 *
194 	 * Set up this CPU, first the APIC, which is probably redundant on
195 	 * most boards.
196 	 */
197 	apic_ap_setup();
198 
199 	/* Save the processor parameters. */
200 	smp_store_cpu_info(cpuid);
201 
202 	/*
203 	 * The topology information must be up to date before
204 	 * notify_cpu_starting().
205 	 */
206 	set_cpu_sibling_map(cpuid);
207 
208 	ap_init_aperfmperf();
209 
210 	pr_debug("Stack at about %p\n", &cpuid);
211 
212 	wmb();
213 
214 	/*
215 	 * This runs the AP through all the cpuhp states to its target
216 	 * state CPUHP_ONLINE.
217 	 */
218 	notify_cpu_starting(cpuid);
219 }
220 
221 static void ap_calibrate_delay(void)
222 {
223 	/*
224 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
225 	 * smp_store_cpu_info() stored a value that is close but not as
226 	 * accurate as the value just calculated.
227 	 *
228 	 * As this is invoked after the TSC synchronization check,
229 	 * calibrate_delay_is_known() will skip the calibration routine
230 	 * when TSC is synchronized across sockets.
231 	 */
232 	calibrate_delay();
233 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
234 }
235 
236 /*
237  * Activate a secondary processor.
238  */
239 static void notrace start_secondary(void *unused)
240 {
241 	/*
242 	 * Don't put *anything* except direct CPU state initialization
243 	 * before cpu_init(), SMP booting is too fragile that we want to
244 	 * limit the things done here to the most necessary things.
245 	 */
246 	cr4_init();
247 
248 	/*
249 	 * 32-bit specific. 64-bit reaches this code with the correct page
250 	 * table established. Yet another historical divergence.
251 	 */
252 	if (IS_ENABLED(CONFIG_X86_32)) {
253 		/* switch away from the initial page table */
254 		load_cr3(swapper_pg_dir);
255 		__flush_tlb_all();
256 	}
257 
258 	cpu_init_exception_handling();
259 
260 	/*
261 	 * 32-bit systems load the microcode from the ASM startup code for
262 	 * historical reasons.
263 	 *
264 	 * On 64-bit systems load it before reaching the AP alive
265 	 * synchronization point below so it is not part of the full per
266 	 * CPU serialized bringup part when "parallel" bringup is enabled.
267 	 *
268 	 * That's even safe when hyperthreading is enabled in the CPU as
269 	 * the core code starts the primary threads first and leaves the
270 	 * secondary threads waiting for SIPI. Loading microcode on
271 	 * physical cores concurrently is a safe operation.
272 	 *
273 	 * This covers both the Intel specific issue that concurrent
274 	 * microcode loading on SMT siblings must be prohibited and the
275 	 * vendor independent issue`that microcode loading which changes
276 	 * CPUID, MSRs etc. must be strictly serialized to maintain
277 	 * software state correctness.
278 	 */
279 	if (IS_ENABLED(CONFIG_X86_64))
280 		load_ucode_ap();
281 
282 	/*
283 	 * Synchronization point with the hotplug core. Sets this CPUs
284 	 * synchronization state to ALIVE and spin-waits for the control CPU to
285 	 * release this CPU for further bringup.
286 	 */
287 	cpuhp_ap_sync_alive();
288 
289 	cpu_init();
290 	fpu__init_cpu();
291 	rcu_cpu_starting(raw_smp_processor_id());
292 	x86_cpuinit.early_percpu_clock_init();
293 
294 	ap_starting();
295 
296 	/* Check TSC synchronization with the control CPU. */
297 	check_tsc_sync_target();
298 
299 	/*
300 	 * Calibrate the delay loop after the TSC synchronization check.
301 	 * This allows to skip the calibration when TSC is synchronized
302 	 * across sockets.
303 	 */
304 	ap_calibrate_delay();
305 
306 	speculative_store_bypass_ht_init();
307 
308 	/*
309 	 * Lock vector_lock, set CPU online and bring the vector
310 	 * allocator online. Online must be set with vector_lock held
311 	 * to prevent a concurrent irq setup/teardown from seeing a
312 	 * half valid vector space.
