xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 9a29ad52)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/export.h>
47 #include <linux/sched.h>
48 #include <linux/sched/topology.h>
49 #include <linux/sched/hotplug.h>
50 #include <linux/sched/task_stack.h>
51 #include <linux/percpu.h>
52 #include <linux/bootmem.h>
53 #include <linux/err.h>
54 #include <linux/nmi.h>
55 #include <linux/tboot.h>
56 #include <linux/stackprotector.h>
57 #include <linux/gfp.h>
58 #include <linux/cpuidle.h>
59 
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
93 
94 /* Per CPU bogomips and other parameters */
95 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
96 EXPORT_PER_CPU_SYMBOL(cpu_info);
97 
98 /* Logical package management. We might want to allocate that dynamically */
99 unsigned int __max_logical_packages __read_mostly;
100 EXPORT_SYMBOL(__max_logical_packages);
101 static unsigned int logical_packages __read_mostly;
102 
103 /* Maximum number of SMT threads on any online core */
104 int __read_mostly __max_smt_threads = 1;
105 
106 /* Flag to indicate if a complete sched domain rebuild is required */
107 bool x86_topology_update;
108 
109 int arch_update_cpu_topology(void)
110 {
111 	int retval = x86_topology_update;
112 
113 	x86_topology_update = false;
114 	return retval;
115 }
116 
117 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
118 {
119 	unsigned long flags;
120 
121 	spin_lock_irqsave(&rtc_lock, flags);
122 	CMOS_WRITE(0xa, 0xf);
123 	spin_unlock_irqrestore(&rtc_lock, flags);
124 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
125 							start_eip >> 4;
126 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
127 							start_eip & 0xf;
128 }
129 
130 static inline void smpboot_restore_warm_reset_vector(void)
131 {
132 	unsigned long flags;
133 
134 	/*
135 	 * Paranoid:  Set warm reset code and vector here back
136 	 * to default values.
137 	 */
138 	spin_lock_irqsave(&rtc_lock, flags);
139 	CMOS_WRITE(0, 0xf);
140 	spin_unlock_irqrestore(&rtc_lock, flags);
141 
142 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
143 }
144 
145 /*
146  * Report back to the Boot Processor during boot time or to the caller processor
147  * during CPU online.
148  */
149 static void smp_callin(void)
150 {
151 	int cpuid, phys_id;
152 
153 	/*
154 	 * If waken up by an INIT in an 82489DX configuration
155 	 * cpu_callout_mask guarantees we don't get here before
156 	 * an INIT_deassert IPI reaches our local APIC, so it is
157 	 * now safe to touch our local APIC.
158 	 */
159 	cpuid = smp_processor_id();
160 
161 	/*
162 	 * (This works even if the APIC is not enabled.)
163 	 */
164 	phys_id = read_apic_id();
165 
166 	/*
167 	 * the boot CPU has finished the init stage and is spinning
168 	 * on callin_map until we finish. We are free to set up this
169 	 * CPU, first the APIC. (this is probably redundant on most
170 	 * boards)
171 	 */
172 	apic_ap_setup();
173 
174 	/*
175 	 * Save our processor parameters. Note: this information
176 	 * is needed for clock calibration.
177 	 */
178 	smp_store_cpu_info(cpuid);
179 
180 	/*
181 	 * The topology information must be up to date before
182 	 * calibrate_delay() and notify_cpu_starting().
183 	 */
184 	set_cpu_sibling_map(raw_smp_processor_id());
185 
186 	/*
187 	 * Get our bogomips.
188 	 * Update loops_per_jiffy in cpu_data. Previous call to
189 	 * smp_store_cpu_info() stored a value that is close but not as
190 	 * accurate as the value just calculated.
191 	 */
192 	calibrate_delay();
193 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
194 	pr_debug("Stack at about %p\n", &cpuid);
195 
196 	wmb();
197 
198 	notify_cpu_starting(cpuid);
199 
200 	/*
201 	 * Allow the master to continue.
202 	 */
203 	cpumask_set_cpu(cpuid, cpu_callin_mask);
204 }
205 
206 static int cpu0_logical_apicid;
207 static int enable_start_cpu0;
208 /*
209  * Activate a secondary processor.
210  */
211 static void notrace start_secondary(void *unused)
212 {
213 	/*
214 	 * Don't put *anything* except direct CPU state initialization
215 	 * before cpu_init(), SMP booting is too fragile that we want to
216 	 * limit the things done here to the most necessary things.
217 	 */
218 	if (boot_cpu_has(X86_FEATURE_PCID))
219 		__write_cr4(__read_cr4() | X86_CR4_PCIDE);
220 
221 #ifdef CONFIG_X86_32
222 	/* switch away from the initial page table */
223 	load_cr3(swapper_pg_dir);
224 	/*
225 	 * Initialize the CR4 shadow before doing anything that could
226 	 * try to read it.
227 	 */
228 	cr4_init_shadow();
229 	__flush_tlb_all();
230 #endif
231 	load_current_idt();
232 	cpu_init();
233 	x86_cpuinit.early_percpu_clock_init();
234 	preempt_disable();
235 	smp_callin();
236 
237 	enable_start_cpu0 = 0;
238 
239 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
240 	barrier();
241 	/*
242 	 * Check TSC synchronization with the boot CPU:
243 	 */
244 	check_tsc_sync_target();
245 
246 	speculative_store_bypass_ht_init();
247 
248 	/*
249 	 * Lock vector_lock, set CPU online and bring the vector
250 	 * allocator online. Online must be set with vector_lock held
251 	 * to prevent a concurrent irq setup/teardown from seeing a
252 	 * half valid vector space.
