xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 974c6faf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60 
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85 
86 #ifdef CONFIG_ACPI_CPPC_LIB
87 #include <acpi/cppc_acpi.h>
88 #endif
89 
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 
98 /* representing HT, core, and die siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101 
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* Logical package management. We might want to allocate that dynamically */
109 unsigned int __max_logical_packages __read_mostly;
110 EXPORT_SYMBOL(__max_logical_packages);
111 static unsigned int logical_packages __read_mostly;
112 static unsigned int logical_die __read_mostly;
113 
114 /* Maximum number of SMT threads on any online core */
115 int __read_mostly __max_smt_threads = 1;
116 
117 /* Flag to indicate if a complete sched domain rebuild is required */
118 bool x86_topology_update;
119 
120 int arch_update_cpu_topology(void)
121 {
122 	int retval = x86_topology_update;
123 
124 	x86_topology_update = false;
125 	return retval;
126 }
127 
128 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129 {
130 	unsigned long flags;
131 
132 	spin_lock_irqsave(&rtc_lock, flags);
133 	CMOS_WRITE(0xa, 0xf);
134 	spin_unlock_irqrestore(&rtc_lock, flags);
135 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 							start_eip >> 4;
137 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 							start_eip & 0xf;
139 }
140 
141 static inline void smpboot_restore_warm_reset_vector(void)
142 {
143 	unsigned long flags;
144 
145 	/*
146 	 * Paranoid:  Set warm reset code and vector here back
147 	 * to default values.
148 	 */
149 	spin_lock_irqsave(&rtc_lock, flags);
150 	CMOS_WRITE(0, 0xf);
151 	spin_unlock_irqrestore(&rtc_lock, flags);
152 
153 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154 }
155 
156 static void init_freq_invariance(bool secondary, bool cppc_ready);
157 
158 /*
159  * Report back to the Boot Processor during boot time or to the caller processor
160  * during CPU online.
161  */
162 static void smp_callin(void)
163 {
164 	int cpuid;
165 
166 	/*
167 	 * If waken up by an INIT in an 82489DX configuration
168 	 * cpu_callout_mask guarantees we don't get here before
169 	 * an INIT_deassert IPI reaches our local APIC, so it is
170 	 * now safe to touch our local APIC.
171 	 */
172 	cpuid = smp_processor_id();
173 
174 	/*
175 	 * the boot CPU has finished the init stage and is spinning
176 	 * on callin_map until we finish. We are free to set up this
177 	 * CPU, first the APIC. (this is probably redundant on most
178 	 * boards)
179 	 */
180 	apic_ap_setup();
181 
182 	/*
183 	 * Save our processor parameters. Note: this information
184 	 * is needed for clock calibration.
185 	 */
186 	smp_store_cpu_info(cpuid);
187 
188 	/*
189 	 * The topology information must be up to date before
190 	 * calibrate_delay() and notify_cpu_starting().
191 	 */
192 	set_cpu_sibling_map(raw_smp_processor_id());
193 
194 	init_freq_invariance(true, false);
195 
196 	/*
197 	 * Get our bogomips.
198 	 * Update loops_per_jiffy in cpu_data. Previous call to
199 	 * smp_store_cpu_info() stored a value that is close but not as
200 	 * accurate as the value just calculated.
201 	 */
202 	calibrate_delay();
203 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
204 	pr_debug("Stack at about %p\n", &cpuid);
205 
206 	wmb();
207 
208 	notify_cpu_starting(cpuid);
209 
210 	/*
211 	 * Allow the master to continue.
212 	 */
213 	cpumask_set_cpu(cpuid, cpu_callin_mask);
214 }
215 
216 static int cpu0_logical_apicid;
217 static int enable_start_cpu0;
218 /*
219  * Activate a secondary processor.
220  */
221 static void notrace start_secondary(void *unused)
222 {
223 	/*
224 	 * Don't put *anything* except direct CPU state initialization
225 	 * before cpu_init(), SMP booting is too fragile that we want to
226 	 * limit the things done here to the most necessary things.