313 	 */
314 	lock_vector_lock();
315 	set_cpu_online(smp_processor_id(), true);
316 	lapic_online();
317 	unlock_vector_lock();
318 	x86_platform.nmi_init();
319 
320 	/* enable local interrupts */
321 	local_irq_enable();
322 
323 	x86_cpuinit.setup_percpu_clockev();
324 
325 	wmb();
326 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
327 }
328 
329 /**
330  * topology_phys_to_logical_pkg - Map a physical package id to a logical
331  * @phys_pkg:	The physical package id to map
332  *
333  * Returns logical package id or -1 if not found
334  */
335 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
336 {
337 	int cpu;
338 
339 	for_each_possible_cpu(cpu) {
340 		struct cpuinfo_x86 *c = &cpu_data(cpu);
341 
342 		if (c->initialized && c->phys_proc_id == phys_pkg)
343 			return c->logical_proc_id;
344 	}
345 	return -1;
346 }
347 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
348 
349 /**
350  * topology_phys_to_logical_die - Map a physical die id to logical
351  * @die_id:	The physical die id to map
352  * @cur_cpu:	The CPU for which the mapping is done
353  *
354  * Returns logical die id or -1 if not found
355  */
356 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
357 {
358 	int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
359 
360 	for_each_possible_cpu(cpu) {
361 		struct cpuinfo_x86 *c = &cpu_data(cpu);
362 
363 		if (c->initialized && c->cpu_die_id == die_id &&
364 		    c->phys_proc_id == proc_id)
365 			return c->logical_die_id;
366 	}
367 	return -1;
368 }
369 
370 /**
371  * topology_update_package_map - Update the physical to logical package map
372  * @pkg:	The physical package id as retrieved via CPUID
373  * @cpu:	The cpu for which this is updated
374  */
375 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
376 {
377 	int new;
378 
379 	/* Already available somewhere? */
380 	new = topology_phys_to_logical_pkg(pkg);
381 	if (new >= 0)
382 		goto found;
383 
384 	new = logical_packages++;
385 	if (new != pkg) {
386 		pr_info("CPU %u Converting physical %u to logical package %u\n",
387 			cpu, pkg, new);
388 	}
389 found:
390 	cpu_data(cpu).logical_proc_id = new;
391 	return 0;
392 }
393 /**
394  * topology_update_die_map - Update the physical to logical die map
395  * @die:	The die id as retrieved via CPUID
396  * @cpu:	The cpu for which this is updated
397  */
398 int topology_update_die_map(unsigned int die, unsigned int cpu)
399 {
400 	int new;
401 
402 	/* Already available somewhere? */
403 	new = topology_phys_to_logical_die(die, cpu);
404 	if (new >= 0)
405 		goto found;
406 
407 	new = logical_die++;
408 	if (new != die) {
409 		pr_info("CPU %u Converting physical %u to logical die %u\n",
410 			cpu, die, new);
411 	}
412 found:
413 	cpu_data(cpu).logical_die_id = new;
414 	return 0;
415 }
416 
417 void __init smp_store_boot_cpu_info(void)
418 {
419 	int id = 0; /* CPU 0 */
420 	struct cpuinfo_x86 *c = &cpu_data(id);
421 
422 	*c = boot_cpu_data;
423 	c->cpu_index = id;
424 	topology_update_package_map(c->phys_proc_id, id);
425 	topology_update_die_map(c->cpu_die_id, id);
426 	c->initialized = true;
427 }
428 
429 /*
430  * The bootstrap kernel entry code has set these up. Save them for
431  * a given CPU
432  */
433 void smp_store_cpu_info(int id)
434 {
435 	struct cpuinfo_x86 *c = &cpu_data(id);
436 
437 	/* Copy boot_cpu_data only on the first bringup */
438 	if (!c->initialized)
439 		*c = boot_cpu_data;
440 	c->cpu_index = id;
441 	/*
442 	 * During boot time, CPU0 has this setup already. Save the info when
443 	 * bringing up an AP.
444 	 */
445 	identify_secondary_cpu(c);
446 	c->initialized = true;
447 }
448 
449 static bool
450 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
451 {
452 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
453 
454 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
455 }
456 
457 static bool
458 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
459 {
460 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
461 
462 	return !WARN_ONCE(!topology_same_node(c, o),
463 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
464 		"[node: %d != %d]. Ignoring dependency.\n",
465 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
466 }
467 
468 #define link_mask(mfunc, c1, c2)					\
469 do {									\
470 	cpumask_set_cpu((c1), mfunc(c2));				\
471 	cpumask_set_cpu((c2), mfunc(c1));				\
472 } while (0)
473 
474 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
475 {
476 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
477 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
478 
479 		if (c->phys_proc_id == o->phys_proc_id &&
480 		    c->cpu_die_id == o->cpu_die_id &&
481 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
482 			if (c->cpu_core_id == o->cpu_core_id)
483 				return topology_sane(c, o, "smt");
484 
485 			if ((c->cu_id != 0xff) &&
486 			    (o->cu_id != 0xff) &&
487 			    (c->cu_id == o->cu_id))
488 				return topology_sane(c, o, "smt");
489 		}
490 
491 	} else if (c->phys_proc_id == o->phys_proc_id &&
492 		   c->cpu_die_id == o->cpu_die_id &&
493 		   c->cpu_core_id == o->cpu_core_id) {
494 		return topology_sane(c, o, "smt");
495 	}
496 
497 	return false;
498 }
499 
500 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
501 {
502 	if (c->phys_proc_id == o->phys_proc_id &&
503 	    c->cpu_die_id == o->cpu_die_id)
504 		return true;
505 	return false;
506 }
507 
508 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
509 {
510 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
511 
512 	/* If the arch didn't set up l2c_id, fall back to SMT */
513 	if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
514 		return match_smt(c, o);
515 
516 	/* Do not match if L2 cache id does not match: */
517 	if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
518 		return false;
519 
520 	return topology_sane(c, o, "l2c");
521 }
522 
523 /*
524  * Unlike the other levels, we do not enforce keeping a
525  * multicore group inside a NUMA node.  If this happens, we will
526  * discard the MC level of the topology later.
527  */
528 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
529 {
530 	if (c->phys_proc_id == o->phys_proc_id)
531 		return true;
532 	return false;
533 }
534 
535 /*
536  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
537  *
538  * Any Intel CPU that has multiple nodes per package and does not
539  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
540  *
541  * When in SNC mode, these CPUs enumerate an LLC that is shared
542  * by multiple NUMA nodes. The LLC is shared for off-package data
543  * access but private to the NUMA node (half of the package) for
544  * on-package access. CPUID (the source of the information about
545  * the LLC) can only enumerate the cache as shared or unshared,
546  * but not this particular configuration.
547  */
548 
549 static const struct x86_cpu_id intel_cod_cpu[] = {
550 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
551 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
552 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
553 	{}
554 };
555 
556 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
557 {
558 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
559 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
560 	bool intel_snc = id && id->driver_data;
561 
562 	/* Do not match if we do not have a valid APICID for cpu: */
563 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
564 		return false;
565 
566 	/* Do not match if LLC id does not match: */
567 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
568 		return false;
569 
570 	/*
571 	 * Allow the SNC topology without warning. Return of false
572 	 * means 'c' does not share the LLC of 'o'. This will be
573 	 * reflected to userspace.
