xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision b96fc2f3)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78 
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82 
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85 
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95 
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99 
100 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
101 {
102 	unsigned long flags;
103 
104 	spin_lock_irqsave(&rtc_lock, flags);
105 	CMOS_WRITE(0xa, 0xf);
106 	spin_unlock_irqrestore(&rtc_lock, flags);
107 	local_flush_tlb();
108 	pr_debug("1.\n");
109 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
110 							start_eip >> 4;
111 	pr_debug("2.\n");
112 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
113 							start_eip & 0xf;
114 	pr_debug("3.\n");
115 }
116 
117 static inline void smpboot_restore_warm_reset_vector(void)
118 {
119 	unsigned long flags;
120 
121 	/*
122 	 * Install writable page 0 entry to set BIOS data area.
123 	 */
124 	local_flush_tlb();
125 
126 	/*
127 	 * Paranoid:  Set warm reset code and vector here back
128 	 * to default values.
129 	 */
130 	spin_lock_irqsave(&rtc_lock, flags);
131 	CMOS_WRITE(0, 0xf);
132 	spin_unlock_irqrestore(&rtc_lock, flags);
133 
134 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
135 }
136 
137 /*
138  * Report back to the Boot Processor during boot time or to the caller processor
139  * during CPU online.
140  */
141 static void smp_callin(void)
142 {
143 	int cpuid, phys_id;
144 
145 	/*
146 	 * If waken up by an INIT in an 82489DX configuration
147 	 * cpu_callout_mask guarantees we don't get here before
148 	 * an INIT_deassert IPI reaches our local APIC, so it is
149 	 * now safe to touch our local APIC.
150 	 */
151 	cpuid = smp_processor_id();
152 
153 	/*
154 	 * (This works even if the APIC is not enabled.)
155 	 */
156 	phys_id = read_apic_id();
157 
158 	/*
159 	 * the boot CPU has finished the init stage and is spinning
160 	 * on callin_map until we finish. We are free to set up this
161 	 * CPU, first the APIC. (this is probably redundant on most
162 	 * boards)
163 	 */
164 	apic_ap_setup();
165 
166 	/*
167 	 * Save our processor parameters. Note: this information
168 	 * is needed for clock calibration.
169 	 */
170 	smp_store_cpu_info(cpuid);
171 
172 	/*
173 	 * Get our bogomips.
174 	 * Update loops_per_jiffy in cpu_data. Previous call to
175 	 * smp_store_cpu_info() stored a value that is close but not as
176 	 * accurate as the value just calculated.
177 	 */
178 	calibrate_delay();
179 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
180 	pr_debug("Stack at about %p\n", &cpuid);
181 
182 	/*
183 	 * This must be done before setting cpu_online_mask
184 	 * or calling notify_cpu_starting.
185 	 */
186 	set_cpu_sibling_map(raw_smp_processor_id());
187 	wmb();
188 
189 	notify_cpu_starting(cpuid);
190 
191 	/*
192 	 * Allow the master to continue.
193 	 */
194 	cpumask_set_cpu(cpuid, cpu_callin_mask);
195 }
196 
197 static int cpu0_logical_apicid;
198 static int enable_start_cpu0;
199 /*
200  * Activate a secondary processor.
201  */
202 static void notrace start_secondary(void *unused)
203 {
204 	/*
205 	 * Don't put *anything* before cpu_init(), SMP booting is too
206 	 * fragile that we want to limit the things done here to the
207 	 * most necessary things.
208 	 */
209 	cpu_init();
210 	x86_cpuinit.early_percpu_clock_init();
211 	preempt_disable();
212 	smp_callin();
213 
214 	enable_start_cpu0 = 0;
215 
216 #ifdef CONFIG_X86_32
217 	/* switch away from the initial page table */
218 	load_cr3(swapper_pg_dir);
219 	__flush_tlb_all();
220 #endif
221 
222 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
223 	barrier();
224 	/*
225 	 * Check TSC synchronization with the BP:
226 	 */
227 	check_tsc_sync_target();
228 
229 	/*
230 	 * Lock vector_lock and initialize the vectors on this cpu
231 	 * before setting the cpu online. We must set it online with
232 	 * vector_lock held to prevent a concurrent setup/teardown
233 	 * from seeing a half valid vector space.
234 	 */
235 	lock_vector_lock();
236 	setup_vector_irq(smp_processor_id());
237 	set_cpu_online(smp_processor_id(), true);
238 	unlock_vector_lock();
239 	cpu_set_state_online(smp_processor_id());
240 	x86_platform.nmi_init();
241 
242 	/* enable local interrupts */
243 	local_irq_enable();
244 
245 	/* to prevent fake stack check failure in clock setup */
246 	boot_init_stack_canary();
247 
248 	x86_cpuinit.setup_percpu_clockev();
249 
250 	wmb();
251 	cpu_startup_entry(CPUHP_ONLINE);
252 }
253 
254 void __init smp_store_boot_cpu_info(void)
255 {
256 	int id = 0; /* CPU 0 */
257 	struct cpuinfo_x86 *c = &cpu_data(id);
258 
259 	*c = boot_cpu_data;
260 	c->cpu_index = id;
261 }
262 
263 /*
264  * The bootstrap kernel entry code has set these up. Save them for
265  * a given CPU
266  */
267 void smp_store_cpu_info(int id)
268 {
269 	struct cpuinfo_x86 *c = &cpu_data(id);
270 
271 	*c = boot_cpu_data;
272 	c->cpu_index = id;
273 	/*
274 	 * During boot time, CPU0 has this setup already. Save the info when
275 	 * bringing up AP or offlined CPU0.
