xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58 
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95 
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97 
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101 
102 /* Logical package management. We might want to allocate that dynamically */
103 unsigned int __max_logical_packages __read_mostly;
104 EXPORT_SYMBOL(__max_logical_packages);
105 static unsigned int logical_packages __read_mostly;
106 static unsigned int logical_die __read_mostly;
107 
108 /* Maximum number of SMT threads on any online core */
109 int __read_mostly __max_smt_threads = 1;
110 
111 /* Flag to indicate if a complete sched domain rebuild is required */
112 bool x86_topology_update;
113 
114 int arch_update_cpu_topology(void)
115 {
116 	int retval = x86_topology_update;
117 
118 	x86_topology_update = false;
119 	return retval;
120 }
121 
122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
123 {
124 	unsigned long flags;
125 
126 	spin_lock_irqsave(&rtc_lock, flags);
127 	CMOS_WRITE(0xa, 0xf);
128 	spin_unlock_irqrestore(&rtc_lock, flags);
129 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
130 							start_eip >> 4;
131 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
132 							start_eip & 0xf;
133 }
134 
135 static inline void smpboot_restore_warm_reset_vector(void)
136 {
137 	unsigned long flags;
138 
139 	/*
140 	 * Paranoid:  Set warm reset code and vector here back
141 	 * to default values.
142 	 */
143 	spin_lock_irqsave(&rtc_lock, flags);
144 	CMOS_WRITE(0, 0xf);
145 	spin_unlock_irqrestore(&rtc_lock, flags);
146 
147 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
148 }
149 
150 static void init_freq_invariance(bool secondary);
151 
152 /*
153  * Report back to the Boot Processor during boot time or to the caller processor
154  * during CPU online.
155  */
156 static void smp_callin(void)
157 {
158 	int cpuid;
159 
160 	/*
161 	 * If waken up by an INIT in an 82489DX configuration
162 	 * cpu_callout_mask guarantees we don't get here before
163 	 * an INIT_deassert IPI reaches our local APIC, so it is
164 	 * now safe to touch our local APIC.
165 	 */
166 	cpuid = smp_processor_id();
167 
168 	/*
169 	 * the boot CPU has finished the init stage and is spinning
170 	 * on callin_map until we finish. We are free to set up this
171 	 * CPU, first the APIC. (this is probably redundant on most
172 	 * boards)
173 	 */
174 	apic_ap_setup();
175 
176 	/*
177 	 * Save our processor parameters. Note: this information
178 	 * is needed for clock calibration.
179 	 */
180 	smp_store_cpu_info(cpuid);
181 
182 	/*
183 	 * The topology information must be up to date before
184 	 * calibrate_delay() and notify_cpu_starting().
185 	 */
186 	set_cpu_sibling_map(raw_smp_processor_id());
187 
188 	init_freq_invariance(true);
189 
190 	/*
191 	 * Get our bogomips.
192 	 * Update loops_per_jiffy in cpu_data. Previous call to
193 	 * smp_store_cpu_info() stored a value that is close but not as
194 	 * accurate as the value just calculated.
195 	 */
196 	calibrate_delay();
197 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
198 	pr_debug("Stack at about %p\n", &cpuid);
199 
200 	wmb();
201 
202 	notify_cpu_starting(cpuid);
203 
204 	/*
205 	 * Allow the master to continue.
206 	 */
207 	cpumask_set_cpu(cpuid, cpu_callin_mask);
208 }
209 
210 static int cpu0_logical_apicid;
211 static int enable_start_cpu0;
212 /*
213  * Activate a secondary processor.
214  */
215 static void notrace start_secondary(void *unused)
216 {
217 	/*
218 	 * Don't put *anything* except direct CPU state initialization
219 	 * before cpu_init(), SMP booting is too fragile that we want to
220 	 * limit the things done here to the most necessary things.
221 	 */
222 	cr4_init();
223 
224 #ifdef CONFIG_X86_32
225 	/* switch away from the initial page table */
226 	load_cr3(swapper_pg_dir);
227 	__flush_tlb_all();
228 #endif
229 	load_current_idt();
230 	cpu_init();
231 	x86_cpuinit.early_percpu_clock_init();
232 	preempt_disable();
233 	smp_callin();
234 
235 	enable_start_cpu0 = 0;
236 
237 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
238 	barrier();
239 	/*
240 	 * Check TSC synchronization with the boot CPU:
241 	 */
242 	check_tsc_sync_target();
243 
244 	speculative_store_bypass_ht_init();
245 
246 	/*
247 	 * Lock vector_lock, set CPU online and bring the vector
248 	 * allocator online. Online must be set with vector_lock held
249 	 * to prevent a concurrent irq setup/teardown from seeing a
250 	 * half valid vector space.
251 	 */
252 	lock_vector_lock();
253 	set_cpu_online(smp_processor_id(), true);
254 	lapic_online();
255 	unlock_vector_lock();
256 	cpu_set_state_online(smp_processor_id());
257 	x86_platform.nmi_init();
258 
259 	/* enable local interrupts */
260 	local_irq_enable();
261 
262 	/* to prevent fake stack check failure in clock setup */
263 	boot_init_stack_canary();
264 
265 	x86_cpuinit.setup_percpu_clockev();
266 
267 	wmb();
268 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
269 
270 	/*
271 	 * Prevent tail call to cpu_startup_entry() because the stack protector
272 	 * guard has been changed a couple of function calls up, in
273 	 * boot_init_stack_canary() and must not be checked before tail calling
274 	 * another function.