227 	 */
228 	cr4_init();
229 
230 #ifdef CONFIG_X86_32
231 	/* switch away from the initial page table */
232 	load_cr3(swapper_pg_dir);
233 	__flush_tlb_all();
234 #endif
235 	cpu_init_secondary();
236 	rcu_cpu_starting(raw_smp_processor_id());
237 	x86_cpuinit.early_percpu_clock_init();
238 	smp_callin();
239 
240 	enable_start_cpu0 = 0;
241 
242 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
243 	barrier();
244 	/*
245 	 * Check TSC synchronization with the boot CPU:
246 	 */
247 	check_tsc_sync_target();
248 
249 	speculative_store_bypass_ht_init();
250 
251 	/*
252 	 * Lock vector_lock, set CPU online and bring the vector
253 	 * allocator online. Online must be set with vector_lock held
254 	 * to prevent a concurrent irq setup/teardown from seeing a
255 	 * half valid vector space.
256 	 */
257 	lock_vector_lock();
258 	set_cpu_online(smp_processor_id(), true);
259 	lapic_online();
260 	unlock_vector_lock();
261 	cpu_set_state_online(smp_processor_id());
262 	x86_platform.nmi_init();
263 
264 	/* enable local interrupts */
265 	local_irq_enable();
266 
267 	x86_cpuinit.setup_percpu_clockev();
268 
269 	wmb();
270 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
271 }
272 
273 /**
274  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
275  * @cpu:	CPU to check
276  */
277 bool topology_is_primary_thread(unsigned int cpu)
278 {
279 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
280 }
281 
282 /**
283  * topology_smt_supported - Check whether SMT is supported by the CPUs
284  */
285 bool topology_smt_supported(void)
286 {
287 	return smp_num_siblings > 1;
288 }
289 
290 /**
291  * topology_phys_to_logical_pkg - Map a physical package id to a logical
292  *
293  * Returns logical package id or -1 if not found
294  */
295 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
296 {
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		struct cpuinfo_x86 *c = &cpu_data(cpu);
301 
302 		if (c->initialized && c->phys_proc_id == phys_pkg)
303 			return c->logical_proc_id;
304 	}
305 	return -1;
306 }
307 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
308 /**
309  * topology_phys_to_logical_die - Map a physical die id to logical
310  *
311  * Returns logical die id or -1 if not found
312  */
313 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
314 {
315 	int cpu;
316 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
317 
318 	for_each_possible_cpu(cpu) {
319 		struct cpuinfo_x86 *c = &cpu_data(cpu);
320 
321 		if (c->initialized && c->cpu_die_id == die_id &&
322 		    c->phys_proc_id == proc_id)
323 			return c->logical_die_id;
324 	}
325 	return -1;
326 }
327 EXPORT_SYMBOL(topology_phys_to_logical_die);
328 
329 /**
330  * topology_update_package_map - Update the physical to logical package map
331  * @pkg:	The physical package id as retrieved via CPUID
332  * @cpu:	The cpu for which this is updated
333  */
334 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
335 {
336 	int new;
337 
338 	/* Already available somewhere? */
339 	new = topology_phys_to_logical_pkg(pkg);
340 	if (new >= 0)
341 		goto found;
342 
343 	new = logical_packages++;
344 	if (new != pkg) {
345 		pr_info("CPU %u Converting physical %u to logical package %u\n",
346 			cpu, pkg, new);
347 	}
348 found:
349 	cpu_data(cpu).logical_proc_id = new;
350 	return 0;
351 }
352 /**
353  * topology_update_die_map - Update the physical to logical die map
354  * @die:	The die id as retrieved via CPUID
355  * @cpu:	The cpu for which this is updated
356  */
357 int topology_update_die_map(unsigned int die, unsigned int cpu)
358 {
359 	int new;
360 
361 	/* Already available somewhere? */
362 	new = topology_phys_to_logical_die(die, cpu);
363 	if (new >= 0)
364 		goto found;
365 
366 	new = logical_die++;