276 	 */
277 	identify_secondary_cpu(c);
278 }
279 
280 static bool
281 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
282 {
283 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
284 
285 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
286 }
287 
288 static bool
289 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
290 {
291 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
292 
293 	return !WARN_ONCE(!topology_same_node(c, o),
294 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
295 		"[node: %d != %d]. Ignoring dependency.\n",
296 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
297 }
298 
299 #define link_mask(mfunc, c1, c2)					\
300 do {									\
301 	cpumask_set_cpu((c1), mfunc(c2));				\
302 	cpumask_set_cpu((c2), mfunc(c1));				\
303 } while (0)
304 
305 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
306 {
307 	if (cpu_has_topoext) {
308 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
309 
310 		if (c->phys_proc_id == o->phys_proc_id &&
311 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
312 		    c->compute_unit_id == o->compute_unit_id)
313 			return topology_sane(c, o, "smt");
314 
315 	} else if (c->phys_proc_id == o->phys_proc_id &&
316 		   c->cpu_core_id == o->cpu_core_id) {
317 		return topology_sane(c, o, "smt");
318 	}
319 
320 	return false;
321 }
322 
323 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
324 {
325 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
326 
327 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
328 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
329 		return topology_sane(c, o, "llc");
330 
331 	return false;
332 }
333 
334 /*
335  * Unlike the other levels, we do not enforce keeping a
336  * multicore group inside a NUMA node.  If this happens, we will
337  * discard the MC level of the topology later.
338  */
339 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
340 {
341 	if (c->phys_proc_id == o->phys_proc_id)
342 		return true;
343 	return false;
344 }
345 
346 static struct sched_domain_topology_level numa_inside_package_topology[] = {
347 #ifdef CONFIG_SCHED_SMT
348 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
349 #endif
350 #ifdef CONFIG_SCHED_MC
351 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
352 #endif
353 	{ NULL, },
354 };
355 /*
356  * set_sched_topology() sets the topology internal to a CPU.  The
357  * NUMA topologies are layered on top of it to build the full
358  * system topology.
359  *
360  * If NUMA nodes are observed to occur within a CPU package, this
361  * function should be called.  It forces the sched domain code to
362  * only use the SMT level for the CPU portion of the topology.
363  * This essentially falls back to relying on NUMA information
364  * from the SRAT table to describe the entire system topology
365  * (except for hyperthreads).
366  */
367 static void primarily_use_numa_for_topology(void)
368 {
369 	set_sched_topology(numa_inside_package_topology);
370 }
371 
372 void set_cpu_sibling_map(int cpu)
373 {
374 	bool has_smt = smp_num_siblings > 1;
375 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
376 	struct cpuinfo_x86 *c = &cpu_data(cpu);
377 	struct cpuinfo_x86 *o;
378 	int i;
379 
380 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
381 
382 	if (!has_mp) {
383 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
384 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
385 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
386 		c->booted_cores = 1;
387 		return;
388 	}
389 
390 	for_each_cpu(i, cpu_sibling_setup_mask) {
391 		o = &cpu_data(i);
392 
393 		if ((i == cpu) || (has_smt && match_smt(c, o)))
394 			link_mask(topology_sibling_cpumask, cpu, i);
395 
396 		if ((i == cpu) || (has_mp && match_llc(c, o)))
397 			link_mask(cpu_llc_shared_mask, cpu, i);
398 
399 	}
400 
401 	/*
402 	 * This needs a separate iteration over the cpus because we rely on all
403 	 * topology_sibling_cpumask links to be set-up.
404 	 */
405 	for_each_cpu(i, cpu_sibling_setup_mask) {
406 		o = &cpu_data(i);
407 
408 		if ((i == cpu) || (has_mp && match_die(c, o))) {
409 			link_mask(topology_core_cpumask, cpu, i);
410 
411 			/*
412 			 *  Does this new cpu bringup a new core?
413 			 */
414 			if (cpumask_weight(
415 			    topology_sibling_cpumask(cpu)) == 1) {
416 				/*
417 				 * for each core in package, increment
418 				 * the booted_cores for this new cpu
419 				 */
420 				if (cpumask_first(
421 				    topology_sibling_cpumask(i)) == i)
422 					c->booted_cores++;
423 				/*
424 				 * increment the core count for all
425 				 * the other cpus in this package
426 				 */
427 				if (i != cpu)
428 					cpu_data(i).booted_cores++;
429 			} else if (i != cpu && !c->booted_cores)
430 				c->booted_cores = cpu_data(i).booted_cores;
431 		}
432 		if (match_die(c, o) && !topology_same_node(c, o))
433 			primarily_use_numa_for_topology();
434 	}
435 }
436 
437 /* maps the cpu to the sched domain representing multi-core */
438 const struct cpumask *cpu_coregroup_mask(int cpu)
439 {
440 	return cpu_llc_shared_mask(cpu);
441 }
442 
443 static void impress_friends(void)
444 {
445 	int cpu;
446 	unsigned long bogosum = 0;
447 	/*
448 	 * Allow the user to impress friends.