275 	 */
276 	prevent_tail_call_optimization();
277 }
278 
279 /**
280  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
281  * @cpu:	CPU to check
282  */
283 bool topology_is_primary_thread(unsigned int cpu)
284 {
285 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
286 }
287 
288 /**
289  * topology_smt_supported - Check whether SMT is supported by the CPUs
290  */
291 bool topology_smt_supported(void)
292 {
293 	return smp_num_siblings > 1;
294 }
295 
296 /**
297  * topology_phys_to_logical_pkg - Map a physical package id to a logical
298  *
299  * Returns logical package id or -1 if not found
300  */
301 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
302 {
303 	int cpu;
304 
305 	for_each_possible_cpu(cpu) {
306 		struct cpuinfo_x86 *c = &cpu_data(cpu);
307 
308 		if (c->initialized && c->phys_proc_id == phys_pkg)
309 			return c->logical_proc_id;
310 	}
311 	return -1;
312 }
313 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
314 /**
315  * topology_phys_to_logical_die - Map a physical die id to logical
316  *
317  * Returns logical die id or -1 if not found
318  */
319 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
320 {
321 	int cpu;
322 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
323 
324 	for_each_possible_cpu(cpu) {
325 		struct cpuinfo_x86 *c = &cpu_data(cpu);
326 
327 		if (c->initialized && c->cpu_die_id == die_id &&
328 		    c->phys_proc_id == proc_id)
329 			return c->logical_die_id;
330 	}
331 	return -1;
332 }
333 EXPORT_SYMBOL(topology_phys_to_logical_die);
334 
335 /**
336  * topology_update_package_map - Update the physical to logical package map
337  * @pkg:	The physical package id as retrieved via CPUID
338  * @cpu:	The cpu for which this is updated
339  */
340 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
341 {
342 	int new;
343 
344 	/* Already available somewhere? */
345 	new = topology_phys_to_logical_pkg(pkg);
346 	if (new >= 0)
347 		goto found;
348 
349 	new = logical_packages++;
350 	if (new != pkg) {
351 		pr_info("CPU %u Converting physical %u to logical package %u\n",
352 			cpu, pkg, new);
353 	}
354 found:
355 	cpu_data(cpu).logical_proc_id = new;
356 	return 0;
357 }
358 /**
359  * topology_update_die_map - Update the physical to logical die map
360  * @die:	The die id as retrieved via CPUID
361  * @cpu:	The cpu for which this is updated
362  */
363 int topology_update_die_map(unsigned int die, unsigned int cpu)
364 {
365 	int new;
366 
367 	/* Already available somewhere? */
368 	new = topology_phys_to_logical_die(die, cpu);
369 	if (new >= 0)
370 		goto found;
371 
372 	new = logical_die++;
373 	if (new != die) {
374 		pr_info("CPU %u Converting physical %u to logical die %u\n",
375 			cpu, die, new);
376 	}
377 found:
378 	cpu_data(cpu).logical_die_id = new;
379 	return 0;
380 }
381 
382 void __init smp_store_boot_cpu_info(void)
383 {
384 	int id = 0; /* CPU 0 */
385 	struct cpuinfo_x86 *c = &cpu_data(id);
386 
387 	*c = boot_cpu_data;
388 	c->cpu_index = id;
389 	topology_update_package_map(c->phys_proc_id, id);
390 	topology_update_die_map(c->cpu_die_id, id);
391 	c->initialized = true;
392 }
393 
394 /*
395  * The bootstrap kernel entry code has set these up. Save them for
396  * a given CPU
397  */
398 void smp_store_cpu_info(int id)
399 {
400 	struct cpuinfo_x86 *c = &cpu_data(id);
401 
402 	/* Copy boot_cpu_data only on the first bringup */
403 	if (!c->initialized)
404 		*c = boot_cpu_data;
405 	c->cpu_index = id;
406 	/*
407 	 * During boot time, CPU0 has this setup already. Save the info when
408 	 * bringing up AP or offlined CPU0.
409 	 */
410 	identify_secondary_cpu(c);
411 	c->initialized = true;
412 }
413 
414 static bool
415 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
416 {
417 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418 
419 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
420 }
421 
422 static bool
423 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
424 {
425 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
426 
427 	return !WARN_ONCE(!topology_same_node(c, o),
428 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
429 		"[node: %d != %d]. Ignoring dependency.\n",
430 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
431 }
432 
433 #define link_mask(mfunc, c1, c2)					\
434 do {									\
435 	cpumask_set_cpu((c1), mfunc(c2));				\
436 	cpumask_set_cpu((c2), mfunc(c1));				\
437 } while (0)
438 
439 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
440 {
441 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
442 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
443 
444 		if (c->phys_proc_id == o->phys_proc_id &&
445 		    c->cpu_die_id == o->cpu_die_id &&
446 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
447 			if (c->cpu_core_id == o->cpu_core_id)
448 				return topology_sane(c, o, "smt");
449 
450 			if ((c->cu_id != 0xff) &&
451 			    (o->cu_id != 0xff) &&
452 			    (c->cu_id == o->cu_id))
453 				return topology_sane(c, o, "smt");
454 		}
455 
456 	} else if (c->phys_proc_id == o->phys_proc_id &&
457 		   c->cpu_die_id == o->cpu_die_id &&
458 		   c->cpu_core_id == o->cpu_core_id) {
459 		return topology_sane(c, o, "smt");
460 	}
461 
462 	return false;
463 }
464 
465 /*
466  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
467  *
468  * These are Intel CPUs that enumerate an LLC that is shared by
469  * multiple NUMA nodes. The LLC on these systems is shared for
470  * off-package data access but private to the NUMA node (half
471  * of the package) for on-package access.
472  *
473  * CPUID (the source of the information about the LLC) can only
474  * enumerate the cache as being shared *or* unshared, but not
475  * this particular configuration. The CPU in this case enumerates
476  * the cache to be shared across the entire package (spanning both
477  * NUMA nodes).
478  */
479 
480 static const struct x86_cpu_id snc_cpu[] = {
481 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL),
482 	{}
483 };
484 
485 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
486 {
487 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
488 
489 	/* Do not match if we do not have a valid APICID for cpu: */
490 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
491 		return false;
492 
493 	/* Do not match if LLC id does not match: */
494 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
495 		return false;
496 
497 	/*
498 	 * Allow the SNC topology without warning. Return of false
499 	 * means 'c' does not share the LLC of 'o'. This will be
500 	 * reflected to userspace.
501 	 */
502 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
503 		return false;
504 
505 	return topology_sane(c, o, "llc");
506 }
507 
508 /*
509  * Unlike the other levels, we do not enforce keeping a
510  * multicore group inside a NUMA node.  If this happens, we will
511  * discard the MC level of the topology later.
512  */
513 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
514 {
515 	if (c->phys_proc_id == o->phys_proc_id)
516 		return true;
517 	return false;
518 }
519 
520 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
521 {
522 	if ((c->phys_proc_id == o->phys_proc_id) &&
523 		(c->cpu_die_id == o->cpu_die_id))
524 		return true;
525 	return false;
526 }
527 
528 
529 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
530 static inline int x86_sched_itmt_flags(void)
531 {
532 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
533 }
534 
535 #ifdef CONFIG_SCHED_MC
536 static int x86_core_flags(void)
537 {
538 	return cpu_core_flags() | x86_sched_itmt_flags();
539 }
540 #endif
541 #ifdef CONFIG_SCHED_SMT
542 static int x86_smt_flags(void)
543 {
544 	return cpu_smt_flags() | x86_sched_itmt_flags();
545 }
546 #endif
547 #endif
548 
549 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
550 #ifdef CONFIG_SCHED_SMT
551 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
552 #endif
553 #ifdef CONFIG_SCHED_MC
554 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
555 #endif
556 	{ NULL, },
557 };
558 
559 static struct sched_domain_topology_level x86_topology[] = {
560 #ifdef CONFIG_SCHED_SMT
561 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
562 #endif
563 #ifdef CONFIG_SCHED_MC
564 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
565 #endif
566 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
567 	{ NULL, },
568 };
569 
570 /*
571  * Set if a package/die has multiple NUMA nodes inside.
572  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
573  * Sub-NUMA Clustering have this.