253 	 */
254 	lock_vector_lock();
255 	set_cpu_online(smp_processor_id(), true);
256 	lapic_online();
257 	unlock_vector_lock();
258 	cpu_set_state_online(smp_processor_id());
259 	x86_platform.nmi_init();
260 
261 	/* enable local interrupts */
262 	local_irq_enable();
263 
264 	/* to prevent fake stack check failure in clock setup */
265 	boot_init_stack_canary();
266 
267 	x86_cpuinit.setup_percpu_clockev();
268 
269 	wmb();
270 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272 
273 /**
274  * topology_phys_to_logical_pkg - Map a physical package id to a logical
275  *
276  * Returns logical package id or -1 if not found
277  */
278 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
279 {
280 	int cpu;
281 
282 	for_each_possible_cpu(cpu) {
283 		struct cpuinfo_x86 *c = &cpu_data(cpu);
284 
285 		if (c->initialized && c->phys_proc_id == phys_pkg)
286 			return c->logical_proc_id;
287 	}
288 	return -1;
289 }
290 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
291 
292 /**
293  * topology_update_package_map - Update the physical to logical package map
294  * @pkg:	The physical package id as retrieved via CPUID
295  * @cpu:	The cpu for which this is updated
296  */
297 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
298 {
299 	int new;
300 
301 	/* Already available somewhere? */
302 	new = topology_phys_to_logical_pkg(pkg);
303 	if (new >= 0)
304 		goto found;
305 
306 	new = logical_packages++;
307 	if (new != pkg) {
308 		pr_info("CPU %u Converting physical %u to logical package %u\n",
309 			cpu, pkg, new);
310 	}
311 found:
312 	cpu_data(cpu).logical_proc_id = new;
313 	return 0;
314 }
315 
316 void __init smp_store_boot_cpu_info(void)
317 {
318 	int id = 0; /* CPU 0 */
319 	struct cpuinfo_x86 *c = &cpu_data(id);
320 
321 	*c = boot_cpu_data;
322 	c->cpu_index = id;
323 	topology_update_package_map(c->phys_proc_id, id);
324 	c->initialized = true;
325 }
326 
327 /*
328  * The bootstrap kernel entry code has set these up. Save them for
329  * a given CPU
330  */
331 void smp_store_cpu_info(int id)
332 {
333 	struct cpuinfo_x86 *c = &cpu_data(id);
334 
335 	/* Copy boot_cpu_data only on the first bringup */
336 	if (!c->initialized)
337 		*c = boot_cpu_data;
338 	c->cpu_index = id;
339 	/*
340 	 * During boot time, CPU0 has this setup already. Save the info when
341 	 * bringing up AP or offlined CPU0.
342 	 */
343 	identify_secondary_cpu(c);
344 	c->initialized = true;
345 }
346 
347 static bool
348 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
349 {
350 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
351 
352 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
353 }
354 
355 static bool
356 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
357 {
358 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
359 
360 	return !WARN_ONCE(!topology_same_node(c, o),
361 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
362 		"[node: %d != %d]. Ignoring dependency.\n",
363 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
364 }
365 
366 #define link_mask(mfunc, c1, c2)					\
367 do {									\
368 	cpumask_set_cpu((c1), mfunc(c2));				\
369 	cpumask_set_cpu((c2), mfunc(c1));				\
370 } while (0)
371 
372 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
373 {
374 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
375 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
376 
377 		if (c->phys_proc_id == o->phys_proc_id &&
378 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
379 			if (c->cpu_core_id == o->cpu_core_id)
380 				return topology_sane(c, o, "smt");
381 
382 			if ((c->cu_id != 0xff) &&
383 			    (o->cu_id != 0xff) &&
384 			    (c->cu_id == o->cu_id))
385 				return topology_sane(c, o, "smt");
386 		}
387 
388 	} else if (c->phys_proc_id == o->phys_proc_id &&
389 		   c->cpu_core_id == o->cpu_core_id) {
390 		return topology_sane(c, o, "smt");
391 	}
392 
393 	return false;
394 }
395 
396 /*
397  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
398  *
399  * These are Intel CPUs that enumerate an LLC that is shared by
400  * multiple NUMA nodes. The LLC on these systems is shared for
401  * off-package data access but private to the NUMA node (half
402  * of the package) for on-package access.
403  *
404  * CPUID (the source of the information about the LLC) can only
405  * enumerate the cache as being shared *or* unshared, but not
406  * this particular configuration. The CPU in this case enumerates
407  * the cache to be shared across the entire package (spanning both
408  * NUMA nodes).
409  */
410 
411 static const struct x86_cpu_id snc_cpu[] = {
412 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
413 	{}
414 };
415 
416 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
417 {
418 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
419 
420 	/* Do not match if we do not have a valid APICID for cpu: */
421 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
422 		return false;
423 
424 	/* Do not match if LLC id does not match: */
425 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
426 		return false;
427 
428 	/*
429 	 * Allow the SNC topology without warning. Return of false
430 	 * means 'c' does not share the LLC of 'o'. This will be
431 	 * reflected to userspace.
432 	 */
433 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
434 		return false;
435 
436 	return topology_sane(c, o, "llc");
437 }
438 
439 /*
440  * Unlike the other levels, we do not enforce keeping a
441  * multicore group inside a NUMA node.  If this happens, we will
442  * discard the MC level of the topology later.