449 	 */
450 	pr_debug("Before bogomips\n");
451 	for_each_possible_cpu(cpu)
452 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
453 			bogosum += cpu_data(cpu).loops_per_jiffy;
454 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
455 		num_online_cpus(),
456 		bogosum/(500000/HZ),
457 		(bogosum/(5000/HZ))%100);
458 
459 	pr_debug("Before bogocount - setting activated=1\n");
460 }
461 
462 void __inquire_remote_apic(int apicid)
463 {
464 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
465 	const char * const names[] = { "ID", "VERSION", "SPIV" };
466 	int timeout;
467 	u32 status;
468 
469 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
470 
471 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
472 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
473 
474 		/*
475 		 * Wait for idle.
476 		 */
477 		status = safe_apic_wait_icr_idle();
478 		if (status)
479 			pr_cont("a previous APIC delivery may have failed\n");
480 
481 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
482 
483 		timeout = 0;
484 		do {
485 			udelay(100);
486 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
487 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
488 
489 		switch (status) {
490 		case APIC_ICR_RR_VALID:
491 			status = apic_read(APIC_RRR);
492 			pr_cont("%08x\n", status);
493 			break;
494 		default:
495 			pr_cont("failed\n");
496 		}
497 	}
498 }
499 
500 /*
501  * The Multiprocessor Specification 1.4 (1997) example code suggests
502  * that there should be a 10ms delay between the BSP asserting INIT
503  * and de-asserting INIT, when starting a remote processor.
504  * But that slows boot and resume on modern processors, which include
505  * many cores and don't require that delay.
506  *
507  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
508  * Modern processor families are quirked to remove the delay entirely.
509  */
510 #define UDELAY_10MS_DEFAULT 10000
511 
512 static unsigned int init_udelay = UDELAY_10MS_DEFAULT;
513 
514 static int __init cpu_init_udelay(char *str)
515 {
516 	get_option(&str, &init_udelay);
517 
518 	return 0;
519 }
520 early_param("cpu_init_udelay", cpu_init_udelay);
521 
522 static void __init smp_quirk_init_udelay(void)
523 {
524 	/* if cmdline changed it from default, leave it alone */
525 	if (init_udelay != UDELAY_10MS_DEFAULT)
526 		return;
527 
528 	/* if modern processor, use no delay */
529 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
530 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF)))
531 		init_udelay = 0;
532 }
533 
534 /*
535  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
536  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
537  * won't ... remember to clear down the APIC, etc later.
538  */
539 int
540 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
541 {
542 	unsigned long send_status, accept_status = 0;
543 	int maxlvt;
544 
545 	/* Target chip */
546 	/* Boot on the stack */
547 	/* Kick the second */
548 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
549 
550 	pr_debug("Waiting for send to finish...\n");
551 	send_status = safe_apic_wait_icr_idle();
552 
553 	/*
554 	 * Give the other CPU some time to accept the IPI.
555 	 */
556 	udelay(200);
557 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
558 		maxlvt = lapic_get_maxlvt();
559 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
560 			apic_write(APIC_ESR, 0);
561 		accept_status = (apic_read(APIC_ESR) & 0xEF);
562 	}
563 	pr_debug("NMI sent\n");
564 
565 	if (send_status)
566 		pr_err("APIC never delivered???\n");
567 	if (accept_status)
568 		pr_err("APIC delivery error (%lx)\n", accept_status);
569 
570 	return (send_status | accept_status);
571 }
572 
573 static int
574 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
575 {
576 	unsigned long send_status = 0, accept_status = 0;
577 	int maxlvt, num_starts, j;
578 
579 	maxlvt = lapic_get_maxlvt();
580 
581 	/*
582 	 * Be paranoid about clearing APIC errors.
583 	 */
584 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
585 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
586 			apic_write(APIC_ESR, 0);
587 		apic_read(APIC_ESR);
588 	}
589 
590 	pr_debug("Asserting INIT\n");
591 
592 	/*
593 	 * Turn INIT on target chip
594 	 */
595 	/*
596 	 * Send IPI
597 	 */
598 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
599 		       phys_apicid);
600 
601 	pr_debug("Waiting for send to finish...\n");
602 	send_status = safe_apic_wait_icr_idle();
603 
604 	udelay(init_udelay);
605 
606 	pr_debug("Deasserting INIT\n");
607 
608 	/* Target chip */
609 	/* Send IPI */
610 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
611 
612 	pr_debug("Waiting for send to finish...\n");
613 	send_status = safe_apic_wait_icr_idle();
614 
615 	mb();
616 
617 	/*
618 	 * Should we send STARTUP IPIs ?
619 	 *
620 	 * Determine this based on the APIC version.
621 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
622 	 */
623 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
624 		num_starts = 2;
625 	else
626 		num_starts = 0;
627 
628 	/*
629 	 * Paravirt / VMI wants a startup IPI hook here to set up the
630 	 * target processor state.
631 	 */
632 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
633 			 stack_start);
634 
635 	/*
636 	 * Run STARTUP IPI loop.