574 	 */
575 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
576 		return false;
577 
578 	return topology_sane(c, o, "llc");
579 }
580 
581 
582 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
583 static inline int x86_sched_itmt_flags(void)
584 {
585 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
586 }
587 
588 #ifdef CONFIG_SCHED_MC
589 static int x86_core_flags(void)
590 {
591 	return cpu_core_flags() | x86_sched_itmt_flags();
592 }
593 #endif
594 #ifdef CONFIG_SCHED_SMT
595 static int x86_smt_flags(void)
596 {
597 	return cpu_smt_flags();
598 }
599 #endif
600 #ifdef CONFIG_SCHED_CLUSTER
601 static int x86_cluster_flags(void)
602 {
603 	return cpu_cluster_flags() | x86_sched_itmt_flags();
604 }
605 #endif
606 #endif
607 
608 /*
609  * Set if a package/die has multiple NUMA nodes inside.
610  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
611  * Sub-NUMA Clustering have this.
612  */
613 static bool x86_has_numa_in_package;
614 
615 static struct sched_domain_topology_level x86_topology[6];
616 
617 static void __init build_sched_topology(void)
618 {
619 	int i = 0;
620 
621 #ifdef CONFIG_SCHED_SMT
622 	x86_topology[i++] = (struct sched_domain_topology_level){
623 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
624 	};
625 #endif
626 #ifdef CONFIG_SCHED_CLUSTER
627 	/*
628 	 * For now, skip the cluster domain on Hybrid.
629 	 */
630 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
631 		x86_topology[i++] = (struct sched_domain_topology_level){
632 			cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
633 		};
634 	}
635 #endif
636 #ifdef CONFIG_SCHED_MC
637 	x86_topology[i++] = (struct sched_domain_topology_level){
638 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
639 	};
640 #endif
641 	/*
642 	 * When there is NUMA topology inside the package skip the DIE domain
643 	 * since the NUMA domains will auto-magically create the right spanning
644 	 * domains based on the SLIT.
645 	 */
646 	if (!x86_has_numa_in_package) {
647 		x86_topology[i++] = (struct sched_domain_topology_level){
648 			cpu_cpu_mask, SD_INIT_NAME(DIE)
649 		};
650 	}
651 
652 	/*
653 	 * There must be one trailing NULL entry left.
654 	 */
655 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
656 
657 	set_sched_topology(x86_topology);
658 }
659 
660 void set_cpu_sibling_map(int cpu)
661 {
662 	bool has_smt = smp_num_siblings > 1;
663 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
664 	struct cpuinfo_x86 *c = &cpu_data(cpu);
665 	struct cpuinfo_x86 *o;
666 	int i, threads;
667 
668 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
669 
670 	if (!has_mp) {
671 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
672 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
673 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
674 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
675 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
676 		c->booted_cores = 1;
677 		return;
678 	}
679 
680 	for_each_cpu(i, cpu_sibling_setup_mask) {
681 		o = &cpu_data(i);
682 
683 		if (match_pkg(c, o) && !topology_same_node(c, o))
684 			x86_has_numa_in_package = true;
685 
686 		if ((i == cpu) || (has_smt && match_smt(c, o)))
687 			link_mask(topology_sibling_cpumask, cpu, i);
688 
689 		if ((i == cpu) || (has_mp && match_llc(c, o)))
690 			link_mask(cpu_llc_shared_mask, cpu, i);
691 
692 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
693 			link_mask(cpu_l2c_shared_mask, cpu, i);
694 
695 		if ((i == cpu) || (has_mp && match_die(c, o)))
696 			link_mask(topology_die_cpumask, cpu, i);
697 	}
698 
699 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
700 	if (threads > __max_smt_threads)
701 		__max_smt_threads = threads;
702 
703 	for_each_cpu(i, topology_sibling_cpumask(cpu))
704 		cpu_data(i).smt_active = threads > 1;
705 
706 	/*
707 	 * This needs a separate iteration over the cpus because we rely on all
708 	 * topology_sibling_cpumask links to be set-up.
709 	 */
710 	for_each_cpu(i, cpu_sibling_setup_mask) {
711 		o = &cpu_data(i);
712 
713 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
714 			link_mask(topology_core_cpumask, cpu, i);
715 
716 			/*
717 			 *  Does this new cpu bringup a new core?
718 			 */
719 			if (threads == 1) {
720 				/*
721 				 * for each core in package, increment
722 				 * the booted_cores for this new cpu
723 				 */
724 				if (cpumask_first(
725 				    topology_sibling_cpumask(i)) == i)
726 					c->booted_cores++;
727 				/*
728 				 * increment the core count for all
729 				 * the other cpus in this package
730 				 */
731 				if (i != cpu)
732 					cpu_data(i).booted_cores++;
733 			} else if (i != cpu && !c->booted_cores)
734 				c->booted_cores = cpu_data(i).booted_cores;
735 		}
736 	}
737 }
738 
739 /* maps the cpu to the sched domain representing multi-core */
740 const struct cpumask *cpu_coregroup_mask(int cpu)
741 {
742 	return cpu_llc_shared_mask(cpu);
743 }
744 
745 const struct cpumask *cpu_clustergroup_mask(int cpu)
746 {
747 	return cpu_l2c_shared_mask(cpu);
748 }
749 
750 static void impress_friends(void)
751 {
752 	int cpu;
753 	unsigned long bogosum = 0;
754 	/*
755 	 * Allow the user to impress friends.