574  */
575 static bool x86_has_numa_in_package;
576 
577 void set_cpu_sibling_map(int cpu)
578 {
579 	bool has_smt = smp_num_siblings > 1;
580 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
581 	struct cpuinfo_x86 *c = &cpu_data(cpu);
582 	struct cpuinfo_x86 *o;
583 	int i, threads;
584 
585 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
586 
587 	if (!has_mp) {
588 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
589 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
590 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
591 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
592 		c->booted_cores = 1;
593 		return;
594 	}
595 
596 	for_each_cpu(i, cpu_sibling_setup_mask) {
597 		o = &cpu_data(i);
598 
599 		if ((i == cpu) || (has_smt && match_smt(c, o)))
600 			link_mask(topology_sibling_cpumask, cpu, i);
601 
602 		if ((i == cpu) || (has_mp && match_llc(c, o)))
603 			link_mask(cpu_llc_shared_mask, cpu, i);
604 
605 	}
606 
607 	/*
608 	 * This needs a separate iteration over the cpus because we rely on all
609 	 * topology_sibling_cpumask links to be set-up.
610 	 */
611 	for_each_cpu(i, cpu_sibling_setup_mask) {
612 		o = &cpu_data(i);
613 
614 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
615 			link_mask(topology_core_cpumask, cpu, i);
616 
617 			/*
618 			 *  Does this new cpu bringup a new core?
619 			 */
620 			if (cpumask_weight(
621 			    topology_sibling_cpumask(cpu)) == 1) {
622 				/*
623 				 * for each core in package, increment
624 				 * the booted_cores for this new cpu
625 				 */
626 				if (cpumask_first(
627 				    topology_sibling_cpumask(i)) == i)
628 					c->booted_cores++;
629 				/*
630 				 * increment the core count for all
631 				 * the other cpus in this package
632 				 */
633 				if (i != cpu)
634 					cpu_data(i).booted_cores++;
635 			} else if (i != cpu && !c->booted_cores)
636 				c->booted_cores = cpu_data(i).booted_cores;
637 		}
638 		if (match_pkg(c, o) && !topology_same_node(c, o))
639 			x86_has_numa_in_package = true;
640 
641 		if ((i == cpu) || (has_mp && match_die(c, o)))
642 			link_mask(topology_die_cpumask, cpu, i);
643 	}
644 
645 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
646 	if (threads > __max_smt_threads)
647 		__max_smt_threads = threads;
648 }
649 
650 /* maps the cpu to the sched domain representing multi-core */
651 const struct cpumask *cpu_coregroup_mask(int cpu)
652 {
653 	return cpu_llc_shared_mask(cpu);
654 }
655 
656 static void impress_friends(void)
657 {
658 	int cpu;
659 	unsigned long bogosum = 0;
660 	/*
661 	 * Allow the user to impress friends.
662 	 */
663 	pr_debug("Before bogomips\n");
664 	for_each_possible_cpu(cpu)
665 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
666 			bogosum += cpu_data(cpu).loops_per_jiffy;
667 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
668 		num_online_cpus(),
669 		bogosum/(500000/HZ),
670 		(bogosum/(5000/HZ))%100);
671 
672 	pr_debug("Before bogocount - setting activated=1\n");
673 }
674 
675 void __inquire_remote_apic(int apicid)
676 {
677 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
678 	const char * const names[] = { "ID", "VERSION", "SPIV" };
679 	int timeout;
680 	u32 status;
681 
682 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
683 
684 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
685 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
686 
687 		/*
688 		 * Wait for idle.
689 		 */
690 		status = safe_apic_wait_icr_idle();
691 		if (status)
692 			pr_cont("a previous APIC delivery may have failed\n");
693 
694 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
695 
696 		timeout = 0;
697 		do {
698 			udelay(100);
699 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
700 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
701 
702 		switch (status) {
703 		case APIC_ICR_RR_VALID:
704 			status = apic_read(APIC_RRR);
705 			pr_cont("%08x\n", status);
706 			break;
707 		default:
708 			pr_cont("failed\n");
709 		}
710 	}
711 }
712 
713 /*
714  * The Multiprocessor Specification 1.4 (1997) example code suggests
715  * that there should be a 10ms delay between the BSP asserting INIT
716  * and de-asserting INIT, when starting a remote processor.
717  * But that slows boot and resume on modern processors, which include
718  * many cores and don't require that delay.
719  *
720  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
721  * Modern processor families are quirked to remove the delay entirely.
722  */
723 #define UDELAY_10MS_DEFAULT 10000
724 
725 static unsigned int init_udelay = UINT_MAX;
726 
727 static int __init cpu_init_udelay(char *str)
728 {
729 	get_option(&str, &init_udelay);
730 
731 	return 0;
732 }
733 early_param("cpu_init_udelay", cpu_init_udelay);
734 
735 static void __init smp_quirk_init_udelay(void)
736 {
737 	/* if cmdline changed it from default, leave it alone */
738 	if (init_udelay != UINT_MAX)
739 		return;
740 
741 	/* if modern processor, use no delay */
742 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
743 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
744 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
745 		init_udelay = 0;
746 		return;
747 	}
748 	/* else, use legacy delay */
749 	init_udelay = UDELAY_10MS_DEFAULT;
750 }
751 
752 /*
753  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
754  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
755  * won't ... remember to clear down the APIC, etc later.
756  */
757 int
758 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
759 {
760 	unsigned long send_status, accept_status = 0;
761 	int maxlvt;
762 
763 	/* Target chip */
764 	/* Boot on the stack */
765 	/* Kick the second */
766 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
767 
768 	pr_debug("Waiting for send to finish...\n");
769 	send_status = safe_apic_wait_icr_idle();
770 
771 	/*
772 	 * Give the other CPU some time to accept the IPI.
773 	 */
774 	udelay(200);
775 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
776 		maxlvt = lapic_get_maxlvt();
777 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
778 			apic_write(APIC_ESR, 0);
779 		accept_status = (apic_read(APIC_ESR) & 0xEF);
780 	}
781 	pr_debug("NMI sent\n");
782 
783 	if (send_status)
784 		pr_err("APIC never delivered???\n");
785 	if (accept_status)
786 		pr_err("APIC delivery error (%lx)\n", accept_status);
787 
788 	return (send_status | accept_status);
789 }
790 
791 static int
792 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
793 {
794 	unsigned long send_status = 0, accept_status = 0;
795 	int maxlvt, num_starts, j;
796 
797 	maxlvt = lapic_get_maxlvt();
798 
799 	/*
800 	 * Be paranoid about clearing APIC errors.
801 	 */
802 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
803 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
804 			apic_write(APIC_ESR, 0);
805 		apic_read(APIC_ESR);
806 	}
807 
808 	pr_debug("Asserting INIT\n");
809 
810 	/*
811 	 * Turn INIT on target chip
812 	 */
813 	/*
814 	 * Send IPI
815 	 */
816 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
817 		       phys_apicid);
818 
819 	pr_debug("Waiting for send to finish...\n");
820 	send_status = safe_apic_wait_icr_idle();
821 
822 	udelay(init_udelay);
823 
824 	pr_debug("Deasserting INIT\n");
825 
826 	/* Target chip */
827 	/* Send IPI */
828 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
829 
830 	pr_debug("Waiting for send to finish...\n");
831 	send_status = safe_apic_wait_icr_idle();
832 
833 	mb();
834 
835 	/*
836 	 * Should we send STARTUP IPIs ?