443  */
444 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
445 {
446 	if (c->phys_proc_id == o->phys_proc_id)
447 		return true;
448 	return false;
449 }
450 
451 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
452 static inline int x86_sched_itmt_flags(void)
453 {
454 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
455 }
456 
457 #ifdef CONFIG_SCHED_MC
458 static int x86_core_flags(void)
459 {
460 	return cpu_core_flags() | x86_sched_itmt_flags();
461 }
462 #endif
463 #ifdef CONFIG_SCHED_SMT
464 static int x86_smt_flags(void)
465 {
466 	return cpu_smt_flags() | x86_sched_itmt_flags();
467 }
468 #endif
469 #endif
470 
471 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
472 #ifdef CONFIG_SCHED_SMT
473 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
474 #endif
475 #ifdef CONFIG_SCHED_MC
476 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
477 #endif
478 	{ NULL, },
479 };
480 
481 static struct sched_domain_topology_level x86_topology[] = {
482 #ifdef CONFIG_SCHED_SMT
483 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
484 #endif
485 #ifdef CONFIG_SCHED_MC
486 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
487 #endif
488 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
489 	{ NULL, },
490 };
491 
492 /*
493  * Set if a package/die has multiple NUMA nodes inside.
494  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
495  * Sub-NUMA Clustering have this.
496  */
497 static bool x86_has_numa_in_package;
498 
499 void set_cpu_sibling_map(int cpu)
500 {
501 	bool has_smt = smp_num_siblings > 1;
502 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
503 	struct cpuinfo_x86 *c = &cpu_data(cpu);
504 	struct cpuinfo_x86 *o;
505 	int i, threads;
506 
507 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
508 
509 	if (!has_mp) {
510 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
511 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
512 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
513 		c->booted_cores = 1;
514 		return;
515 	}
516 
517 	for_each_cpu(i, cpu_sibling_setup_mask) {
518 		o = &cpu_data(i);
519 
520 		if ((i == cpu) || (has_smt && match_smt(c, o)))
521 			link_mask(topology_sibling_cpumask, cpu, i);
522 
523 		if ((i == cpu) || (has_mp && match_llc(c, o)))
524 			link_mask(cpu_llc_shared_mask, cpu, i);
525 
526 	}
527 
528 	/*
529 	 * This needs a separate iteration over the cpus because we rely on all
530 	 * topology_sibling_cpumask links to be set-up.
531 	 */
532 	for_each_cpu(i, cpu_sibling_setup_mask) {
533 		o = &cpu_data(i);
534 
535 		if ((i == cpu) || (has_mp && match_die(c, o))) {
536 			link_mask(topology_core_cpumask, cpu, i);
537 
538 			/*
539 			 *  Does this new cpu bringup a new core?
540 			 */
541 			if (cpumask_weight(
542 			    topology_sibling_cpumask(cpu)) == 1) {
543 				/*
544 				 * for each core in package, increment
545 				 * the booted_cores for this new cpu
546 				 */
547 				if (cpumask_first(
548 				    topology_sibling_cpumask(i)) == i)
549 					c->booted_cores++;
550 				/*
551 				 * increment the core count for all
552 				 * the other cpus in this package
553 				 */
554 				if (i != cpu)
555 					cpu_data(i).booted_cores++;
556 			} else if (i != cpu && !c->booted_cores)
557 				c->booted_cores = cpu_data(i).booted_cores;
558 		}
559 		if (match_die(c, o) && !topology_same_node(c, o))
560 			x86_has_numa_in_package = true;
561 	}
562 
563 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
564 	if (threads > __max_smt_threads)
565 		__max_smt_threads = threads;
566 }
567 
568 /* maps the cpu to the sched domain representing multi-core */
569 const struct cpumask *cpu_coregroup_mask(int cpu)
570 {
571 	return cpu_llc_shared_mask(cpu);
572 }
573 
574 static void impress_friends(void)
575 {
576 	int cpu;
577 	unsigned long bogosum = 0;
578 	/*
579 	 * Allow the user to impress friends.
580 	 */
581 	pr_debug("Before bogomips\n");
582 	for_each_possible_cpu(cpu)
583 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
584 			bogosum += cpu_data(cpu).loops_per_jiffy;
585 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
586 		num_online_cpus(),
587 		bogosum/(500000/HZ),
588 		(bogosum/(5000/HZ))%100);
589 
590 	pr_debug("Before bogocount - setting activated=1\n");
591 }
592 
593 void __inquire_remote_apic(int apicid)
594 {
595 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
596 	const char * const names[] = { "ID", "VERSION", "SPIV" };
597 	int timeout;
598 	u32 status;
599 
600 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
601 
602 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
603 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
604 
605 		/*
606 		 * Wait for idle.
607 		 */
608 		status = safe_apic_wait_icr_idle();
609 		if (status)
610 			pr_cont("a previous APIC delivery may have failed\n");
611 
612 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
613 
614 		timeout = 0;
615 		do {
616 			udelay(100);
617 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
618 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
619 
620 		switch (status) {
621 		case APIC_ICR_RR_VALID:
622 			status = apic_read(APIC_RRR);
623 			pr_cont("%08x\n", status);
624 			break;
625 		default:
626 			pr_cont("failed\n");
627 		}
628 	}
629 }
630 
631 /*
632  * The Multiprocessor Specification 1.4 (1997) example code suggests
633  * that there should be a 10ms delay between the BSP asserting INIT
634  * and de-asserting INIT, when starting a remote processor.
635  * But that slows boot and resume on modern processors, which include
636  * many cores and don't require that delay.
637  *
638  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
639  * Modern processor families are quirked to remove the delay entirely.
640  */
641 #define UDELAY_10MS_DEFAULT 10000
642 
643 static unsigned int init_udelay = UINT_MAX;
644 
645 static int __init cpu_init_udelay(char *str)
646 {
647 	get_option(&str, &init_udelay);
648 
649 	return 0;
650 }
651 early_param("cpu_init_udelay", cpu_init_udelay);
652 
653 static void __init smp_quirk_init_udelay(void)
654 {
655 	/* if cmdline changed it from default, leave it alone */
656 	if (init_udelay != UINT_MAX)
657 		return;
658 
659 	/* if modern processor, use no delay */
660 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
661 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
662 		init_udelay = 0;
663 		return;
664 	}
665 	/* else, use legacy delay */
666 	init_udelay = UDELAY_10MS_DEFAULT;
667 }
668 
669 /*
670  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
671  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
672  * won't ... remember to clear down the APIC, etc later.