367 	if (new != die) {
368 		pr_info("CPU %u Converting physical %u to logical die %u\n",
369 			cpu, die, new);
370 	}
371 found:
372 	cpu_data(cpu).logical_die_id = new;
373 	return 0;
374 }
375 
376 void __init smp_store_boot_cpu_info(void)
377 {
378 	int id = 0; /* CPU 0 */
379 	struct cpuinfo_x86 *c = &cpu_data(id);
380 
381 	*c = boot_cpu_data;
382 	c->cpu_index = id;
383 	topology_update_package_map(c->phys_proc_id, id);
384 	topology_update_die_map(c->cpu_die_id, id);
385 	c->initialized = true;
386 }
387 
388 /*
389  * The bootstrap kernel entry code has set these up. Save them for
390  * a given CPU
391  */
392 void smp_store_cpu_info(int id)
393 {
394 	struct cpuinfo_x86 *c = &cpu_data(id);
395 
396 	/* Copy boot_cpu_data only on the first bringup */
397 	if (!c->initialized)
398 		*c = boot_cpu_data;
399 	c->cpu_index = id;
400 	/*
401 	 * During boot time, CPU0 has this setup already. Save the info when
402 	 * bringing up AP or offlined CPU0.
403 	 */
404 	identify_secondary_cpu(c);
405 	c->initialized = true;
406 }
407 
408 static bool
409 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
410 {
411 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
412 
413 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
414 }
415 
416 static bool
417 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
418 {
419 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
420 
421 	return !WARN_ONCE(!topology_same_node(c, o),
422 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
423 		"[node: %d != %d]. Ignoring dependency.\n",
424 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
425 }
426 
427 #define link_mask(mfunc, c1, c2)					\
428 do {									\
429 	cpumask_set_cpu((c1), mfunc(c2));				\
430 	cpumask_set_cpu((c2), mfunc(c1));				\
431 } while (0)
432 
433 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
434 {
435 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
436 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
437 
438 		if (c->phys_proc_id == o->phys_proc_id &&
439 		    c->cpu_die_id == o->cpu_die_id &&
440 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
441 			if (c->cpu_core_id == o->cpu_core_id)
442 				return topology_sane(c, o, "smt");
443 
444 			if ((c->cu_id != 0xff) &&
445 			    (o->cu_id != 0xff) &&
446 			    (c->cu_id == o->cu_id))
447 				return topology_sane(c, o, "smt");
448 		}
449 
450 	} else if (c->phys_proc_id == o->phys_proc_id &&
451 		   c->cpu_die_id == o->cpu_die_id &&
452 		   c->cpu_core_id == o->cpu_core_id) {
453 		return topology_sane(c, o, "smt");
454 	}
455 
456 	return false;
457 }
458 
459 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
460 {
461 	if (c->phys_proc_id == o->phys_proc_id &&
462 	    c->cpu_die_id == o->cpu_die_id)
463 		return true;
464 	return false;
465 }
466 
467 /*
468  * Unlike the other levels, we do not enforce keeping a
469  * multicore group inside a NUMA node.  If this happens, we will
470  * discard the MC level of the topology later.
471  */
472 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
473 {
474 	if (c->phys_proc_id == o->phys_proc_id)
475 		return true;
476 	return false;
477 }
478 
479 /*
480  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
481  *
482  * Any Intel CPU that has multiple nodes per package and does not
483  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
484  *
485  * When in SNC mode, these CPUs enumerate an LLC that is shared
486  * by multiple NUMA nodes. The LLC is shared for off-package data
487  * access but private to the NUMA node (half of the package) for
488  * on-package access. CPUID (the source of the information about
489  * the LLC) can only enumerate the cache as shared or unshared,
490  * but not this particular configuration.