837 	 *
838 	 * Determine this based on the APIC version.
839 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
840 	 */
841 	if (APIC_INTEGRATED(boot_cpu_apic_version))
842 		num_starts = 2;
843 	else
844 		num_starts = 0;
845 
846 	/*
847 	 * Run STARTUP IPI loop.
848 	 */
849 	pr_debug("#startup loops: %d\n", num_starts);
850 
851 	for (j = 1; j <= num_starts; j++) {
852 		pr_debug("Sending STARTUP #%d\n", j);
853 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
854 			apic_write(APIC_ESR, 0);
855 		apic_read(APIC_ESR);
856 		pr_debug("After apic_write\n");
857 
858 		/*
859 		 * STARTUP IPI
860 		 */
861 
862 		/* Target chip */
863 		/* Boot on the stack */
864 		/* Kick the second */
865 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
866 			       phys_apicid);
867 
868 		/*
869 		 * Give the other CPU some time to accept the IPI.
870 		 */
871 		if (init_udelay == 0)
872 			udelay(10);
873 		else
874 			udelay(300);
875 
876 		pr_debug("Startup point 1\n");
877 
878 		pr_debug("Waiting for send to finish...\n");
879 		send_status = safe_apic_wait_icr_idle();
880 
881 		/*
882 		 * Give the other CPU some time to accept the IPI.
883 		 */
884 		if (init_udelay == 0)
885 			udelay(10);
886 		else
887 			udelay(200);
888 
889 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
890 			apic_write(APIC_ESR, 0);
891 		accept_status = (apic_read(APIC_ESR) & 0xEF);
892 		if (send_status || accept_status)
893 			break;
894 	}
895 	pr_debug("After Startup\n");
896 
897 	if (send_status)
898 		pr_err("APIC never delivered???\n");
899 	if (accept_status)
900 		pr_err("APIC delivery error (%lx)\n", accept_status);
901 
902 	return (send_status | accept_status);
903 }
904 
905 /* reduce the number of lines printed when booting a large cpu count system */
906 static void announce_cpu(int cpu, int apicid)
907 {
908 	static int current_node = NUMA_NO_NODE;
909 	int node = early_cpu_to_node(cpu);
910 	static int width, node_width;
911 
912 	if (!width)
913 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
914 
915 	if (!node_width)
916 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
917 
918 	if (cpu == 1)
919 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
920 
921 	if (system_state < SYSTEM_RUNNING) {
922 		if (node != current_node) {
923 			if (current_node > (-1))
924 				pr_cont("\n");
925 			current_node = node;
926 
927 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
928 			       node_width - num_digits(node), " ", node);
929 		}
930 
931 		/* Add padding for the BSP */
932 		if (cpu == 1)
933 			pr_cont("%*s", width + 1, " ");
934 
935 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
936 
937 	} else
938 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
939 			node, cpu, apicid);
940 }
941 
942 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
943 {
944 	int cpu;
945 
946 	cpu = smp_processor_id();
947 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
948 		return NMI_HANDLED;
949 
950 	return NMI_DONE;
951 }
952 
953 /*
954  * Wake up AP by INIT, INIT, STARTUP sequence.
955  *
956  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
957  * boot-strap code which is not a desired behavior for waking up BSP. To
958  * void the boot-strap code, wake up CPU0 by NMI instead.
959  *
960  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
961  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
962  * We'll change this code in the future to wake up hard offlined CPU0 if
963  * real platform and request are available.
964  */
965 static int
966 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
967 	       int *cpu0_nmi_registered)
968 {
969 	int id;
970 	int boot_error;
971 
972 	preempt_disable();
973 
974 	/*
975 	 * Wake up AP by INIT, INIT, STARTUP sequence.
976 	 */
977 	if (cpu) {
978 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
979 		goto out;
980 	}
981 
982 	/*
983 	 * Wake up BSP by nmi.
984 	 *
985 	 * Register a NMI handler to help wake up CPU0.
986 	 */
987 	boot_error = register_nmi_handler(NMI_LOCAL,
988 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
989 
990 	if (!boot_error) {
991 		enable_start_cpu0 = 1;
992 		*cpu0_nmi_registered = 1;
993 		if (apic->dest_logical == APIC_DEST_LOGICAL)
994 			id = cpu0_logical_apicid;
995 		else
996 			id = apicid;
997 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
998 	}
999 
1000 out:
1001 	preempt_enable();
1002 
1003 	return boot_error;
1004 }
1005 
1006 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1007 {
1008 	int ret;
1009 
1010 	/* Just in case we booted with a single CPU. */
1011 	alternatives_enable_smp();
1012 
1013 	per_cpu(current_task, cpu) = idle;
1014 
1015 	/* Initialize the interrupt stack(s) */
1016 	ret = irq_init_percpu_irqstack(cpu);
1017 	if (ret)
1018 		return ret;
1019 
1020 #ifdef CONFIG_X86_32
1021 	/* Stack for startup_32 can be just as for start_secondary onwards */
1022 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1023 #else
1024 	initial_gs = per_cpu_offset(cpu);
1025 #endif
1026 	return 0;
1027 }
1028 
1029 /*
1030  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1031  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1032  * Returns zero if CPU booted OK, else error code from
1033  * ->wakeup_secondary_cpu.
1034  */
1035 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1036 		       int *cpu0_nmi_registered)
1037 {
1038 	/* start_ip had better be page-aligned! */
1039 	unsigned long start_ip = real_mode_header->trampoline_start;
1040 
1041 	unsigned long boot_error = 0;
1042 	unsigned long timeout;
1043 
1044 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1045 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1046 	initial_code = (unsigned long)start_secondary;
1047 	initial_stack  = idle->thread.sp;
1048 
1049 	/* Enable the espfix hack for this CPU */
1050 	init_espfix_ap(cpu);
1051 
1052 	/* So we see what's up */
1053 	announce_cpu(cpu, apicid);
1054 
1055 	/*
1056 	 * This grunge runs the startup process for
1057 	 * the targeted processor.
1058 	 */
1059 
1060 	if (x86_platform.legacy.warm_reset) {
1061 
1062 		pr_debug("Setting warm reset code and vector.\n");
1063 
1064 		smpboot_setup_warm_reset_vector(start_ip);
1065 		/*
1066 		 * Be paranoid about clearing APIC errors.
1067 		*/
1068 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1069 			apic_write(APIC_ESR, 0);
1070 			apic_read(APIC_ESR);
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * AP might wait on cpu_callout_mask in cpu_init() with
1076 	 * cpu_initialized_mask set if previous attempt to online
1077 	 * it timed-out. Clear cpu_initialized_mask so that after
1078 	 * INIT/SIPI it could start with a clean state.