673  */
674 int
675 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
676 {
677 	unsigned long send_status, accept_status = 0;
678 	int maxlvt;
679 
680 	/* Target chip */
681 	/* Boot on the stack */
682 	/* Kick the second */
683 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
684 
685 	pr_debug("Waiting for send to finish...\n");
686 	send_status = safe_apic_wait_icr_idle();
687 
688 	/*
689 	 * Give the other CPU some time to accept the IPI.
690 	 */
691 	udelay(200);
692 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
693 		maxlvt = lapic_get_maxlvt();
694 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
695 			apic_write(APIC_ESR, 0);
696 		accept_status = (apic_read(APIC_ESR) & 0xEF);
697 	}
698 	pr_debug("NMI sent\n");
699 
700 	if (send_status)
701 		pr_err("APIC never delivered???\n");
702 	if (accept_status)
703 		pr_err("APIC delivery error (%lx)\n", accept_status);
704 
705 	return (send_status | accept_status);
706 }
707 
708 static int
709 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
710 {
711 	unsigned long send_status = 0, accept_status = 0;
712 	int maxlvt, num_starts, j;
713 
714 	maxlvt = lapic_get_maxlvt();
715 
716 	/*
717 	 * Be paranoid about clearing APIC errors.
718 	 */
719 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
720 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
721 			apic_write(APIC_ESR, 0);
722 		apic_read(APIC_ESR);
723 	}
724 
725 	pr_debug("Asserting INIT\n");
726 
727 	/*
728 	 * Turn INIT on target chip
729 	 */
730 	/*
731 	 * Send IPI
732 	 */
733 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
734 		       phys_apicid);
735 
736 	pr_debug("Waiting for send to finish...\n");
737 	send_status = safe_apic_wait_icr_idle();
738 
739 	udelay(init_udelay);
740 
741 	pr_debug("Deasserting INIT\n");
742 
743 	/* Target chip */
744 	/* Send IPI */
745 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
746 
747 	pr_debug("Waiting for send to finish...\n");
748 	send_status = safe_apic_wait_icr_idle();
749 
750 	mb();
751 
752 	/*
753 	 * Should we send STARTUP IPIs ?
754 	 *
755 	 * Determine this based on the APIC version.
756 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
757 	 */
758 	if (APIC_INTEGRATED(boot_cpu_apic_version))
759 		num_starts = 2;
760 	else
761 		num_starts = 0;
762 
763 	/*
764 	 * Run STARTUP IPI loop.
765 	 */
766 	pr_debug("#startup loops: %d\n", num_starts);
767 
768 	for (j = 1; j <= num_starts; j++) {
769 		pr_debug("Sending STARTUP #%d\n", j);
770 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
771 			apic_write(APIC_ESR, 0);
772 		apic_read(APIC_ESR);
773 		pr_debug("After apic_write\n");
774 
775 		/*
776 		 * STARTUP IPI
777 		 */
778 
779 		/* Target chip */
780 		/* Boot on the stack */
781 		/* Kick the second */
782 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
783 			       phys_apicid);
784 
785 		/*
786 		 * Give the other CPU some time to accept the IPI.
787 		 */
788 		if (init_udelay == 0)
789 			udelay(10);
790 		else
791 			udelay(300);
792 
793 		pr_debug("Startup point 1\n");
794 
795 		pr_debug("Waiting for send to finish...\n");
796 		send_status = safe_apic_wait_icr_idle();
797 
798 		/*
799 		 * Give the other CPU some time to accept the IPI.
800 		 */
801 		if (init_udelay == 0)
802 			udelay(10);
803 		else
804 			udelay(200);
805 
806 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
807 			apic_write(APIC_ESR, 0);
808 		accept_status = (apic_read(APIC_ESR) & 0xEF);
809 		if (send_status || accept_status)
810 			break;
811 	}
812 	pr_debug("After Startup\n");
813 
814 	if (send_status)
815 		pr_err("APIC never delivered???\n");
816 	if (accept_status)
817 		pr_err("APIC delivery error (%lx)\n", accept_status);
818 
819 	return (send_status | accept_status);
820 }
821 
822 /* reduce the number of lines printed when booting a large cpu count system */
823 static void announce_cpu(int cpu, int apicid)
824 {
825 	static int current_node = -1;
826 	int node = early_cpu_to_node(cpu);
827 	static int width, node_width;
828 
829 	if (!width)
830 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
831 
832 	if (!node_width)
833 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
834 
835 	if (cpu == 1)
836 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
837 
838 	if (system_state < SYSTEM_RUNNING) {
839 		if (node != current_node) {
840 			if (current_node > (-1))
841 				pr_cont("\n");
842 			current_node = node;
843 
844 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
845 			       node_width - num_digits(node), " ", node);
846 		}
847 
848 		/* Add padding for the BSP */
849 		if (cpu == 1)
850 			pr_cont("%*s", width + 1, " ");
851 
852 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
853 
854 	} else
855 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
856 			node, cpu, apicid);
857 }
858 
859 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
860 {
861 	int cpu;
862 
863 	cpu = smp_processor_id();
864 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
865 		return NMI_HANDLED;
866 
867 	return NMI_DONE;
868 }
869 
870 /*
871  * Wake up AP by INIT, INIT, STARTUP sequence.
872  *
873  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
874  * boot-strap code which is not a desired behavior for waking up BSP. To
875  * void the boot-strap code, wake up CPU0 by NMI instead.
876  *
877  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
878  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
879  * We'll change this code in the future to wake up hard offlined CPU0 if
880  * real platform and request are available.