491  */
492 
493 static const struct x86_cpu_id intel_cod_cpu[] = {
494 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
495 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
496 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
497 	{}
498 };
499 
500 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
501 {
502 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
503 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
504 	bool intel_snc = id && id->driver_data;
505 
506 	/* Do not match if we do not have a valid APICID for cpu: */
507 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
508 		return false;
509 
510 	/* Do not match if LLC id does not match: */
511 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
512 		return false;
513 
514 	/*
515 	 * Allow the SNC topology without warning. Return of false
516 	 * means 'c' does not share the LLC of 'o'. This will be
517 	 * reflected to userspace.
518 	 */
519 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
520 		return false;
521 
522 	return topology_sane(c, o, "llc");
523 }
524 
525 
526 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
527 static inline int x86_sched_itmt_flags(void)
528 {
529 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
530 }
531 
532 #ifdef CONFIG_SCHED_MC
533 static int x86_core_flags(void)
534 {
535 	return cpu_core_flags() | x86_sched_itmt_flags();
536 }
537 #endif
538 #ifdef CONFIG_SCHED_SMT
539 static int x86_smt_flags(void)
540 {
541 	return cpu_smt_flags() | x86_sched_itmt_flags();
542 }
543 #endif
544 #endif
545 
546 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
547 #ifdef CONFIG_SCHED_SMT
548 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
549 #endif
550 #ifdef CONFIG_SCHED_MC
551 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
552 #endif
553 	{ NULL, },
554 };
555 
556 static struct sched_domain_topology_level x86_topology[] = {
557 #ifdef CONFIG_SCHED_SMT
558 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
559 #endif
560 #ifdef CONFIG_SCHED_MC
561 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
562 #endif
563 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
564 	{ NULL, },
565 };
566 
567 /*
568  * Set if a package/die has multiple NUMA nodes inside.
569  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
570  * Sub-NUMA Clustering have this.
571  */
572 static bool x86_has_numa_in_package;
573 
574 void set_cpu_sibling_map(int cpu)
575 {
576 	bool has_smt = smp_num_siblings > 1;
577 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
578 	struct cpuinfo_x86 *c = &cpu_data(cpu);
579 	struct cpuinfo_x86 *o;
580 	int i, threads;
581 
582 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
583 
584 	if (!has_mp) {
585 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
586 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
587 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
588 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
589 		c->booted_cores = 1;
590 		return;
591 	}
592 
593 	for_each_cpu(i, cpu_sibling_setup_mask) {
594 		o = &cpu_data(i);
595 
596 		if (match_pkg(c, o) && !topology_same_node(c, o))
597 			x86_has_numa_in_package = true;
598 
599 		if ((i == cpu) || (has_smt && match_smt(c, o)))
600 			link_mask(topology_sibling_cpumask, cpu, i);
601 
602 		if ((i == cpu) || (has_mp && match_llc(c, o)))
603 			link_mask(cpu_llc_shared_mask, cpu, i);
604 
605 		if ((i == cpu) || (has_mp && match_die(c, o)))
606 			link_mask(topology_die_cpumask, cpu, i);
607 	}
608 
609 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
610 	if (threads > __max_smt_threads)
611 		__max_smt_threads = threads;
612 
613 	for_each_cpu(i, topology_sibling_cpumask(cpu))
614 		cpu_data(i).smt_active = threads > 1;
615 
616 	/*
617 	 * This needs a separate iteration over the cpus because we rely on all
618 	 * topology_sibling_cpumask links to be set-up.
619 	 */
620 	for_each_cpu(i, cpu_sibling_setup_mask) {
621 		o = &cpu_data(i);
622 
623 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
624 			link_mask(topology_core_cpumask, cpu, i);
625 
626 			/*
627 			 *  Does this new cpu bringup a new core?