1079 	 */
1080 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1081 	smp_mb();
1082 
1083 	/*
1084 	 * Wake up a CPU in difference cases:
1085 	 * - Use the method in the APIC driver if it's defined
1086 	 * Otherwise,
1087 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1088 	 */
1089 	if (apic->wakeup_secondary_cpu)
1090 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1091 	else
1092 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1093 						     cpu0_nmi_registered);
1094 
1095 	if (!boot_error) {
1096 		/*
1097 		 * Wait 10s total for first sign of life from AP
1098 		 */
1099 		boot_error = -1;
1100 		timeout = jiffies + 10*HZ;
1101 		while (time_before(jiffies, timeout)) {
1102 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1103 				/*
1104 				 * Tell AP to proceed with initialization
1105 				 */
1106 				cpumask_set_cpu(cpu, cpu_callout_mask);
1107 				boot_error = 0;
1108 				break;
1109 			}
1110 			schedule();
1111 		}
1112 	}
1113 
1114 	if (!boot_error) {
1115 		/*
1116 		 * Wait till AP completes initial initialization
1117 		 */
1118 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1119 			/*
1120 			 * Allow other tasks to run while we wait for the
1121 			 * AP to come online. This also gives a chance
1122 			 * for the MTRR work(triggered by the AP coming online)
1123 			 * to be completed in the stop machine context.
1124 			 */
1125 			schedule();
1126 		}
1127 	}
1128 
1129 	if (x86_platform.legacy.warm_reset) {
1130 		/*
1131 		 * Cleanup possible dangling ends...
1132 		 */
1133 		smpboot_restore_warm_reset_vector();
1134 	}
1135 
1136 	return boot_error;
1137 }
1138 
1139 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1140 {
1141 	int apicid = apic->cpu_present_to_apicid(cpu);
1142 	int cpu0_nmi_registered = 0;
1143 	unsigned long flags;
1144 	int err, ret = 0;
1145 
1146 	lockdep_assert_irqs_enabled();
1147 
1148 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1149 
1150 	if (apicid == BAD_APICID ||
1151 	    !physid_isset(apicid, phys_cpu_present_map) ||
1152 	    !apic->apic_id_valid(apicid)) {
1153 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1154 		return -EINVAL;
1155 	}
1156 
1157 	/*
1158 	 * Already booted CPU?
1159 	 */
1160 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1161 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1162 		return -ENOSYS;
1163 	}
1164 
1165 	/*
1166 	 * Save current MTRR state in case it was changed since early boot
1167 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1168 	 */
1169 	mtrr_save_state();
1170 
1171 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1172 	err = cpu_check_up_prepare(cpu);
1173 	if (err && err != -EBUSY)
1174 		return err;
1175 
1176 	/* the FPU context is blank, nobody can own it */
1177 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1178 
1179 	err = common_cpu_up(cpu, tidle);
1180 	if (err)
1181 		return err;
1182 
1183 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1184 	if (err) {
1185 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1186 		ret = -EIO;
1187 		goto unreg_nmi;
1188 	}
1189 
1190 	/*
1191 	 * Check TSC synchronization with the AP (keep irqs disabled
1192 	 * while doing so):
1193 	 */
1194 	local_irq_save(flags);
1195 	check_tsc_sync_source(cpu);
1196 	local_irq_restore(flags);
1197 
1198 	while (!cpu_online(cpu)) {
1199 		cpu_relax();
1200 		touch_nmi_watchdog();
1201 	}
1202 
1203 unreg_nmi:
1204 	/*
1205 	 * Clean up the nmi handler. Do this after the callin and callout sync
1206 	 * to avoid impact of possible long unregister time.
1207 	 */
1208 	if (cpu0_nmi_registered)
1209 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1210 
1211 	return ret;
1212 }
1213 
1214 /**
1215  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1216  */
1217 void arch_disable_smp_support(void)
1218 {
1219 	disable_ioapic_support();
1220 }
1221 
1222 /*
1223  * Fall back to non SMP mode after errors.
1224  *
1225  * RED-PEN audit/test this more. I bet there is more state messed up here.
1226  */
1227 static __init void disable_smp(void)
1228 {
1229 	pr_info("SMP disabled\n");
1230 
1231 	disable_ioapic_support();
1232 
1233 	init_cpu_present(cpumask_of(0));
1234 	init_cpu_possible(cpumask_of(0));
1235 
1236 	if (smp_found_config)
1237 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1238 	else
1239 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1240 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1241 	cpumask_set_cpu(0, topology_core_cpumask(0));
1242 	cpumask_set_cpu(0, topology_die_cpumask(0));
1243 }
1244 
1245 /*
1246  * Various sanity checks.
1247  */
1248 static void __init smp_sanity_check(void)
1249 {
1250 	preempt_disable();
1251 
1252 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1253 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1254 		unsigned int cpu;
1255 		unsigned nr;
1256 
1257 		pr_warn("More than 8 CPUs detected - skipping them\n"
1258 			"Use CONFIG_X86_BIGSMP\n");
1259 
1260 		nr = 0;
1261 		for_each_present_cpu(cpu) {
1262 			if (nr >= 8)
1263 				set_cpu_present(cpu, false);
1264 			nr++;
1265 		}
1266 
1267 		nr = 0;
1268 		for_each_possible_cpu(cpu) {
1269 			if (nr >= 8)
1270 				set_cpu_possible(cpu, false);
1271 			nr++;
1272 		}
1273 
1274 		nr_cpu_ids = 8;
1275 	}
1276 #endif
1277 
1278 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1279 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1280 			hard_smp_processor_id());
1281 
1282 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1283 	}
1284 
1285 	/*
1286 	 * Should not be necessary because the MP table should list the boot
1287 	 * CPU too, but we do it for the sake of robustness anyway.
1288 	 */
1289 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1290 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1291 			  boot_cpu_physical_apicid);
1292 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1293 	}
1294 	preempt_enable();
1295 }
1296 
1297 static void __init smp_cpu_index_default(void)
1298 {
1299 	int i;
1300 	struct cpuinfo_x86 *c;
1301 
1302 	for_each_possible_cpu(i) {
1303 		c = &cpu_data(i);
1304 		/* mark all to hotplug */
1305 		c->cpu_index = nr_cpu_ids;
1306 	}
1307 }
1308 
1309 static void __init smp_get_logical_apicid(void)
1310 {
1311 	if (x2apic_mode)
1312 		cpu0_logical_apicid = apic_read(APIC_LDR);
1313 	else
1314 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1315 }
1316 
1317 /*
1318  * Prepare for SMP bootup.
1319  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1320  *            for common interface support.
1321  */
1322 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1323 {
1324 	unsigned int i;
1325 
1326 	smp_cpu_index_default();
1327 
1328 	/*
1329 	 * Setup boot CPU information
1330 	 */
1331 	smp_store_boot_cpu_info(); /* Final full version of the data */
1332 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1333 	mb();
1334 
1335 	for_each_possible_cpu(i) {
1336 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1337 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1338 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1339 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1340 	}
1341 
1342 	/*
1343 	 * Set 'default' x86 topology, this matches default_topology() in that
1344 	 * it has NUMA nodes as a topology level. See also
1345 	 * native_smp_cpus_done().