756 	 */
757 	pr_debug("Before bogomips\n");
758 	for_each_online_cpu(cpu)
759 		bogosum += cpu_data(cpu).loops_per_jiffy;
760 
761 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
762 		num_online_cpus(),
763 		bogosum/(500000/HZ),
764 		(bogosum/(5000/HZ))%100);
765 
766 	pr_debug("Before bogocount - setting activated=1\n");
767 }
768 
769 void __inquire_remote_apic(int apicid)
770 {
771 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
772 	const char * const names[] = { "ID", "VERSION", "SPIV" };
773 	int timeout;
774 	u32 status;
775 
776 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
777 
778 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
779 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
780 
781 		/*
782 		 * Wait for idle.
783 		 */
784 		status = safe_apic_wait_icr_idle();
785 		if (status)
786 			pr_cont("a previous APIC delivery may have failed\n");
787 
788 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
789 
790 		timeout = 0;
791 		do {
792 			udelay(100);
793 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
794 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
795 
796 		switch (status) {
797 		case APIC_ICR_RR_VALID:
798 			status = apic_read(APIC_RRR);
799 			pr_cont("%08x\n", status);
800 			break;
801 		default:
802 			pr_cont("failed\n");
803 		}
804 	}
805 }
806 
807 /*
808  * The Multiprocessor Specification 1.4 (1997) example code suggests
809  * that there should be a 10ms delay between the BSP asserting INIT
810  * and de-asserting INIT, when starting a remote processor.
811  * But that slows boot and resume on modern processors, which include
812  * many cores and don't require that delay.
813  *
814  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
815  * Modern processor families are quirked to remove the delay entirely.
816  */
817 #define UDELAY_10MS_DEFAULT 10000
818 
819 static unsigned int init_udelay = UINT_MAX;
820 
821 static int __init cpu_init_udelay(char *str)
822 {
823 	get_option(&str, &init_udelay);
824 
825 	return 0;
826 }
827 early_param("cpu_init_udelay", cpu_init_udelay);
828 
829 static void __init smp_quirk_init_udelay(void)
830 {
831 	/* if cmdline changed it from default, leave it alone */
832 	if (init_udelay != UINT_MAX)
833 		return;
834 
835 	/* if modern processor, use no delay */
836 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
837 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
838 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
839 		init_udelay = 0;
840 		return;
841 	}
842 	/* else, use legacy delay */
843 	init_udelay = UDELAY_10MS_DEFAULT;
844 }
845 
846 /*
847  * Wake up AP by INIT, INIT, STARTUP sequence.
848  */
849 static void send_init_sequence(int phys_apicid)
850 {
851 	int maxlvt = lapic_get_maxlvt();
852 
853 	/* Be paranoid about clearing APIC errors. */
854 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
855 		/* Due to the Pentium erratum 3AP.  */
856 		if (maxlvt > 3)
857 			apic_write(APIC_ESR, 0);
858 		apic_read(APIC_ESR);
859 	}
860 
861 	/* Assert INIT on the target CPU */
862 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
863 	safe_apic_wait_icr_idle();
864 
865 	udelay(init_udelay);
866 
867 	/* Deassert INIT on the target CPU */
868 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
869 	safe_apic_wait_icr_idle();
870 }
871 
872 /*
873  * Wake up AP by INIT, INIT, STARTUP sequence.
874  */
875 static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
876 {
877 	unsigned long send_status = 0, accept_status = 0;
878 	int num_starts, j, maxlvt;
879 
880 	preempt_disable();
881 	maxlvt = lapic_get_maxlvt();
882 	send_init_sequence(phys_apicid);
883 
884 	mb();
885 
886 	/*
887 	 * Should we send STARTUP IPIs ?
888 	 *
889 	 * Determine this based on the APIC version.
890 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
891 	 */
892 	if (APIC_INTEGRATED(boot_cpu_apic_version))
893 		num_starts = 2;
894 	else
895 		num_starts = 0;
896 
897 	/*
898 	 * Run STARTUP IPI loop.
899 	 */
900 	pr_debug("#startup loops: %d\n", num_starts);
901 
902 	for (j = 1; j <= num_starts; j++) {
903 		pr_debug("Sending STARTUP #%d\n", j);
904 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
905 			apic_write(APIC_ESR, 0);
906 		apic_read(APIC_ESR);
907 		pr_debug("After apic_write\n");
908 
909 		/*
910 		 * STARTUP IPI
911 		 */
912 
913 		/* Target chip */
914 		/* Boot on the stack */
915 		/* Kick the second */
916 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
917 			       phys_apicid);
918 
919 		/*
920 		 * Give the other CPU some time to accept the IPI.
921 		 */
922 		if (init_udelay == 0)
923 			udelay(10);
924 		else
925 			udelay(300);
926 
927 		pr_debug("Startup point 1\n");
928 
929 		pr_debug("Waiting for send to finish...\n");
930 		send_status = safe_apic_wait_icr_idle();
931 
932 		/*
933 		 * Give the other CPU some time to accept the IPI.