628 			 */
629 			if (threads == 1) {
630 				/*
631 				 * for each core in package, increment
632 				 * the booted_cores for this new cpu
633 				 */
634 				if (cpumask_first(
635 				    topology_sibling_cpumask(i)) == i)
636 					c->booted_cores++;
637 				/*
638 				 * increment the core count for all
639 				 * the other cpus in this package
640 				 */
641 				if (i != cpu)
642 					cpu_data(i).booted_cores++;
643 			} else if (i != cpu && !c->booted_cores)
644 				c->booted_cores = cpu_data(i).booted_cores;
645 		}
646 	}
647 }
648 
649 /* maps the cpu to the sched domain representing multi-core */
650 const struct cpumask *cpu_coregroup_mask(int cpu)
651 {
652 	return cpu_llc_shared_mask(cpu);
653 }
654 
655 static void impress_friends(void)
656 {
657 	int cpu;
658 	unsigned long bogosum = 0;
659 	/*
660 	 * Allow the user to impress friends.
661 	 */
662 	pr_debug("Before bogomips\n");
663 	for_each_possible_cpu(cpu)
664 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
665 			bogosum += cpu_data(cpu).loops_per_jiffy;
666 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
667 		num_online_cpus(),
668 		bogosum/(500000/HZ),
669 		(bogosum/(5000/HZ))%100);
670 
671 	pr_debug("Before bogocount - setting activated=1\n");
672 }
673 
674 void __inquire_remote_apic(int apicid)
675 {
676 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
677 	const char * const names[] = { "ID", "VERSION", "SPIV" };
678 	int timeout;
679 	u32 status;
680 
681 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
682 
683 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
684 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
685 
686 		/*
687 		 * Wait for idle.
688 		 */
689 		status = safe_apic_wait_icr_idle();
690 		if (status)
691 			pr_cont("a previous APIC delivery may have failed\n");
692 
693 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
694 
695 		timeout = 0;
696 		do {
697 			udelay(100);
698 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
699 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
700 
701 		switch (status) {
702 		case APIC_ICR_RR_VALID:
703 			status = apic_read(APIC_RRR);
704 			pr_cont("%08x\n", status);
705 			break;
706 		default:
707 			pr_cont("failed\n");
708 		}
709 	}
710 }
711 
712 /*
713  * The Multiprocessor Specification 1.4 (1997) example code suggests
714  * that there should be a 10ms delay between the BSP asserting INIT
715  * and de-asserting INIT, when starting a remote processor.
716  * But that slows boot and resume on modern processors, which include
717  * many cores and don't require that delay.
718  *
719  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
720  * Modern processor families are quirked to remove the delay entirely.
721  */
722 #define UDELAY_10MS_DEFAULT 10000
723 
724 static unsigned int init_udelay = UINT_MAX;
725 
726 static int __init cpu_init_udelay(char *str)
727 {
728 	get_option(&str, &init_udelay);
729 
730 	return 0;
731 }
732 early_param("cpu_init_udelay", cpu_init_udelay);
733 
734 static void __init smp_quirk_init_udelay(void)
735 {
736 	/* if cmdline changed it from default, leave it alone */
737 	if (init_udelay != UINT_MAX)
738 		return;
739 
740 	/* if modern processor, use no delay */
741 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
742 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
743 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
744 		init_udelay = 0;
745 		return;
746 	}
747 	/* else, use legacy delay */
748 	init_udelay = UDELAY_10MS_DEFAULT;
749 }
750 
751 /*
752  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
753  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
754  * won't ... remember to clear down the APIC, etc later.
755  */
756 int
757 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
758 {
759 	u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
760 	unsigned long send_status, accept_status = 0;
761 	int maxlvt;
762 
763 	/* Target chip */
764 	/* Boot on the stack */
765 	/* Kick the second */
766 	apic_icr_write(APIC_DM_NMI | dm, apicid);
767 
768 	pr_debug("Waiting for send to finish...\n");
769 	send_status = safe_apic_wait_icr_idle();
770 
771 	/*
772 	 * Give the other CPU some time to accept the IPI.