637 	 */
638 	pr_debug("#startup loops: %d\n", num_starts);
639 
640 	for (j = 1; j <= num_starts; j++) {
641 		pr_debug("Sending STARTUP #%d\n", j);
642 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
643 			apic_write(APIC_ESR, 0);
644 		apic_read(APIC_ESR);
645 		pr_debug("After apic_write\n");
646 
647 		/*
648 		 * STARTUP IPI
649 		 */
650 
651 		/* Target chip */
652 		/* Boot on the stack */
653 		/* Kick the second */
654 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
655 			       phys_apicid);
656 
657 		/*
658 		 * Give the other CPU some time to accept the IPI.
659 		 */
660 		if (init_udelay)
661 			udelay(300);
662 
663 		pr_debug("Startup point 1\n");
664 
665 		pr_debug("Waiting for send to finish...\n");
666 		send_status = safe_apic_wait_icr_idle();
667 
668 		/*
669 		 * Give the other CPU some time to accept the IPI.
670 		 */
671 		if (init_udelay)
672 			udelay(200);
673 
674 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
675 			apic_write(APIC_ESR, 0);
676 		accept_status = (apic_read(APIC_ESR) & 0xEF);
677 		if (send_status || accept_status)
678 			break;
679 	}
680 	pr_debug("After Startup\n");
681 
682 	if (send_status)
683 		pr_err("APIC never delivered???\n");
684 	if (accept_status)
685 		pr_err("APIC delivery error (%lx)\n", accept_status);
686 
687 	return (send_status | accept_status);
688 }
689 
690 void smp_announce(void)
691 {
692 	int num_nodes = num_online_nodes();
693 
694 	printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
695 	       num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
696 }
697 
698 /* reduce the number of lines printed when booting a large cpu count system */
699 static void announce_cpu(int cpu, int apicid)
700 {
701 	static int current_node = -1;
702 	int node = early_cpu_to_node(cpu);
703 	static int width, node_width;
704 
705 	if (!width)
706 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
707 
708 	if (!node_width)
709 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
710 
711 	if (cpu == 1)
712 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
713 
714 	if (system_state == SYSTEM_BOOTING) {
715 		if (node != current_node) {
716 			if (current_node > (-1))
717 				pr_cont("\n");
718 			current_node = node;
719 
720 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
721 			       node_width - num_digits(node), " ", node);
722 		}
723 
724 		/* Add padding for the BSP */
725 		if (cpu == 1)
726 			pr_cont("%*s", width + 1, " ");
727 
728 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
729 
730 	} else
731 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
732 			node, cpu, apicid);
733 }
734 
735 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
736 {
737 	int cpu;
738 
739 	cpu = smp_processor_id();
740 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
741 		return NMI_HANDLED;
742 
743 	return NMI_DONE;
744 }
745 
746 /*
747  * Wake up AP by INIT, INIT, STARTUP sequence.
748  *
749  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
750  * boot-strap code which is not a desired behavior for waking up BSP. To
751  * void the boot-strap code, wake up CPU0 by NMI instead.
752  *
753  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
754  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
755  * We'll change this code in the future to wake up hard offlined CPU0 if
756  * real platform and request are available.
757  */
758 static int
759 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
760 	       int *cpu0_nmi_registered)
761 {
762 	int id;
763 	int boot_error;
764 
765 	preempt_disable();
766 
767 	/*
768 	 * Wake up AP by INIT, INIT, STARTUP sequence.
769 	 */
770 	if (cpu) {
771 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
772 		goto out;
773 	}
774 
775 	/*
776 	 * Wake up BSP by nmi.
777 	 *
778 	 * Register a NMI handler to help wake up CPU0.
779 	 */
780 	boot_error = register_nmi_handler(NMI_LOCAL,
781 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
782 
783 	if (!boot_error) {
784 		enable_start_cpu0 = 1;
785 		*cpu0_nmi_registered = 1;
786 		if (apic->dest_logical == APIC_DEST_LOGICAL)
787 			id = cpu0_logical_apicid;
788 		else
789 			id = apicid;
790 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
791 	}
792 
793 out:
794 	preempt_enable();
795 
796 	return boot_error;
797 }
798 
799 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
800 {
801 	/* Just in case we booted with a single CPU. */
802 	alternatives_enable_smp();
803 
804 	per_cpu(current_task, cpu) = idle;
805 
806 #ifdef CONFIG_X86_32
807 	/* Stack for startup_32 can be just as for start_secondary onwards */
808 	irq_ctx_init(cpu);
809 	per_cpu(cpu_current_top_of_stack, cpu) =
810 		(unsigned long)task_stack_page(idle) + THREAD_SIZE;
811 #else
812 	clear_tsk_thread_flag(idle, TIF_FORK);
813 	initial_gs = per_cpu_offset(cpu);
814 #endif
815 }
816 
817 /*
818  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
819  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
820  * Returns zero if CPU booted OK, else error code from
821  * ->wakeup_secondary_cpu.