934 		 */
935 		if (init_udelay == 0)
936 			udelay(10);
937 		else
938 			udelay(200);
939 
940 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
941 			apic_write(APIC_ESR, 0);
942 		accept_status = (apic_read(APIC_ESR) & 0xEF);
943 		if (send_status || accept_status)
944 			break;
945 	}
946 	pr_debug("After Startup\n");
947 
948 	if (send_status)
949 		pr_err("APIC never delivered???\n");
950 	if (accept_status)
951 		pr_err("APIC delivery error (%lx)\n", accept_status);
952 
953 	preempt_enable();
954 	return (send_status | accept_status);
955 }
956 
957 /* reduce the number of lines printed when booting a large cpu count system */
958 static void announce_cpu(int cpu, int apicid)
959 {
960 	static int width, node_width, first = 1;
961 	static int current_node = NUMA_NO_NODE;
962 	int node = early_cpu_to_node(cpu);
963 
964 	if (!width)
965 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
966 
967 	if (!node_width)
968 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
969 
970 	if (system_state < SYSTEM_RUNNING) {
971 		if (first)
972 			pr_info("x86: Booting SMP configuration:\n");
973 
974 		if (node != current_node) {
975 			if (current_node > (-1))
976 				pr_cont("\n");
977 			current_node = node;
978 
979 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
980 			       node_width - num_digits(node), " ", node);
981 		}
982 
983 		/* Add padding for the BSP */
984 		if (first)
985 			pr_cont("%*s", width + 1, " ");
986 		first = 0;
987 
988 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
989 	} else
990 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
991 			node, cpu, apicid);
992 }
993 
994 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
995 {
996 	int ret;
997 
998 	/* Just in case we booted with a single CPU. */
999 	alternatives_enable_smp();
1000 
1001 	per_cpu(pcpu_hot.current_task, cpu) = idle;
1002 	cpu_init_stack_canary(cpu, idle);
1003 
1004 	/* Initialize the interrupt stack(s) */
1005 	ret = irq_init_percpu_irqstack(cpu);
1006 	if (ret)
1007 		return ret;
1008 
1009 #ifdef CONFIG_X86_32
1010 	/* Stack for startup_32 can be just as for start_secondary onwards */
1011 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
1012 #endif
1013 	return 0;
1014 }
1015 
1016 /*
1017  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1018  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1019  * Returns zero if startup was successfully sent, else error code from
1020  * ->wakeup_secondary_cpu.
1021  */
1022 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
1023 {
1024 	unsigned long start_ip = real_mode_header->trampoline_start;
1025 	int ret;
1026 
1027 #ifdef CONFIG_X86_64
1028 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1029 	if (apic->wakeup_secondary_cpu_64)
1030 		start_ip = real_mode_header->trampoline_start64;
1031 #endif
1032 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1033 	initial_code = (unsigned long)start_secondary;
1034 
1035 	if (IS_ENABLED(CONFIG_X86_32)) {
1036 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1037 		initial_stack  = idle->thread.sp;
1038 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1039 		smpboot_control = cpu;
1040 	}
1041 
1042 	/* Enable the espfix hack for this CPU */
1043 	init_espfix_ap(cpu);
1044 
1045 	/* So we see what's up */
1046 	announce_cpu(cpu, apicid);
1047 
1048 	/*
1049 	 * This grunge runs the startup process for
1050 	 * the targeted processor.
1051 	 */
1052 	if (x86_platform.legacy.warm_reset) {
1053 
1054 		pr_debug("Setting warm reset code and vector.\n");
1055 
1056 		smpboot_setup_warm_reset_vector(start_ip);
1057 		/*
1058 		 * Be paranoid about clearing APIC errors.
1059 		*/
1060 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1061 			apic_write(APIC_ESR, 0);
1062 			apic_read(APIC_ESR);
1063 		}
1064 	}
1065 
1066 	smp_mb();
1067 
1068 	/*
1069 	 * Wake up a CPU in difference cases:
1070 	 * - Use a method from the APIC driver if one defined, with wakeup
1071 	 *   straight to 64-bit mode preferred over wakeup to RM.
1072 	 * Otherwise,
1073 	 * - Use an INIT boot APIC message
1074 	 */
1075 	if (apic->wakeup_secondary_cpu_64)
1076 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1077 	else if (apic->wakeup_secondary_cpu)
1078 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1079 	else
1080 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1081 
1082 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1083 	if (ret)
1084 		arch_cpuhp_cleanup_kick_cpu(cpu);
1085 	return ret;
1086 }
1087 
1088 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1089 {
1090 	int apicid = apic->cpu_present_to_apicid(cpu);
1091 	int err;
1092 
1093 	lockdep_assert_irqs_enabled();
1094 
1095 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1096 
1097 	if (apicid == BAD_APICID ||
1098 	    !physid_isset(apicid, phys_cpu_present_map) ||
1099 	    !apic->apic_id_valid(apicid)) {
1100 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1101 		return -EINVAL;
1102 	}
1103 
1104 	/*
1105 	 * Save current MTRR state in case it was changed since early boot
1106 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1107 	 */
1108 	mtrr_save_state();
1109 
1110 	/* the FPU context is blank, nobody can own it */
1111 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1112 
1113 	err = common_cpu_up(cpu, tidle);
1114 	if (err)
1115 		return err;
1116 
1117 	err = do_boot_cpu(apicid, cpu, tidle);
1118 	if (err)
1119 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1120 
1121 	return err;
1122 }
1123 
1124 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1125 {
1126 	return smp_ops.kick_ap_alive(cpu, tidle);
1127 }
1128 
1129 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1130 {
1131 	/* Cleanup possible dangling ends... */
1132 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1133 		smpboot_restore_warm_reset_vector();
1134 }
1135 
1136 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1137 {
1138 	if (smp_ops.cleanup_dead_cpu)
1139 		smp_ops.cleanup_dead_cpu(cpu);
1140 
1141 	if (system_state == SYSTEM_RUNNING)
1142 		pr_info("CPU %u is now offline\n", cpu);
1143 }
1144 
1145 void arch_cpuhp_sync_state_poll(void)
1146 {
1147 	if (smp_ops.poll_sync_state)
1148 		smp_ops.poll_sync_state();
1149 }
1150 
1151 /**
1152  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1153  */
1154 void __init arch_disable_smp_support(void)
1155 {
1156 	disable_ioapic_support();
1157 }
1158 
1159 /*
1160  * Fall back to non SMP mode after errors.
1161  *
1162  * RED-PEN audit/test this more. I bet there is more state messed up here.