881  */
882 static int
883 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
884 	       int *cpu0_nmi_registered)
885 {
886 	int id;
887 	int boot_error;
888 
889 	preempt_disable();
890 
891 	/*
892 	 * Wake up AP by INIT, INIT, STARTUP sequence.
893 	 */
894 	if (cpu) {
895 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
896 		goto out;
897 	}
898 
899 	/*
900 	 * Wake up BSP by nmi.
901 	 *
902 	 * Register a NMI handler to help wake up CPU0.
903 	 */
904 	boot_error = register_nmi_handler(NMI_LOCAL,
905 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
906 
907 	if (!boot_error) {
908 		enable_start_cpu0 = 1;
909 		*cpu0_nmi_registered = 1;
910 		if (apic->dest_logical == APIC_DEST_LOGICAL)
911 			id = cpu0_logical_apicid;
912 		else
913 			id = apicid;
914 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
915 	}
916 
917 out:
918 	preempt_enable();
919 
920 	return boot_error;
921 }
922 
923 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
924 {
925 	/* Just in case we booted with a single CPU. */
926 	alternatives_enable_smp();
927 
928 	per_cpu(current_task, cpu) = idle;
929 
930 #ifdef CONFIG_X86_32
931 	/* Stack for startup_32 can be just as for start_secondary onwards */
932 	irq_ctx_init(cpu);
933 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
934 #else
935 	initial_gs = per_cpu_offset(cpu);
936 #endif
937 }
938 
939 /*
940  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
941  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
942  * Returns zero if CPU booted OK, else error code from
943  * ->wakeup_secondary_cpu.
944  */
945 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
946 		       int *cpu0_nmi_registered)
947 {
948 	volatile u32 *trampoline_status =
949 		(volatile u32 *) __va(real_mode_header->trampoline_status);
950 	/* start_ip had better be page-aligned! */
951 	unsigned long start_ip = real_mode_header->trampoline_start;
952 
953 	unsigned long boot_error = 0;
954 	unsigned long timeout;
955 
956 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
957 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
958 	initial_code = (unsigned long)start_secondary;
959 	initial_stack  = idle->thread.sp;
960 
961 	/* Enable the espfix hack for this CPU */
962 	init_espfix_ap(cpu);
963 
964 	/* So we see what's up */
965 	announce_cpu(cpu, apicid);
966 
967 	/*
968 	 * This grunge runs the startup process for
969 	 * the targeted processor.
970 	 */
971 
972 	if (x86_platform.legacy.warm_reset) {
973 
974 		pr_debug("Setting warm reset code and vector.\n");
975 
976 		smpboot_setup_warm_reset_vector(start_ip);
977 		/*
978 		 * Be paranoid about clearing APIC errors.
979 		*/
980 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
981 			apic_write(APIC_ESR, 0);
982 			apic_read(APIC_ESR);
983 		}
984 	}
985 
986 	/*
987 	 * AP might wait on cpu_callout_mask in cpu_init() with
988 	 * cpu_initialized_mask set if previous attempt to online
989 	 * it timed-out. Clear cpu_initialized_mask so that after
990 	 * INIT/SIPI it could start with a clean state.
991 	 */
992 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
993 	smp_mb();
994 
995 	/*
996 	 * Wake up a CPU in difference cases:
997 	 * - Use the method in the APIC driver if it's defined
998 	 * Otherwise,
999 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1000 	 */
1001 	if (apic->wakeup_secondary_cpu)
1002 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1003 	else
1004 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1005 						     cpu0_nmi_registered);
1006 
1007 	if (!boot_error) {
1008 		/*
1009 		 * Wait 10s total for first sign of life from AP
1010 		 */
1011 		boot_error = -1;
1012 		timeout = jiffies + 10*HZ;
1013 		while (time_before(jiffies, timeout)) {
1014 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1015 				/*
1016 				 * Tell AP to proceed with initialization
1017 				 */
1018 				cpumask_set_cpu(cpu, cpu_callout_mask);
1019 				boot_error = 0;
1020 				break;
1021 			}
1022 			schedule();
1023 		}
1024 	}
1025 
1026 	if (!boot_error) {
1027 		/*
1028 		 * Wait till AP completes initial initialization
1029 		 */
1030 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1031 			/*
1032 			 * Allow other tasks to run while we wait for the
1033 			 * AP to come online. This also gives a chance
1034 			 * for the MTRR work(triggered by the AP coming online)
1035 			 * to be completed in the stop machine context.
1036 			 */
1037 			schedule();
1038 		}
1039 	}
1040 
1041 	/* mark "stuck" area as not stuck */
1042 	*trampoline_status = 0;
1043 
1044 	if (x86_platform.legacy.warm_reset) {
1045 		/*
1046 		 * Cleanup possible dangling ends...
1047 		 */
1048 		smpboot_restore_warm_reset_vector();
1049 	}
1050 
1051 	return boot_error;
1052 }
1053 
1054 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1055 {
1056 	int apicid = apic->cpu_present_to_apicid(cpu);
1057 	int cpu0_nmi_registered = 0;
1058 	unsigned long flags;
1059 	int err, ret = 0;
1060 
1061 	lockdep_assert_irqs_enabled();
1062 
1063 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1064 
1065 	if (apicid == BAD_APICID ||
1066 	    !physid_isset(apicid, phys_cpu_present_map) ||
1067 	    !apic->apic_id_valid(apicid)) {
1068 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1069 		return -EINVAL;
1070 	}
1071 
1072 	/*
1073 	 * Already booted CPU?