822  */
823 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
824 {
825 	volatile u32 *trampoline_status =
826 		(volatile u32 *) __va(real_mode_header->trampoline_status);
827 	/* start_ip had better be page-aligned! */
828 	unsigned long start_ip = real_mode_header->trampoline_start;
829 
830 	unsigned long boot_error = 0;
831 	int cpu0_nmi_registered = 0;
832 	unsigned long timeout;
833 
834 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
835 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
836 
837 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
838 	initial_code = (unsigned long)start_secondary;
839 	stack_start  = idle->thread.sp;
840 
841 	/*
842 	 * Enable the espfix hack for this CPU
843 	*/
844 #ifdef CONFIG_X86_ESPFIX64
845 	init_espfix_ap(cpu);
846 #endif
847 
848 	/* So we see what's up */
849 	announce_cpu(cpu, apicid);
850 
851 	/*
852 	 * This grunge runs the startup process for
853 	 * the targeted processor.
854 	 */
855 
856 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
857 
858 		pr_debug("Setting warm reset code and vector.\n");
859 
860 		smpboot_setup_warm_reset_vector(start_ip);
861 		/*
862 		 * Be paranoid about clearing APIC errors.
863 		*/
864 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
865 			apic_write(APIC_ESR, 0);
866 			apic_read(APIC_ESR);
867 		}
868 	}
869 
870 	/*
871 	 * AP might wait on cpu_callout_mask in cpu_init() with
872 	 * cpu_initialized_mask set if previous attempt to online
873 	 * it timed-out. Clear cpu_initialized_mask so that after
874 	 * INIT/SIPI it could start with a clean state.
875 	 */
876 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
877 	smp_mb();
878 
879 	/*
880 	 * Wake up a CPU in difference cases:
881 	 * - Use the method in the APIC driver if it's defined
882 	 * Otherwise,
883 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
884 	 */
885 	if (apic->wakeup_secondary_cpu)
886 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
887 	else
888 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
889 						     &cpu0_nmi_registered);
890 
891 	if (!boot_error) {
892 		/*
893 		 * Wait 10s total for first sign of life from AP
894 		 */
895 		boot_error = -1;
896 		timeout = jiffies + 10*HZ;
897 		while (time_before(jiffies, timeout)) {
898 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
899 				/*
900 				 * Tell AP to proceed with initialization
901 				 */
902 				cpumask_set_cpu(cpu, cpu_callout_mask);
903 				boot_error = 0;
904 				break;
905 			}
906 			schedule();
907 		}
908 	}
909 
910 	if (!boot_error) {
911 		/*
912 		 * Wait till AP completes initial initialization
913 		 */
914 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
915 			/*
916 			 * Allow other tasks to run while we wait for the
917 			 * AP to come online. This also gives a chance
918 			 * for the MTRR work(triggered by the AP coming online)
919 			 * to be completed in the stop machine context.
920 			 */
921 			schedule();
922 		}
923 	}
924 
925 	/* mark "stuck" area as not stuck */
926 	*trampoline_status = 0;
927 
928 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
929 		/*
930 		 * Cleanup possible dangling ends...
931 		 */
932 		smpboot_restore_warm_reset_vector();
933 	}
934 	/*
935 	 * Clean up the nmi handler. Do this after the callin and callout sync
936 	 * to avoid impact of possible long unregister time.
937 	 */
938 	if (cpu0_nmi_registered)
939 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
940 
941 	return boot_error;
942 }
943 
944 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
945 {
946 	int apicid = apic->cpu_present_to_apicid(cpu);
947 	unsigned long flags;
948 	int err;
949 
950 	WARN_ON(irqs_disabled());
951 
952 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
953 
954 	if (apicid == BAD_APICID ||
955 	    !physid_isset(apicid, phys_cpu_present_map) ||
956 	    !apic->apic_id_valid(apicid)) {
957 		pr_err("%s: bad cpu %d\n", __func__, cpu);
958 		return -EINVAL;
959 	}
960 
961 	/*
962 	 * Already booted CPU?
963 	 */
964 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
965 		pr_debug("do_boot_cpu %d Already started\n", cpu);
966 		return -ENOSYS;
967 	}
968 
969 	/*
970 	 * Save current MTRR state in case it was changed since early boot
971 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
972 	 */
973 	mtrr_save_state();
974 
975 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
976 	err = cpu_check_up_prepare(cpu);
977 	if (err && err != -EBUSY)
978 		return err;
979 
980 	/* the FPU context is blank, nobody can own it */
981 	__cpu_disable_lazy_restore(cpu);
982 
983 	common_cpu_up(cpu, tidle);
984 
985 	/*
986 	 * We have to walk the irq descriptors to setup the vector
987 	 * space for the cpu which comes online.  Prevent irq
988 	 * alloc/free across the bringup.
989 	 */
990 	irq_lock_sparse();
991 
992 	err = do_boot_cpu(apicid, cpu, tidle);
993 
994 	if (err) {
995 		irq_unlock_sparse();
996 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
997 		return -EIO;
998 	}
999 
1000 	/*
1001 	 * Check TSC synchronization with the AP (keep irqs disabled
1002 	 * while doing so):
1003 	 */
1004 	local_irq_save(flags);
1005 	check_tsc_sync_source(cpu);
1006 	local_irq_restore(flags);
1007 
1008 	while (!cpu_online(cpu)) {
1009 		cpu_relax();
1010 		touch_nmi_watchdog();
1011 	}
1012 
1013 	irq_unlock_sparse();
1014 
1015 	return 0;
1016 }
1017 
1018 /**
1019  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1020  */
1021 void arch_disable_smp_support(void)
1022 {
1023 	disable_ioapic_support();
1024 }
1025 
1026 /*
1027  * Fall back to non SMP mode after errors.