1163  */
1164 static __init void disable_smp(void)
1165 {
1166 	pr_info("SMP disabled\n");
1167 
1168 	disable_ioapic_support();
1169 
1170 	init_cpu_present(cpumask_of(0));
1171 	init_cpu_possible(cpumask_of(0));
1172 
1173 	if (smp_found_config)
1174 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1175 	else
1176 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1177 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1178 	cpumask_set_cpu(0, topology_core_cpumask(0));
1179 	cpumask_set_cpu(0, topology_die_cpumask(0));
1180 }
1181 
1182 /*
1183  * Various sanity checks.
1184  */
1185 static void __init smp_sanity_check(void)
1186 {
1187 	preempt_disable();
1188 
1189 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1190 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1191 		unsigned int cpu;
1192 		unsigned nr;
1193 
1194 		pr_warn("More than 8 CPUs detected - skipping them\n"
1195 			"Use CONFIG_X86_BIGSMP\n");
1196 
1197 		nr = 0;
1198 		for_each_present_cpu(cpu) {
1199 			if (nr >= 8)
1200 				set_cpu_present(cpu, false);
1201 			nr++;
1202 		}
1203 
1204 		nr = 0;
1205 		for_each_possible_cpu(cpu) {
1206 			if (nr >= 8)
1207 				set_cpu_possible(cpu, false);
1208 			nr++;
1209 		}
1210 
1211 		set_nr_cpu_ids(8);
1212 	}
1213 #endif
1214 
1215 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1216 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1217 			hard_smp_processor_id());
1218 
1219 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1220 	}
1221 
1222 	/*
1223 	 * Should not be necessary because the MP table should list the boot
1224 	 * CPU too, but we do it for the sake of robustness anyway.
1225 	 */
1226 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1227 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1228 			  boot_cpu_physical_apicid);
1229 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1230 	}
1231 	preempt_enable();
1232 }
1233 
1234 static void __init smp_cpu_index_default(void)
1235 {
1236 	int i;
1237 	struct cpuinfo_x86 *c;
1238 
1239 	for_each_possible_cpu(i) {
1240 		c = &cpu_data(i);
1241 		/* mark all to hotplug */
1242 		c->cpu_index = nr_cpu_ids;
1243 	}
1244 }
1245 
1246 void __init smp_prepare_cpus_common(void)
1247 {
1248 	unsigned int i;
1249 
1250 	smp_cpu_index_default();
1251 
1252 	/*
1253 	 * Setup boot CPU information
1254 	 */
1255 	smp_store_boot_cpu_info(); /* Final full version of the data */
1256 	mb();
1257 
1258 	for_each_possible_cpu(i) {
1259 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1260 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1261 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1262 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1263 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1264 	}
1265 
1266 	set_cpu_sibling_map(0);
1267 }
1268 
1269 #ifdef CONFIG_X86_64
1270 /* Establish whether parallel bringup can be supported. */
1271 bool __init arch_cpuhp_init_parallel_bringup(void)
1272 {
1273 	if (!x86_cpuinit.parallel_bringup) {
1274 		pr_info("Parallel CPU startup disabled by the platform\n");
1275 		return false;
1276 	}
1277 
1278 	smpboot_control = STARTUP_READ_APICID;
1279 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1280 	return true;
1281 }
1282 #endif
1283 
1284 /*
1285  * Prepare for SMP bootup.
1286  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1287  *            for common interface support.
1288  */
1289 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1290 {
1291 	smp_prepare_cpus_common();
1292 
1293 	smp_sanity_check();
1294 
1295 	switch (apic_intr_mode) {
1296 	case APIC_PIC:
1297 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1298 		disable_smp();
1299 		return;
1300 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1301 		disable_smp();
1302 		/* Setup local timer */
1303 		x86_init.timers.setup_percpu_clockev();
1304 		return;
1305 	case APIC_VIRTUAL_WIRE:
1306 	case APIC_SYMMETRIC_IO:
1307 		break;
1308 	}
1309 
1310 	/* Setup local timer */
1311 	x86_init.timers.setup_percpu_clockev();
1312 
1313 	pr_info("CPU0: ");
1314 	print_cpu_info(&cpu_data(0));
1315 
1316 	uv_system_init();
1317 
1318 	smp_quirk_init_udelay();
1319 
1320 	speculative_store_bypass_ht_init();
1321 
1322 	snp_set_wakeup_secondary_cpu();
1323 }
1324 
1325 void arch_thaw_secondary_cpus_begin(void)
1326 {
1327 	set_cache_aps_delayed_init(true);
1328 }
1329 
1330 void arch_thaw_secondary_cpus_end(void)
1331 {
1332 	cache_aps_init();
1333 }
1334 
1335 bool smp_park_other_cpus_in_init(void)
1336 {
1337 	unsigned int cpu, this_cpu = smp_processor_id();
1338 	unsigned int apicid;
1339 
1340 	if (apic->wakeup_secondary_cpu_64 || apic->wakeup_secondary_cpu)
1341 		return false;
1342 
1343 	/*
1344 	 * If this is a crash stop which does not execute on the boot CPU,
1345 	 * then this cannot use the INIT mechanism because INIT to the boot
1346 	 * CPU will reset the machine.
1347 	 */
1348 	if (this_cpu)
1349 		return false;
1350 
1351 	for_each_present_cpu(cpu) {
1352 		if (cpu == this_cpu)
1353 			continue;
1354 		apicid = apic->cpu_present_to_apicid(cpu);
1355 		if (apicid == BAD_APICID)
1356 			continue;
1357 		send_init_sequence(apicid);
1358 	}
1359 	return true;
1360 }
1361 
1362 /*
1363  * Early setup to make printk work.