1074 	 */
1075 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1076 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1077 		return -ENOSYS;
1078 	}
1079 
1080 	/*
1081 	 * Save current MTRR state in case it was changed since early boot
1082 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1083 	 */
1084 	mtrr_save_state();
1085 
1086 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1087 	err = cpu_check_up_prepare(cpu);
1088 	if (err && err != -EBUSY)
1089 		return err;
1090 
1091 	/* the FPU context is blank, nobody can own it */
1092 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1093 
1094 	common_cpu_up(cpu, tidle);
1095 
1096 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1097 	if (err) {
1098 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1099 		ret = -EIO;
1100 		goto unreg_nmi;
1101 	}
1102 
1103 	/*
1104 	 * Check TSC synchronization with the AP (keep irqs disabled
1105 	 * while doing so):
1106 	 */
1107 	local_irq_save(flags);
1108 	check_tsc_sync_source(cpu);
1109 	local_irq_restore(flags);
1110 
1111 	while (!cpu_online(cpu)) {
1112 		cpu_relax();
1113 		touch_nmi_watchdog();
1114 	}
1115 
1116 unreg_nmi:
1117 	/*
1118 	 * Clean up the nmi handler. Do this after the callin and callout sync
1119 	 * to avoid impact of possible long unregister time.
1120 	 */
1121 	if (cpu0_nmi_registered)
1122 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1123 
1124 	return ret;
1125 }
1126 
1127 /**
1128  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1129  */
1130 void arch_disable_smp_support(void)
1131 {
1132 	disable_ioapic_support();
1133 }
1134 
1135 /*
1136  * Fall back to non SMP mode after errors.
1137  *
1138  * RED-PEN audit/test this more. I bet there is more state messed up here.
1139  */
1140 static __init void disable_smp(void)
1141 {
1142 	pr_info("SMP disabled\n");
1143 
1144 	disable_ioapic_support();
1145 
1146 	init_cpu_present(cpumask_of(0));
1147 	init_cpu_possible(cpumask_of(0));
1148 
1149 	if (smp_found_config)
1150 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1151 	else
1152 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1153 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1154 	cpumask_set_cpu(0, topology_core_cpumask(0));
1155 }
1156 
1157 /*
1158  * Various sanity checks.
1159  */
1160 static void __init smp_sanity_check(void)
1161 {
1162 	preempt_disable();
1163 
1164 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1165 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1166 		unsigned int cpu;
1167 		unsigned nr;
1168 
1169 		pr_warn("More than 8 CPUs detected - skipping them\n"
1170 			"Use CONFIG_X86_BIGSMP\n");
1171 
1172 		nr = 0;
1173 		for_each_present_cpu(cpu) {
1174 			if (nr >= 8)
1175 				set_cpu_present(cpu, false);
1176 			nr++;
1177 		}
1178 
1179 		nr = 0;
1180 		for_each_possible_cpu(cpu) {
1181 			if (nr >= 8)
1182 				set_cpu_possible(cpu, false);
1183 			nr++;
1184 		}
1185 
1186 		nr_cpu_ids = 8;
1187 	}
1188 #endif
1189 
1190 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1191 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1192 			hard_smp_processor_id());
1193 
1194 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1195 	}
1196 
1197 	/*
1198 	 * Should not be necessary because the MP table should list the boot
1199 	 * CPU too, but we do it for the sake of robustness anyway.
1200 	 */
1201 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1202 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1203 			  boot_cpu_physical_apicid);
1204 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1205 	}
1206 	preempt_enable();
1207 }
1208 
1209 static void __init smp_cpu_index_default(void)
1210 {
1211 	int i;
1212 	struct cpuinfo_x86 *c;
1213 
1214 	for_each_possible_cpu(i) {
1215 		c = &cpu_data(i);
1216 		/* mark all to hotplug */
1217 		c->cpu_index = nr_cpu_ids;
1218 	}
1219 }
1220 
1221 static void __init smp_get_logical_apicid(void)
1222 {
1223 	if (x2apic_mode)
1224 		cpu0_logical_apicid = apic_read(APIC_LDR);
1225 	else
1226 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1227 }
1228 
1229 /*
1230  * Prepare for SMP bootup.
1231  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1232  *            for common interface support.
1233  */
1234 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1235 {
1236 	unsigned int i;
1237 
1238 	smp_cpu_index_default();
1239 
1240 	/*
1241 	 * Setup boot CPU information
1242 	 */
1243 	smp_store_boot_cpu_info(); /* Final full version of the data */
1244 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1245 	mb();
1246 
1247 	for_each_possible_cpu(i) {
1248 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1249 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1250 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1251 	}
1252 
1253 	/*
1254 	 * Set 'default' x86 topology, this matches default_topology() in that
1255 	 * it has NUMA nodes as a topology level. See also
1256 	 * native_smp_cpus_done().
1257 	 *
1258 	 * Must be done before set_cpus_sibling_map() is ran.
1259 	 */
1260 	set_sched_topology(x86_topology);
1261 
1262 	set_cpu_sibling_map(0);
1263 
1264 	smp_sanity_check();
1265 
1266 	switch (apic_intr_mode) {
1267 	case APIC_PIC:
1268 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1269 		disable_smp();
1270 		return;
1271 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1272 		disable_smp();
1273 		/* Setup local timer */
1274 		x86_init.timers.setup_percpu_clockev();
1275 		return;
1276 	case APIC_VIRTUAL_WIRE:
1277 	case APIC_SYMMETRIC_IO:
1278 		break;
1279 	}
1280 
1281 	/* Setup local timer */
1282 	x86_init.timers.setup_percpu_clockev();
1283 
1284 	smp_get_logical_apicid();
1285 
1286 	pr_info("CPU0: ");
1287 	print_cpu_info(&cpu_data(0));
1288 
1289 	native_pv_lock_init();
1290 
1291 	uv_system_init();
1292 
1293 	set_mtrr_aps_delayed_init();
1294 
1295 	smp_quirk_init_udelay();
1296 
1297 	speculative_store_bypass_ht_init();
1298 }
1299 
1300 void arch_enable_nonboot_cpus_begin(void)
1301 {
1302 	set_mtrr_aps_delayed_init();
1303 }
1304 
1305 void arch_enable_nonboot_cpus_end(void)
1306 {
1307 	mtrr_aps_init();
1308 }
1309 
1310 /*
1311  * Early setup to make printk work.