1028  *
1029  * RED-PEN audit/test this more. I bet there is more state messed up here.
1030  */
1031 static __init void disable_smp(void)
1032 {
1033 	pr_info("SMP disabled\n");
1034 
1035 	disable_ioapic_support();
1036 
1037 	init_cpu_present(cpumask_of(0));
1038 	init_cpu_possible(cpumask_of(0));
1039 
1040 	if (smp_found_config)
1041 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1042 	else
1043 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1044 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1045 	cpumask_set_cpu(0, topology_core_cpumask(0));
1046 }
1047 
1048 enum {
1049 	SMP_OK,
1050 	SMP_NO_CONFIG,
1051 	SMP_NO_APIC,
1052 	SMP_FORCE_UP,
1053 };
1054 
1055 /*
1056  * Various sanity checks.
1057  */
1058 static int __init smp_sanity_check(unsigned max_cpus)
1059 {
1060 	preempt_disable();
1061 
1062 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1063 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1064 		unsigned int cpu;
1065 		unsigned nr;
1066 
1067 		pr_warn("More than 8 CPUs detected - skipping them\n"
1068 			"Use CONFIG_X86_BIGSMP\n");
1069 
1070 		nr = 0;
1071 		for_each_present_cpu(cpu) {
1072 			if (nr >= 8)
1073 				set_cpu_present(cpu, false);
1074 			nr++;
1075 		}
1076 
1077 		nr = 0;
1078 		for_each_possible_cpu(cpu) {
1079 			if (nr >= 8)
1080 				set_cpu_possible(cpu, false);
1081 			nr++;
1082 		}
1083 
1084 		nr_cpu_ids = 8;
1085 	}
1086 #endif
1087 
1088 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1089 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1090 			hard_smp_processor_id());
1091 
1092 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1093 	}
1094 
1095 	/*
1096 	 * If we couldn't find an SMP configuration at boot time,
1097 	 * get out of here now!
1098 	 */
1099 	if (!smp_found_config && !acpi_lapic) {
1100 		preempt_enable();
1101 		pr_notice("SMP motherboard not detected\n");
1102 		return SMP_NO_CONFIG;
1103 	}
1104 
1105 	/*
1106 	 * Should not be necessary because the MP table should list the boot
1107 	 * CPU too, but we do it for the sake of robustness anyway.
1108 	 */
1109 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1110 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1111 			  boot_cpu_physical_apicid);
1112 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1113 	}
1114 	preempt_enable();
1115 
1116 	/*
1117 	 * If we couldn't find a local APIC, then get out of here now!
1118 	 */
1119 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1120 	    !cpu_has_apic) {
1121 		if (!disable_apic) {
1122 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1123 				boot_cpu_physical_apicid);
1124 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1125 		}
1126 		return SMP_NO_APIC;
1127 	}
1128 
1129 	/*
1130 	 * If SMP should be disabled, then really disable it!
1131 	 */
1132 	if (!max_cpus) {
1133 		pr_info("SMP mode deactivated\n");
1134 		return SMP_FORCE_UP;
1135 	}
1136 
1137 	return SMP_OK;
1138 }
1139 
1140 static void __init smp_cpu_index_default(void)
1141 {
1142 	int i;
1143 	struct cpuinfo_x86 *c;
1144 
1145 	for_each_possible_cpu(i) {
1146 		c = &cpu_data(i);
1147 		/* mark all to hotplug */
1148 		c->cpu_index = nr_cpu_ids;
1149 	}
1150 }
1151 
1152 /*
1153  * Prepare for SMP bootup.  The MP table or ACPI has been read
1154  * earlier.  Just do some sanity checking here and enable APIC mode.
1155  */
1156 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1157 {
1158 	unsigned int i;
1159 
1160 	smp_cpu_index_default();
1161 
1162 	/*
1163 	 * Setup boot CPU information
1164 	 */
1165 	smp_store_boot_cpu_info(); /* Final full version of the data */
1166 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1167 	mb();
1168 
1169 	current_thread_info()->cpu = 0;  /* needed? */
1170 	for_each_possible_cpu(i) {
1171 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1172 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1173 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1174 	}
1175 	set_cpu_sibling_map(0);
1176 
1177 	switch (smp_sanity_check(max_cpus)) {
1178 	case SMP_NO_CONFIG:
1179 		disable_smp();
1180 		if (APIC_init_uniprocessor())
1181 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1182 		return;
1183 	case SMP_NO_APIC:
1184 		disable_smp();
1185 		return;
1186 	case SMP_FORCE_UP:
1187 		disable_smp();
1188 		apic_bsp_setup(false);
1189 		return;
1190 	case SMP_OK:
1191 		break;
1192 	}
1193 
1194 	default_setup_apic_routing();
1195 
1196 	if (read_apic_id() != boot_cpu_physical_apicid) {
1197 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1198 		     read_apic_id(), boot_cpu_physical_apicid);
1199 		/* Or can we switch back to PIC here? */
1200 	}
1201 
1202 	cpu0_logical_apicid = apic_bsp_setup(false);
1203 
1204 	pr_info("CPU%d: ", 0);
1205 	print_cpu_info(&cpu_data(0));
1206 
1207 	if (is_uv_system())
1208 		uv_system_init();
1209 
1210 	set_mtrr_aps_delayed_init();
1211 
1212 	smp_quirk_init_udelay();
1213 }
1214 
1215 void arch_enable_nonboot_cpus_begin(void)
1216 {
1217 	set_mtrr_aps_delayed_init();
1218 }
1219 
1220 void arch_enable_nonboot_cpus_end(void)
1221 {
1222 	mtrr_aps_init();
1223 }
1224 
1225 /*
1226  * Early setup to make printk work.