1346 	 *
1347 	 * Must be done before set_cpus_sibling_map() is ran.
1348 	 */
1349 	set_sched_topology(x86_topology);
1350 
1351 	set_cpu_sibling_map(0);
1352 	init_freq_invariance(false);
1353 	smp_sanity_check();
1354 
1355 	switch (apic_intr_mode) {
1356 	case APIC_PIC:
1357 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1358 		disable_smp();
1359 		return;
1360 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1361 		disable_smp();
1362 		/* Setup local timer */
1363 		x86_init.timers.setup_percpu_clockev();
1364 		return;
1365 	case APIC_VIRTUAL_WIRE:
1366 	case APIC_SYMMETRIC_IO:
1367 		break;
1368 	}
1369 
1370 	/* Setup local timer */
1371 	x86_init.timers.setup_percpu_clockev();
1372 
1373 	smp_get_logical_apicid();
1374 
1375 	pr_info("CPU0: ");
1376 	print_cpu_info(&cpu_data(0));
1377 
1378 	uv_system_init();
1379 
1380 	set_mtrr_aps_delayed_init();
1381 
1382 	smp_quirk_init_udelay();
1383 
1384 	speculative_store_bypass_ht_init();
1385 }
1386 
1387 void arch_enable_nonboot_cpus_begin(void)
1388 {
1389 	set_mtrr_aps_delayed_init();
1390 }
1391 
1392 void arch_enable_nonboot_cpus_end(void)
1393 {
1394 	mtrr_aps_init();
1395 }
1396 
1397 /*
1398  * Early setup to make printk work.
1399  */
1400 void __init native_smp_prepare_boot_cpu(void)
1401 {
1402 	int me = smp_processor_id();
1403 	switch_to_new_gdt(me);
1404 	/* already set me in cpu_online_mask in boot_cpu_init() */
1405 	cpumask_set_cpu(me, cpu_callout_mask);
1406 	cpu_set_state_online(me);
1407 	native_pv_lock_init();
1408 }
1409 
1410 void __init calculate_max_logical_packages(void)
1411 {
1412 	int ncpus;
1413 
1414 	/*
1415 	 * Today neither Intel nor AMD support heterogenous systems so
1416 	 * extrapolate the boot cpu's data to all packages.
1417 	 */
1418 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1419 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1420 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1421 }
1422 
1423 void __init native_smp_cpus_done(unsigned int max_cpus)
1424 {
1425 	pr_debug("Boot done\n");
1426 
1427 	calculate_max_logical_packages();
1428 
1429 	if (x86_has_numa_in_package)
1430 		set_sched_topology(x86_numa_in_package_topology);
1431 
1432 	nmi_selftest();
1433 	impress_friends();
1434 	mtrr_aps_init();
1435 }
1436 
1437 static int __initdata setup_possible_cpus = -1;
1438 static int __init _setup_possible_cpus(char *str)
1439 {
1440 	get_option(&str, &setup_possible_cpus);
1441 	return 0;
1442 }
1443 early_param("possible_cpus", _setup_possible_cpus);
1444 
1445 
1446 /*
1447  * cpu_possible_mask should be static, it cannot change as cpu's
1448  * are onlined, or offlined. The reason is per-cpu data-structures
1449  * are allocated by some modules at init time, and don't expect to
1450  * do this dynamically on cpu arrival/departure.
1451  * cpu_present_mask on the other hand can change dynamically.
1452  * In case when cpu_hotplug is not compiled, then we resort to current
1453  * behaviour, which is cpu_possible == cpu_present.
1454  * - Ashok Raj
1455  *
1456  * Three ways to find out the number of additional hotplug CPUs:
1457  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1458  * - The user can overwrite it with possible_cpus=NUM
1459  * - Otherwise don't reserve additional CPUs.
1460  * We do this because additional CPUs waste a lot of memory.
1461  * -AK
1462  */
1463 __init void prefill_possible_map(void)
1464 {
1465 	int i, possible;
1466 
1467 	/* No boot processor was found in mptable or ACPI MADT */
1468 	if (!num_processors) {
1469 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1470 			int apicid = boot_cpu_physical_apicid;
1471 			int cpu = hard_smp_processor_id();
1472 
1473 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1474 
1475 			/* Make sure boot cpu is enumerated */
1476 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1477 			    apic->apic_id_valid(apicid))
1478 				generic_processor_info(apicid, boot_cpu_apic_version);
1479 		}
1480 
1481 		if (!num_processors)
1482 			num_processors = 1;
1483 	}
1484 
1485 	i = setup_max_cpus ?: 1;
1486 	if (setup_possible_cpus == -1) {
1487 		possible = num_processors;
1488 #ifdef CONFIG_HOTPLUG_CPU
1489 		if (setup_max_cpus)
1490 			possible += disabled_cpus;
1491 #else
1492 		if (possible > i)
1493 			possible = i;
1494 #endif
1495 	} else
1496 		possible = setup_possible_cpus;
1497 
1498 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1499 
1500 	/* nr_cpu_ids could be reduced via nr_cpus= */
1501 	if (possible > nr_cpu_ids) {
1502 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1503 			possible, nr_cpu_ids);
1504 		possible = nr_cpu_ids;
1505 	}
1506 
1507 #ifdef CONFIG_HOTPLUG_CPU
1508 	if (!setup_max_cpus)
1509 #endif
1510 	if (possible > i) {
1511 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1512 			possible, setup_max_cpus);
1513 		possible = i;
1514 	}
1515 
1516 	nr_cpu_ids = possible;
1517 
1518 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1519 		possible, max_t(int, possible - num_processors, 0));
1520 
1521 	reset_cpu_possible_mask();
1522 
1523 	for (i = 0; i < possible; i++)
1524 		set_cpu_possible(i, true);
1525 }
1526 
1527 #ifdef CONFIG_HOTPLUG_CPU
1528 
1529 /* Recompute SMT state for all CPUs on offline */
1530 static void recompute_smt_state(void)
1531 {
1532 	int max_threads, cpu;
1533 
1534 	max_threads = 0;
1535 	for_each_online_cpu (cpu) {
1536 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1537 
1538 		if (threads > max_threads)
1539 			max_threads = threads;
1540 	}
1541 	__max_smt_threads = max_threads;
1542 }
1543 
1544 static void remove_siblinginfo(int cpu)
1545 {
1546 	int sibling;
1547 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1548 
1549 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1550 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1551 		/*/
1552 		 * last thread sibling in this cpu core going down
1553 		 */
1554 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1555 			cpu_data(sibling).booted_cores--;
1556 	}
1557 
1558 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1559 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1560 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1561 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1562 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1563 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1564 	cpumask_clear(cpu_llc_shared_mask(cpu));
1565 	cpumask_clear(topology_sibling_cpumask(cpu));
1566 	cpumask_clear(topology_core_cpumask(cpu));
1567 	cpumask_clear(topology_die_cpumask(cpu));
1568 	c->cpu_core_id = 0;
1569 	c->booted_cores = 0;
1570 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1571 	recompute_smt_state();
1572 }
1573 
1574 static void remove_cpu_from_maps(int cpu)
1575 {
1576 	set_cpu_online(cpu, false);
1577 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1578 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1579 	/* was set by cpu_init() */
1580 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1581 	numa_remove_cpu(cpu);
1582 }
1583 
1584 void cpu_disable_common(void)
1585 {
1586 	int cpu = smp_processor_id();
1587 
1588 	remove_siblinginfo(cpu);
1589 
1590 	/* It's now safe to remove this processor from the online map */
1591 	lock_vector_lock();
1592 	remove_cpu_from_maps(cpu);
1593 	unlock_vector_lock();
1594 	fixup_irqs();
1595 	lapic_offline();
1596 }
1597 
1598 int native_cpu_disable(void)
1599 {
1600 	int ret;
1601 
1602 	ret = lapic_can_unplug_cpu();
1603 	if (ret)
1604 		return ret;
1605 
1606 	/*
1607 	 * Disable the local APIC. Otherwise IPI broadcasts will reach
1608 	 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1609 	 * messages.