1364  */
1365 void __init native_smp_prepare_boot_cpu(void)
1366 {
1367 	int me = smp_processor_id();
1368 
1369 	/* SMP handles this from setup_per_cpu_areas() */
1370 	if (!IS_ENABLED(CONFIG_SMP))
1371 		switch_gdt_and_percpu_base(me);
1372 
1373 	native_pv_lock_init();
1374 }
1375 
1376 void __init calculate_max_logical_packages(void)
1377 {
1378 	int ncpus;
1379 
1380 	/*
1381 	 * Today neither Intel nor AMD support heterogeneous systems so
1382 	 * extrapolate the boot cpu's data to all packages.
1383 	 */
1384 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1385 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1386 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1387 }
1388 
1389 void __init native_smp_cpus_done(unsigned int max_cpus)
1390 {
1391 	pr_debug("Boot done\n");
1392 
1393 	calculate_max_logical_packages();
1394 	build_sched_topology();
1395 	nmi_selftest();
1396 	impress_friends();
1397 	cache_aps_init();
1398 }
1399 
1400 static int __initdata setup_possible_cpus = -1;
1401 static int __init _setup_possible_cpus(char *str)
1402 {
1403 	get_option(&str, &setup_possible_cpus);
1404 	return 0;
1405 }
1406 early_param("possible_cpus", _setup_possible_cpus);
1407 
1408 
1409 /*
1410  * cpu_possible_mask should be static, it cannot change as cpu's
1411  * are onlined, or offlined. The reason is per-cpu data-structures
1412  * are allocated by some modules at init time, and don't expect to
1413  * do this dynamically on cpu arrival/departure.
1414  * cpu_present_mask on the other hand can change dynamically.
1415  * In case when cpu_hotplug is not compiled, then we resort to current
1416  * behaviour, which is cpu_possible == cpu_present.
1417  * - Ashok Raj
1418  *
1419  * Three ways to find out the number of additional hotplug CPUs:
1420  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1421  * - The user can overwrite it with possible_cpus=NUM
1422  * - Otherwise don't reserve additional CPUs.
1423  * We do this because additional CPUs waste a lot of memory.
1424  * -AK
1425  */
1426 __init void prefill_possible_map(void)
1427 {
1428 	int i, possible;
1429 
1430 	/* No boot processor was found in mptable or ACPI MADT */
1431 	if (!num_processors) {
1432 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1433 			int apicid = boot_cpu_physical_apicid;
1434 			int cpu = hard_smp_processor_id();
1435 
1436 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1437 
1438 			/* Make sure boot cpu is enumerated */
1439 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1440 			    apic->apic_id_valid(apicid))
1441 				generic_processor_info(apicid, boot_cpu_apic_version);
1442 		}
1443 
1444 		if (!num_processors)
1445 			num_processors = 1;
1446 	}
1447 
1448 	i = setup_max_cpus ?: 1;
1449 	if (setup_possible_cpus == -1) {
1450 		possible = num_processors;
1451 #ifdef CONFIG_HOTPLUG_CPU
1452 		if (setup_max_cpus)
1453 			possible += disabled_cpus;
1454 #else
1455 		if (possible > i)
1456 			possible = i;
1457 #endif
1458 	} else
1459 		possible = setup_possible_cpus;
1460 
1461 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1462 
1463 	/* nr_cpu_ids could be reduced via nr_cpus= */
1464 	if (possible > nr_cpu_ids) {
1465 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1466 			possible, nr_cpu_ids);
1467 		possible = nr_cpu_ids;
1468 	}
1469 
1470 #ifdef CONFIG_HOTPLUG_CPU
1471 	if (!setup_max_cpus)
1472 #endif
1473 	if (possible > i) {
1474 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1475 			possible, setup_max_cpus);
1476 		possible = i;
1477 	}
1478 
1479 	set_nr_cpu_ids(possible);
1480 
1481 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1482 		possible, max_t(int, possible - num_processors, 0));
1483 
1484 	reset_cpu_possible_mask();
1485 
1486 	for (i = 0; i < possible; i++)
1487 		set_cpu_possible(i, true);
1488 }
1489 
1490 /* correctly size the local cpu masks */
1491 void __init setup_cpu_local_masks(void)
1492 {
1493 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1494 }
1495 
1496 #ifdef CONFIG_HOTPLUG_CPU
1497 
1498 /* Recompute SMT state for all CPUs on offline */
1499 static void recompute_smt_state(void)
1500 {
1501 	int max_threads, cpu;
1502 
1503 	max_threads = 0;
1504 	for_each_online_cpu (cpu) {
1505 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1506 
1507 		if (threads > max_threads)
1508 			max_threads = threads;
1509 	}
1510 	__max_smt_threads = max_threads;
1511 }
1512 
1513 static void remove_siblinginfo(int cpu)
1514 {
1515 	int sibling;
1516 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1517 
1518 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1519 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1520 		/*/
1521 		 * last thread sibling in this cpu core going down
1522 		 */
1523 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1524 			cpu_data(sibling).booted_cores--;
1525 	}
1526 
1527 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1528 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1529 
1530 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1531 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1532 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1533 			cpu_data(sibling).smt_active = false;
1534 	}
1535 
1536 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1537 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1538 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1539 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1540 	cpumask_clear(cpu_llc_shared_mask(cpu));
1541 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1542 	cpumask_clear(topology_sibling_cpumask(cpu));
1543 	cpumask_clear(topology_core_cpumask(cpu));
1544 	cpumask_clear(topology_die_cpumask(cpu));
1545 	c->cpu_core_id = 0;
1546 	c->booted_cores = 0;
1547 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1548 	recompute_smt_state();
1549 }
1550 
1551 static void remove_cpu_from_maps(int cpu)
1552 {
1553 	set_cpu_online(cpu, false);
1554 	numa_remove_cpu(cpu);
1555 }
1556 
1557 void cpu_disable_common(void)
1558 {
1559 	int cpu = smp_processor_id();
1560 
1561 	remove_siblinginfo(cpu);
1562 
1563 	/* It's now safe to remove this processor from the online map */
1564 	lock_vector_lock();
1565 	remove_cpu_from_maps(cpu);
1566 	unlock_vector_lock();
1567 	fixup_irqs();
1568 	lapic_offline();
1569 }
1570 
1571 int native_cpu_disable(void)
1572 {
1573 	int ret;
1574 
1575 	ret = lapic_can_unplug_cpu();
1576 	if (ret)
1577 		return ret;
1578 
1579 	cpu_disable_common();
1580 
1581         /*
1582          * Disable the local APIC. Otherwise IPI broadcasts will reach
1583          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1584          * messages.