1312  */
1313 void __init native_smp_prepare_boot_cpu(void)
1314 {
1315 	int me = smp_processor_id();
1316 	switch_to_new_gdt(me);
1317 	/* already set me in cpu_online_mask in boot_cpu_init() */
1318 	cpumask_set_cpu(me, cpu_callout_mask);
1319 	cpu_set_state_online(me);
1320 }
1321 
1322 void __init calculate_max_logical_packages(void)
1323 {
1324 	int ncpus;
1325 
1326 	/*
1327 	 * Today neither Intel nor AMD support heterogenous systems so
1328 	 * extrapolate the boot cpu's data to all packages.
1329 	 */
1330 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1331 	__max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
1332 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1333 }
1334 
1335 void __init native_smp_cpus_done(unsigned int max_cpus)
1336 {
1337 	pr_debug("Boot done\n");
1338 
1339 	calculate_max_logical_packages();
1340 
1341 	if (x86_has_numa_in_package)
1342 		set_sched_topology(x86_numa_in_package_topology);
1343 
1344 	nmi_selftest();
1345 	impress_friends();
1346 	mtrr_aps_init();
1347 }
1348 
1349 static int __initdata setup_possible_cpus = -1;
1350 static int __init _setup_possible_cpus(char *str)
1351 {
1352 	get_option(&str, &setup_possible_cpus);
1353 	return 0;
1354 }
1355 early_param("possible_cpus", _setup_possible_cpus);
1356 
1357 
1358 /*
1359  * cpu_possible_mask should be static, it cannot change as cpu's
1360  * are onlined, or offlined. The reason is per-cpu data-structures
1361  * are allocated by some modules at init time, and dont expect to
1362  * do this dynamically on cpu arrival/departure.
1363  * cpu_present_mask on the other hand can change dynamically.
1364  * In case when cpu_hotplug is not compiled, then we resort to current
1365  * behaviour, which is cpu_possible == cpu_present.
1366  * - Ashok Raj
1367  *
1368  * Three ways to find out the number of additional hotplug CPUs:
1369  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1370  * - The user can overwrite it with possible_cpus=NUM
1371  * - Otherwise don't reserve additional CPUs.
1372  * We do this because additional CPUs waste a lot of memory.
1373  * -AK
1374  */
1375 __init void prefill_possible_map(void)
1376 {
1377 	int i, possible;
1378 
1379 	/* No boot processor was found in mptable or ACPI MADT */
1380 	if (!num_processors) {
1381 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1382 			int apicid = boot_cpu_physical_apicid;
1383 			int cpu = hard_smp_processor_id();
1384 
1385 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1386 
1387 			/* Make sure boot cpu is enumerated */
1388 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1389 			    apic->apic_id_valid(apicid))
1390 				generic_processor_info(apicid, boot_cpu_apic_version);
1391 		}
1392 
1393 		if (!num_processors)
1394 			num_processors = 1;
1395 	}
1396 
1397 	i = setup_max_cpus ?: 1;
1398 	if (setup_possible_cpus == -1) {
1399 		possible = num_processors;
1400 #ifdef CONFIG_HOTPLUG_CPU
1401 		if (setup_max_cpus)
1402 			possible += disabled_cpus;
1403 #else
1404 		if (possible > i)
1405 			possible = i;
1406 #endif
1407 	} else
1408 		possible = setup_possible_cpus;
1409 
1410 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1411 
1412 	/* nr_cpu_ids could be reduced via nr_cpus= */
1413 	if (possible > nr_cpu_ids) {
1414 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1415 			possible, nr_cpu_ids);
1416 		possible = nr_cpu_ids;
1417 	}
1418 
1419 #ifdef CONFIG_HOTPLUG_CPU
1420 	if (!setup_max_cpus)
1421 #endif
1422 	if (possible > i) {
1423 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1424 			possible, setup_max_cpus);
1425 		possible = i;
1426 	}
1427 
1428 	nr_cpu_ids = possible;
1429 
1430 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1431 		possible, max_t(int, possible - num_processors, 0));
1432 
1433 	reset_cpu_possible_mask();
1434 
1435 	for (i = 0; i < possible; i++)
1436 		set_cpu_possible(i, true);
1437 }
1438 
1439 #ifdef CONFIG_HOTPLUG_CPU
1440 
1441 /* Recompute SMT state for all CPUs on offline */
1442 static void recompute_smt_state(void)
1443 {
1444 	int max_threads, cpu;
1445 
1446 	max_threads = 0;
1447 	for_each_online_cpu (cpu) {
1448 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1449 
1450 		if (threads > max_threads)
1451 			max_threads = threads;
1452 	}
1453 	__max_smt_threads = max_threads;
1454 }
1455 
1456 static void remove_siblinginfo(int cpu)
1457 {
1458 	int sibling;
1459 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1460 
1461 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1462 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1463 		/*/
1464 		 * last thread sibling in this cpu core going down
1465 		 */
1466 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1467 			cpu_data(sibling).booted_cores--;
1468 	}
1469 
1470 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1471 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1472 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1473 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1474 	cpumask_clear(cpu_llc_shared_mask(cpu));
1475 	cpumask_clear(topology_sibling_cpumask(cpu));