1227  */
1228 void __init native_smp_prepare_boot_cpu(void)
1229 {
1230 	int me = smp_processor_id();
1231 	switch_to_new_gdt(me);
1232 	/* already set me in cpu_online_mask in boot_cpu_init() */
1233 	cpumask_set_cpu(me, cpu_callout_mask);
1234 	cpu_set_state_online(me);
1235 }
1236 
1237 void __init native_smp_cpus_done(unsigned int max_cpus)
1238 {
1239 	pr_debug("Boot done\n");
1240 
1241 	nmi_selftest();
1242 	impress_friends();
1243 	setup_ioapic_dest();
1244 	mtrr_aps_init();
1245 }
1246 
1247 static int __initdata setup_possible_cpus = -1;
1248 static int __init _setup_possible_cpus(char *str)
1249 {
1250 	get_option(&str, &setup_possible_cpus);
1251 	return 0;
1252 }
1253 early_param("possible_cpus", _setup_possible_cpus);
1254 
1255 
1256 /*
1257  * cpu_possible_mask should be static, it cannot change as cpu's
1258  * are onlined, or offlined. The reason is per-cpu data-structures
1259  * are allocated by some modules at init time, and dont expect to
1260  * do this dynamically on cpu arrival/departure.
1261  * cpu_present_mask on the other hand can change dynamically.
1262  * In case when cpu_hotplug is not compiled, then we resort to current
1263  * behaviour, which is cpu_possible == cpu_present.
1264  * - Ashok Raj
1265  *
1266  * Three ways to find out the number of additional hotplug CPUs:
1267  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1268  * - The user can overwrite it with possible_cpus=NUM
1269  * - Otherwise don't reserve additional CPUs.
1270  * We do this because additional CPUs waste a lot of memory.
1271  * -AK
1272  */
1273 __init void prefill_possible_map(void)
1274 {
1275 	int i, possible;
1276 
1277 	/* no processor from mptable or madt */
1278 	if (!num_processors)
1279 		num_processors = 1;
1280 
1281 	i = setup_max_cpus ?: 1;
1282 	if (setup_possible_cpus == -1) {
1283 		possible = num_processors;
1284 #ifdef CONFIG_HOTPLUG_CPU
1285 		if (setup_max_cpus)
1286 			possible += disabled_cpus;
1287 #else
1288 		if (possible > i)
1289 			possible = i;
1290 #endif
1291 	} else
1292 		possible = setup_possible_cpus;
1293 
1294 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1295 
1296 	/* nr_cpu_ids could be reduced via nr_cpus= */
1297 	if (possible > nr_cpu_ids) {
1298 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1299 			possible, nr_cpu_ids);
1300 		possible = nr_cpu_ids;
1301 	}
1302 
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 	if (!setup_max_cpus)
1305 #endif
1306 	if (possible > i) {
1307 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1308 			possible, setup_max_cpus);
1309 		possible = i;
1310 	}
1311 
1312 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1313 		possible, max_t(int, possible - num_processors, 0));
1314 
1315 	for (i = 0; i < possible; i++)
1316 		set_cpu_possible(i, true);
1317 	for (; i < NR_CPUS; i++)
1318 		set_cpu_possible(i, false);
1319 
1320 	nr_cpu_ids = possible;
1321 }
1322 
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 
1325 static void remove_siblinginfo(int cpu)
1326 {
1327 	int sibling;
1328 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1329 
1330 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1331 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1332 		/*/
1333 		 * last thread sibling in this cpu core going down
1334 		 */
1335 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1336 			cpu_data(sibling).booted_cores--;
1337 	}
1338 
1339 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1340 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1341 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1342 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1343 	cpumask_clear(cpu_llc_shared_mask(cpu));
1344 	cpumask_clear(topology_sibling_cpumask(cpu));
1345 	cpumask_clear(topology_core_cpumask(cpu));
1346 	c->phys_proc_id = 0;
1347 	c->cpu_core_id = 0;
1348 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1349 }
1350 
1351 static void remove_cpu_from_maps(int cpu)
1352 {
1353 	set_cpu_online(cpu, false);
1354 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1355 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1356 	/* was set by cpu_init() */
1357 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1358 	numa_remove_cpu(cpu);
1359 }
1360 
1361 void cpu_disable_common(void)
1362 {
1363 	int cpu = smp_processor_id();
1364 
1365 	remove_siblinginfo(cpu);
1366 
1367 	/* It's now safe to remove this processor from the online map */