1610 	 */
1611 	apic_soft_disable();
1612 	cpu_disable_common();
1613 
1614 	return 0;
1615 }
1616 
1617 int common_cpu_die(unsigned int cpu)
1618 {
1619 	int ret = 0;
1620 
1621 	/* We don't do anything here: idle task is faking death itself. */
1622 
1623 	/* They ack this in play_dead() by setting CPU_DEAD */
1624 	if (cpu_wait_death(cpu, 5)) {
1625 		if (system_state == SYSTEM_RUNNING)
1626 			pr_info("CPU %u is now offline\n", cpu);
1627 	} else {
1628 		pr_err("CPU %u didn't die...\n", cpu);
1629 		ret = -1;
1630 	}
1631 
1632 	return ret;
1633 }
1634 
1635 void native_cpu_die(unsigned int cpu)
1636 {
1637 	common_cpu_die(cpu);
1638 }
1639 
1640 void play_dead_common(void)
1641 {
1642 	idle_task_exit();
1643 
1644 	/* Ack it */
1645 	(void)cpu_report_death();
1646 
1647 	/*
1648 	 * With physical CPU hotplug, we should halt the cpu
1649 	 */
1650 	local_irq_disable();
1651 }
1652 
1653 static bool wakeup_cpu0(void)
1654 {
1655 	if (smp_processor_id() == 0 && enable_start_cpu0)
1656 		return true;
1657 
1658 	return false;
1659 }
1660 
1661 /*
1662  * We need to flush the caches before going to sleep, lest we have
1663  * dirty data in our caches when we come back up.
1664  */
1665 static inline void mwait_play_dead(void)
1666 {
1667 	unsigned int eax, ebx, ecx, edx;
1668 	unsigned int highest_cstate = 0;
1669 	unsigned int highest_subcstate = 0;
1670 	void *mwait_ptr;
1671 	int i;
1672 
1673 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1674 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1675 		return;
1676 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1677 		return;
1678 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1679 		return;
1680 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1681 		return;
1682 
1683 	eax = CPUID_MWAIT_LEAF;
1684 	ecx = 0;
1685 	native_cpuid(&eax, &ebx, &ecx, &edx);
1686 
1687 	/*
1688 	 * eax will be 0 if EDX enumeration is not valid.
1689 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1690 	 */
1691 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1692 		eax = 0;
1693 	} else {
1694 		edx >>= MWAIT_SUBSTATE_SIZE;
1695 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1696 			if (edx & MWAIT_SUBSTATE_MASK) {
1697 				highest_cstate = i;
1698 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1699 			}
1700 		}
1701 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1702 			(highest_subcstate - 1);
1703 	}
1704 
1705 	/*
1706 	 * This should be a memory location in a cache line which is
1707 	 * unlikely to be touched by other processors.  The actual
1708 	 * content is immaterial as it is not actually modified in any way.
1709 	 */
1710 	mwait_ptr = &current_thread_info()->flags;
1711 
1712 	wbinvd();
1713 
1714 	while (1) {
1715 		/*
1716 		 * The CLFLUSH is a workaround for erratum AAI65 for
1717 		 * the Xeon 7400 series.  It's not clear it is actually
1718 		 * needed, but it should be harmless in either case.
1719 		 * The WBINVD is insufficient due to the spurious-wakeup
1720 		 * case where we return around the loop.
1721 		 */
1722 		mb();
1723 		clflush(mwait_ptr);
1724 		mb();
1725 		__monitor(mwait_ptr, 0, 0);
1726 		mb();
1727 		__mwait(eax, 0);
1728 		/*
1729 		 * If NMI wants to wake up CPU0, start CPU0.
1730 		 */
1731 		if (wakeup_cpu0())
1732 			start_cpu0();
1733 	}
1734 }
1735 
1736 void hlt_play_dead(void)
1737 {
1738 	if (__this_cpu_read(cpu_info.x86) >= 4)
1739 		wbinvd();
1740 
1741 	while (1) {
1742 		native_halt();
1743 		/*
1744 		 * If NMI wants to wake up CPU0, start CPU0.
1745 		 */
1746 		if (wakeup_cpu0())
1747 			start_cpu0();
1748 	}
1749 }
1750 
1751 void native_play_dead(void)
1752 {
1753 	play_dead_common();
1754 	tboot_shutdown(TB_SHUTDOWN_WFS);
1755 
1756 	mwait_play_dead();	/* Only returns on failure */
1757 	if (cpuidle_play_dead())
1758 		hlt_play_dead();
1759 }
1760 
1761 #else /* ... !CONFIG_HOTPLUG_CPU */
1762 int native_cpu_disable(void)
1763 {
1764 	return -ENOSYS;
1765 }
1766 
1767 void native_cpu_die(unsigned int cpu)
1768 {
1769 	/* We said "no" in __cpu_disable */
1770 	BUG();
1771 }
1772 
1773 void native_play_dead(void)
1774 {
1775 	BUG();
1776 }
1777 
1778 #endif
1779 
1780 /*
1781  * APERF/MPERF frequency ratio computation.
1782  *
1783  * The scheduler wants to do frequency invariant accounting and needs a <1
1784  * ratio to account for the 'current' frequency, corresponding to
1785  * freq_curr / freq_max.
1786  *
1787  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1788  * our P-state setting is little more than a request/hint, we need to observe
1789  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1790  * interval after discarding idle time. This is given by:
1791  *
1792  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1793  *
1794  * where freq_base is the max non-turbo P-state.