1476 	cpumask_clear(topology_core_cpumask(cpu));
1477 	c->cpu_core_id = 0;
1478 	c->booted_cores = 0;
1479 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1480 	recompute_smt_state();
1481 }
1482 
1483 static void remove_cpu_from_maps(int cpu)
1484 {
1485 	set_cpu_online(cpu, false);
1486 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1487 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1488 	/* was set by cpu_init() */
1489 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1490 	numa_remove_cpu(cpu);
1491 }
1492 
1493 void cpu_disable_common(void)
1494 {
1495 	int cpu = smp_processor_id();
1496 
1497 	remove_siblinginfo(cpu);
1498 
1499 	/* It's now safe to remove this processor from the online map */
1500 	lock_vector_lock();
1501 	remove_cpu_from_maps(cpu);
1502 	unlock_vector_lock();
1503 	fixup_irqs();
1504 	lapic_offline();
1505 }
1506 
1507 int native_cpu_disable(void)
1508 {
1509 	int ret;
1510 
1511 	ret = lapic_can_unplug_cpu();
1512 	if (ret)
1513 		return ret;
1514 
1515 	clear_local_APIC();
1516 	cpu_disable_common();
1517 
1518 	return 0;
1519 }
1520 
1521 int common_cpu_die(unsigned int cpu)
1522 {
1523 	int ret = 0;
1524 
1525 	/* We don't do anything here: idle task is faking death itself. */
1526 
1527 	/* They ack this in play_dead() by setting CPU_DEAD */
1528 	if (cpu_wait_death(cpu, 5)) {
1529 		if (system_state == SYSTEM_RUNNING)
1530 			pr_info("CPU %u is now offline\n", cpu);
1531 	} else {
1532 		pr_err("CPU %u didn't die...\n", cpu);
1533 		ret = -1;
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 void native_cpu_die(unsigned int cpu)
1540 {
1541 	common_cpu_die(cpu);
1542 }
1543 
1544 void play_dead_common(void)
1545 {
1546 	idle_task_exit();
1547 
1548 	/* Ack it */
1549 	(void)cpu_report_death();
1550 
1551 	/*
1552 	 * With physical CPU hotplug, we should halt the cpu
1553 	 */
1554 	local_irq_disable();
1555 }
1556 
1557 static bool wakeup_cpu0(void)
1558 {
1559 	if (smp_processor_id() == 0 && enable_start_cpu0)
1560 		return true;
1561 
1562 	return false;
1563 }
1564 
1565 /*
1566  * We need to flush the caches before going to sleep, lest we have
1567  * dirty data in our caches when we come back up.
1568  */
1569 static inline void mwait_play_dead(void)
1570 {
1571 	unsigned int eax, ebx, ecx, edx;
1572 	unsigned int highest_cstate = 0;
1573 	unsigned int highest_subcstate = 0;
1574 	void *mwait_ptr;
1575 	int i;
1576 
1577 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1578 		return;
1579 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1580 		return;
1581 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1582 		return;
1583 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1584 		return;
1585 
1586 	eax = CPUID_MWAIT_LEAF;
1587 	ecx = 0;
1588 	native_cpuid(&eax, &ebx, &ecx, &edx);
1589 
1590 	/*
1591 	 * eax will be 0 if EDX enumeration is not valid.
1592 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1593 	 */
1594 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1595 		eax = 0;
1596 	} else {
1597 		edx >>= MWAIT_SUBSTATE_SIZE;
1598 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1599 			if (edx & MWAIT_SUBSTATE_MASK) {
1600 				highest_cstate = i;
1601 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1602 			}
1603 		}
1604 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1605 			(highest_subcstate - 1);
1606 	}
1607 
1608 	/*
1609 	 * This should be a memory location in a cache line which is
1610 	 * unlikely to be touched by other processors.  The actual
1611 	 * content is immaterial as it is not actually modified in any way.
1612 	 */
1613 	mwait_ptr = &current_thread_info()->flags;
1614 
1615 	wbinvd();
1616 
1617 	while (1) {
1618 		/*
1619 		 * The CLFLUSH is a workaround for erratum AAI65 for
1620 		 * the Xeon 7400 series.  It's not clear it is actually
1621 		 * needed, but it should be harmless in either case.
1622 		 * The WBINVD is insufficient due to the spurious-wakeup
1623 		 * case where we return around the loop.
1624 		 */
1625 		mb();
1626 		clflush(mwait_ptr);
1627 		mb();
1628 		__monitor(mwait_ptr, 0, 0);
1629 		mb();
1630 		__mwait(eax, 0);
1631 		/*
1632 		 * If NMI wants to wake up CPU0, start CPU0.
1633 		 */
1634 		if (wakeup_cpu0())
1635 			start_cpu0();
1636 	}
1637 }
1638 
1639 void hlt_play_dead(void)
1640 {
1641 	if (__this_cpu_read(cpu_info.x86) >= 4)
1642 		wbinvd();
1643 
1644 	while (1) {
1645 		native_halt();
1646 		/*
1647 		 * If NMI wants to wake up CPU0, start CPU0.
1648 		 */
1649 		if (wakeup_cpu0())
1650 			start_cpu0();
1651 	}
1652 }
1653 
1654 void native_play_dead(void)
1655 {
1656 	play_dead_common();
1657 	tboot_shutdown(TB_SHUTDOWN_WFS);
1658 
1659 	mwait_play_dead();	/* Only returns on failure */
1660 	if (cpuidle_play_dead())
1661 		hlt_play_dead();
1662 }
1663 
1664 #else /* ... !CONFIG_HOTPLUG_CPU */
1665 int native_cpu_disable(void)
1666 {
1667 	return -ENOSYS;
1668 }
1669 
1670 void native_cpu_die(unsigned int cpu)
1671 {
1672 	/* We said "no" in __cpu_disable */
1673 	BUG();
1674 }
1675 
1676 void native_play_dead(void)
1677 {
1678 	BUG();
1679 }
1680 
1681 #endif
1682