1368 	lock_vector_lock();
1369 	remove_cpu_from_maps(cpu);
1370 	unlock_vector_lock();
1371 	fixup_irqs();
1372 }
1373 
1374 int native_cpu_disable(void)
1375 {
1376 	int ret;
1377 
1378 	ret = check_irq_vectors_for_cpu_disable();
1379 	if (ret)
1380 		return ret;
1381 
1382 	clear_local_APIC();
1383 	cpu_disable_common();
1384 
1385 	return 0;
1386 }
1387 
1388 int common_cpu_die(unsigned int cpu)
1389 {
1390 	int ret = 0;
1391 
1392 	/* We don't do anything here: idle task is faking death itself. */
1393 
1394 	/* They ack this in play_dead() by setting CPU_DEAD */
1395 	if (cpu_wait_death(cpu, 5)) {
1396 		if (system_state == SYSTEM_RUNNING)
1397 			pr_info("CPU %u is now offline\n", cpu);
1398 	} else {
1399 		pr_err("CPU %u didn't die...\n", cpu);
1400 		ret = -1;
1401 	}
1402 
1403 	return ret;
1404 }
1405 
1406 void native_cpu_die(unsigned int cpu)
1407 {
1408 	common_cpu_die(cpu);
1409 }
1410 
1411 void play_dead_common(void)
1412 {
1413 	idle_task_exit();
1414 	reset_lazy_tlbstate();
1415 	amd_e400_remove_cpu(raw_smp_processor_id());
1416 
1417 	/* Ack it */
1418 	(void)cpu_report_death();
1419 
1420 	/*
1421 	 * With physical CPU hotplug, we should halt the cpu
1422 	 */
1423 	local_irq_disable();
1424 }
1425 
1426 static bool wakeup_cpu0(void)
1427 {
1428 	if (smp_processor_id() == 0 && enable_start_cpu0)
1429 		return true;
1430 
1431 	return false;
1432 }
1433 
1434 /*
1435  * We need to flush the caches before going to sleep, lest we have
1436  * dirty data in our caches when we come back up.
1437  */
1438 static inline void mwait_play_dead(void)
1439 {
1440 	unsigned int eax, ebx, ecx, edx;
1441 	unsigned int highest_cstate = 0;
1442 	unsigned int highest_subcstate = 0;
1443 	void *mwait_ptr;
1444 	int i;
1445 
1446 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1447 		return;
1448 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1449 		return;
1450 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1451 		return;
1452 
1453 	eax = CPUID_MWAIT_LEAF;
1454 	ecx = 0;
1455 	native_cpuid(&eax, &ebx, &ecx, &edx);
1456 
1457 	/*
1458 	 * eax will be 0 if EDX enumeration is not valid.
1459 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1460 	 */
1461 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1462 		eax = 0;
1463 	} else {
1464 		edx >>= MWAIT_SUBSTATE_SIZE;
1465 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1466 			if (edx & MWAIT_SUBSTATE_MASK) {
1467 				highest_cstate = i;
1468 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1469 			}
1470 		}
1471 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1472 			(highest_subcstate - 1);
1473 	}
1474 
1475 	/*
1476 	 * This should be a memory location in a cache line which is
1477 	 * unlikely to be touched by other processors.  The actual
1478 	 * content is immaterial as it is not actually modified in any way.
1479 	 */
1480 	mwait_ptr = &current_thread_info()->flags;
1481 
1482 	wbinvd();
1483 
1484 	while (1) {
1485 		/*
1486 		 * The CLFLUSH is a workaround for erratum AAI65 for
1487 		 * the Xeon 7400 series.  It's not clear it is actually
1488 		 * needed, but it should be harmless in either case.
1489 		 * The WBINVD is insufficient due to the spurious-wakeup
1490 		 * case where we return around the loop.
1491 		 */
1492 		mb();
1493 		clflush(mwait_ptr);
1494 		mb();
1495 		__monitor(mwait_ptr, 0, 0);
1496 		mb();
1497 		__mwait(eax, 0);
1498 		/*
1499 		 * If NMI wants to wake up CPU0, start CPU0.
1500 		 */
1501 		if (wakeup_cpu0())
1502 			start_cpu0();
1503 	}
1504 }
1505 
1506 static inline void hlt_play_dead(void)
1507 {
1508 	if (__this_cpu_read(cpu_info.x86) >= 4)
1509 		wbinvd();
1510 
1511 	while (1) {
1512 		native_halt();
1513 		/*
1514 		 * If NMI wants to wake up CPU0, start CPU0.
1515 		 */
1516 		if (wakeup_cpu0())
1517 			start_cpu0();
1518 	}
1519 }
1520 
1521 void native_play_dead(void)
1522 {
1523 	play_dead_common();
1524 	tboot_shutdown(TB_SHUTDOWN_WFS);
1525 
1526 	mwait_play_dead();	/* Only returns on failure */
1527 	if (cpuidle_play_dead())
1528 		hlt_play_dead();
1529 }
1530 
1531 #else /* ... !CONFIG_HOTPLUG_CPU */
1532 int native_cpu_disable(void)
1533 {
1534 	return -ENOSYS;
1535 }
1536 
1537 void native_cpu_die(unsigned int cpu)
1538 {
1539 	/* We said "no" in __cpu_disable */
1540 	BUG();
1541 }
1542 
1543 void native_play_dead(void)
1544 {
1545 	BUG();
1546 }
1547 
1548 #endif
1549