1585          *
1586          * Disabling the APIC must happen after cpu_disable_common()
1587          * which invokes fixup_irqs().
1588          *
1589          * Disabling the APIC preserves already set bits in IRR, but
1590          * an interrupt arriving after disabling the local APIC does not
1591          * set the corresponding IRR bit.
1592          *
1593          * fixup_irqs() scans IRR for set bits so it can raise a not
1594          * yet handled interrupt on the new destination CPU via an IPI
1595          * but obviously it can't do so for IRR bits which are not set.
1596          * IOW, interrupts arriving after disabling the local APIC will
1597          * be lost.
1598          */
1599 	apic_soft_disable();
1600 
1601 	return 0;
1602 }
1603 
1604 void play_dead_common(void)
1605 {
1606 	idle_task_exit();
1607 
1608 	cpuhp_ap_report_dead();
1609 	/*
1610 	 * With physical CPU hotplug, we should halt the cpu
1611 	 */
1612 	local_irq_disable();
1613 }
1614 
1615 /*
1616  * We need to flush the caches before going to sleep, lest we have
1617  * dirty data in our caches when we come back up.
1618  */
1619 static inline void mwait_play_dead(void)
1620 {
1621 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1622 	unsigned int eax, ebx, ecx, edx;
1623 	unsigned int highest_cstate = 0;
1624 	unsigned int highest_subcstate = 0;
1625 	int i;
1626 
1627 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1628 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1629 		return;
1630 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1631 		return;
1632 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1633 		return;
1634 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1635 		return;
1636 
1637 	eax = CPUID_MWAIT_LEAF;
1638 	ecx = 0;
1639 	native_cpuid(&eax, &ebx, &ecx, &edx);
1640 
1641 	/*
1642 	 * eax will be 0 if EDX enumeration is not valid.
1643 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1644 	 */
1645 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1646 		eax = 0;
1647 	} else {
1648 		edx >>= MWAIT_SUBSTATE_SIZE;
1649 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1650 			if (edx & MWAIT_SUBSTATE_MASK) {
1651 				highest_cstate = i;
1652 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1653 			}
1654 		}
1655 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1656 			(highest_subcstate - 1);
1657 	}
1658 
1659 	/* Set up state for the kexec() hack below */
1660 	md->status = CPUDEAD_MWAIT_WAIT;
1661 	md->control = CPUDEAD_MWAIT_WAIT;
1662 
1663 	wbinvd();
1664 
1665 	while (1) {
1666 		/*
1667 		 * The CLFLUSH is a workaround for erratum AAI65 for
1668 		 * the Xeon 7400 series.  It's not clear it is actually
1669 		 * needed, but it should be harmless in either case.
1670 		 * The WBINVD is insufficient due to the spurious-wakeup
1671 		 * case where we return around the loop.
1672 		 */
1673 		mb();
1674 		clflush(md);
1675 		mb();
1676 		__monitor(md, 0, 0);
1677 		mb();
1678 		__mwait(eax, 0);
1679 
1680 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1681 			/*
1682 			 * Kexec is about to happen. Don't go back into mwait() as
1683 			 * the kexec kernel might overwrite text and data including
1684 			 * page tables and stack. So mwait() would resume when the
1685 			 * monitor cache line is written to and then the CPU goes
1686 			 * south due to overwritten text, page tables and stack.
1687 			 *
1688 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1689 			 * SMI. They will resume execution at the instruction
1690 			 * following the HLT instruction and run into the problem
1691 			 * which this is trying to prevent.
1692 			 */
1693 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1694 			while(1)
1695 				native_halt();
1696 		}
1697 	}
1698 }
1699 
1700 /*
1701  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1702  * mwait_play_dead().
1703  */
1704 void smp_kick_mwait_play_dead(void)
1705 {
1706 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1707 	struct mwait_cpu_dead *md;
1708 	unsigned int cpu, i;
1709 
1710 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1711 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1712 
1713 		/* Does it sit in mwait_play_dead() ? */
1714 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1715 			continue;
1716 
1717 		/* Wait up to 5ms */
1718 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1719 			/* Bring it out of mwait */
1720 			WRITE_ONCE(md->control, newstate);
1721 			udelay(5);
1722 		}
1723 
1724 		if (READ_ONCE(md->status) != newstate)
1725 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1726 	}
1727 }
1728 
1729 void __noreturn hlt_play_dead(void)
1730 {
1731 	if (__this_cpu_read(cpu_info.x86) >= 4)
1732 		wbinvd();
1733 
1734 	while (1)
1735 		native_halt();
1736 }
1737 
1738 void native_play_dead(void)
1739 {
1740 	play_dead_common();
1741 	tboot_shutdown(TB_SHUTDOWN_WFS);
1742 
1743 	mwait_play_dead();
1744 	if (cpuidle_play_dead())
1745 		hlt_play_dead();
1746 }
1747 
1748 #else /* ... !CONFIG_HOTPLUG_CPU */
1749 int native_cpu_disable(void)
1750 {
1751 	return -ENOSYS;
1752 }
1753 
1754 void native_play_dead(void)
1755 {
1756 	BUG();
1757 }
1758 
1759 #endif
1760