1795  *
1796  * The freq_max term has to be set to a somewhat arbitrary value, because we
1797  * can't know which turbo states will be available at a given point in time:
1798  * it all depends on the thermal headroom of the entire package. We set it to
1799  * the turbo level with 4 cores active.
1800  *
1801  * Benchmarks show that's a good compromise between the 1C turbo ratio
1802  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1803  * which would ignore the entire turbo range (a conspicuous part, making
1804  * freq_curr/freq_max always maxed out).
1805  *
1806  * An exception to the heuristic above is the Atom uarch, where we choose the
1807  * highest turbo level for freq_max since Atom's are generally oriented towards
1808  * power efficiency.
1809  *
1810  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1811  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1812  */
1813 
1814 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1815 
1816 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1817 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1818 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1819 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1820 
1821 void arch_set_max_freq_ratio(bool turbo_disabled)
1822 {
1823 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1824 					arch_turbo_freq_ratio;
1825 }
1826 
1827 static bool turbo_disabled(void)
1828 {
1829 	u64 misc_en;
1830 	int err;
1831 
1832 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1833 	if (err)
1834 		return false;
1835 
1836 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1837 }
1838 
1839 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1840 {
1841 	int err;
1842 
1843 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1844 	if (err)
1845 		return false;
1846 
1847 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1848 	if (err)
1849 		return false;
1850 
1851 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1852 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1853 
1854 	return true;
1855 }
1856 
1857 #include <asm/cpu_device_id.h>
1858 #include <asm/intel-family.h>
1859 
1860 #define ICPU(model) \
1861 	{X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF, 0}
1862 
1863 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1864 	ICPU(INTEL_FAM6_XEON_PHI_KNL),
1865 	ICPU(INTEL_FAM6_XEON_PHI_KNM),
1866 	{}
1867 };
1868 
1869 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1870 	ICPU(INTEL_FAM6_SKYLAKE_X),
1871 	{}
1872 };
1873 
1874 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1875 	ICPU(INTEL_FAM6_ATOM_GOLDMONT),
1876 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_D),
1877 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS),
1878 	{}
1879 };
1880 
1881 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1882 				int num_delta_fratio)
1883 {
1884 	int fratio, delta_fratio, found;
1885 	int err, i;
1886 	u64 msr;
1887 
1888 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1889 	if (err)
1890 		return false;
1891 
1892 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1893 
1894 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1895 	if (err)
1896 		return false;
1897 
1898 	fratio = (msr >> 8) & 0xFF;
1899 	i = 16;
1900 	found = 0;
1901 	do {
1902 		if (found >= num_delta_fratio) {
1903 			*turbo_freq = fratio;
1904 			return true;
1905 		}
1906 
1907 		delta_fratio = (msr >> (i + 5)) & 0x7;
1908 
1909 		if (delta_fratio) {
1910 			found += 1;
1911 			fratio -= delta_fratio;
1912 		}
1913 
1914 		i += 8;
1915 	} while (i < 64);
1916 
1917 	return true;
1918 }
1919 
1920 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1921 {
1922 	u64 ratios, counts;
1923 	u32 group_size;
1924 	int err, i;
1925 
1926 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1927 	if (err)
1928 		return false;
1929 
1930 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1931 
1932 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1933 	if (err)
1934 		return false;
1935 
1936 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1937 	if (err)
1938 		return false;
1939 
1940 	for (i = 0; i < 64; i += 8) {
1941 		group_size = (counts >> i) & 0xFF;
1942 		if (group_size >= size) {
1943 			*turbo_freq = (ratios >> i) & 0xFF;
1944 			return true;
1945 		}
1946 	}
1947 
1948 	return false;
1949 }
1950 
1951 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1952 {
1953 	u64 msr;
1954 	int err;
1955 
1956 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1957 	if (err)
1958 		return false;
1959 
1960 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1961 	if (err)
1962 		return false;
1963 
1964 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1965 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1966 
1967 	/* The CPU may have less than 4 cores */
1968 	if (!*turbo_freq)
1969 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1970 
1971 	return true;
1972 }
1973 
1974 static bool intel_set_max_freq_ratio(void)
1975 {
1976 	u64 base_freq, turbo_freq;
1977 
1978 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1979 		goto out;
1980 
1981 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1982 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1983 		goto out;
1984 
1985 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1986 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1987 		goto out;
1988 
1989 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1990 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
1991 		goto out;
1992 
1993 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
1994 		goto out;
1995 
1996 	return false;
1997 
1998 out:
1999 	/*
2000 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2001 	 * but then fill all MSR's with zeroes.
2002 	 */
2003 	if (!base_freq) {
2004 		pr_debug("Couldn't determine cpu base frequency, necessary for scale-invariant accounting.\n");
2005 		return false;
2006 	}
2007 
2008 	arch_turbo_freq_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE,
2009 					base_freq);
2010 	arch_set_max_freq_ratio(turbo_disabled());
2011 	return true;
2012 }
2013 
2014 static void init_counter_refs(void)
2015 {
2016 	u64 aperf, mperf;
2017 
2018 	rdmsrl(MSR_IA32_APERF, aperf);
2019 	rdmsrl(MSR_IA32_MPERF, mperf);
2020 
2021 	this_cpu_write(arch_prev_aperf, aperf);
2022 	this_cpu_write(arch_prev_mperf, mperf);
2023 }
2024 
2025 static void init_freq_invariance(bool secondary)
2026 {
2027 	bool ret = false;
2028 
2029 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2030 		return;
2031 
2032 	if (secondary) {
2033 		if (static_branch_likely(&arch_scale_freq_key)) {
2034 			init_counter_refs();
2035 		}
2036 		return;
2037 	}
2038 
2039 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2040 		ret = intel_set_max_freq_ratio();
2041 
2042 	if (ret) {
2043 		init_counter_refs();
2044 		static_branch_enable(&arch_scale_freq_key);
2045 	} else {
2046 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2047 	}
2048 }
2049 
2050 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2051 
2052 void arch_scale_freq_tick(void)
2053 {
2054 	u64 freq_scale;
2055 	u64 aperf, mperf;
2056 	u64 acnt, mcnt;
2057 
2058 	if (!arch_scale_freq_invariant())
2059 		return;
2060 
2061 	rdmsrl(MSR_IA32_APERF, aperf);
2062 	rdmsrl(MSR_IA32_MPERF, mperf);
2063 
2064 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2065 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2066 	if (!mcnt)
2067 		return;
2068 
2069 	this_cpu_write(arch_prev_aperf, aperf);
2070 	this_cpu_write(arch_prev_mperf, mperf);
2071 
2072 	acnt <<= 2*SCHED_CAPACITY_SHIFT;
2073 	mcnt *= arch_max_freq_ratio;
2074 
2075 	freq_scale = div64_u64(acnt, mcnt);
2076 
2077 	if (freq_scale > SCHED_CAPACITY_SCALE)
2078 		freq_scale = SCHED_CAPACITY_SCALE;
2079 
2080 	this_cpu_write(arch_freq_scale, freq_scale);
2081 }
2082