773 	 */
774 	udelay(200);
775 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
776 		maxlvt = lapic_get_maxlvt();
777 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
778 			apic_write(APIC_ESR, 0);
779 		accept_status = (apic_read(APIC_ESR) & 0xEF);
780 	}
781 	pr_debug("NMI sent\n");
782 
783 	if (send_status)
784 		pr_err("APIC never delivered???\n");
785 	if (accept_status)
786 		pr_err("APIC delivery error (%lx)\n", accept_status);
787 
788 	return (send_status | accept_status);
789 }
790 
791 static int
792 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
793 {
794 	unsigned long send_status = 0, accept_status = 0;
795 	int maxlvt, num_starts, j;
796 
797 	maxlvt = lapic_get_maxlvt();
798 
799 	/*
800 	 * Be paranoid about clearing APIC errors.
801 	 */
802 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
803 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
804 			apic_write(APIC_ESR, 0);
805 		apic_read(APIC_ESR);
806 	}
807 
808 	pr_debug("Asserting INIT\n");
809 
810 	/*
811 	 * Turn INIT on target chip
812 	 */
813 	/*
814 	 * Send IPI
815 	 */
816 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
817 		       phys_apicid);
818 
819 	pr_debug("Waiting for send to finish...\n");
820 	send_status = safe_apic_wait_icr_idle();
821 
822 	udelay(init_udelay);
823 
824 	pr_debug("Deasserting INIT\n");
825 
826 	/* Target chip */
827 	/* Send IPI */
828 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
829 
830 	pr_debug("Waiting for send to finish...\n");
831 	send_status = safe_apic_wait_icr_idle();
832 
833 	mb();
834 
835 	/*
836 	 * Should we send STARTUP IPIs ?
837 	 *
838 	 * Determine this based on the APIC version.
839 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
840 	 */
841 	if (APIC_INTEGRATED(boot_cpu_apic_version))
842 		num_starts = 2;
843 	else
844 		num_starts = 0;
845 
846 	/*
847 	 * Run STARTUP IPI loop.
848 	 */
849 	pr_debug("#startup loops: %d\n", num_starts);
850 
851 	for (j = 1; j <= num_starts; j++) {
852 		pr_debug("Sending STARTUP #%d\n", j);
853 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
854 			apic_write(APIC_ESR, 0);
855 		apic_read(APIC_ESR);
856 		pr_debug("After apic_write\n");
857 
858 		/*
859 		 * STARTUP IPI
860 		 */
861 
862 		/* Target chip */
863 		/* Boot on the stack */
864 		/* Kick the second */
865 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
866 			       phys_apicid);
867 
868 		/*
869 		 * Give the other CPU some time to accept the IPI.
870 		 */
871 		if (init_udelay == 0)
872 			udelay(10);
873 		else
874 			udelay(300);
875 
876 		pr_debug("Startup point 1\n");
877 
878 		pr_debug("Waiting for send to finish...\n");
879 		send_status = safe_apic_wait_icr_idle();
880 
881 		/*
882 		 * Give the other CPU some time to accept the IPI.
883 		 */
884 		if (init_udelay == 0)
885 			udelay(10);
886 		else
887 			udelay(200);
888 
889 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
890 			apic_write(APIC_ESR, 0);
891 		accept_status = (apic_read(APIC_ESR) & 0xEF);
892 		if (send_status || accept_status)
893 			break;
894 	}
895 	pr_debug("After Startup\n");
896 
897 	if (send_status)
898 		pr_err("APIC never delivered???\n");
899 	if (accept_status)
900 		pr_err("APIC delivery error (%lx)\n", accept_status);
901 
902 	return (send_status | accept_status);
903 }
904 
905 /* reduce the number of lines printed when booting a large cpu count system */
906 static void announce_cpu(int cpu, int apicid)
907 {
908 	static int current_node = NUMA_NO_NODE;
909 	int node = early_cpu_to_node(cpu);
910 	static int width, node_width;
911 
912 	if (!width)
913 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
914 
915 	if (!node_width)
916 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
917 
918 	if (cpu == 1)
919 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
920 
921 	if (system_state < SYSTEM_RUNNING) {
922 		if (node != current_node) {
923 			if (current_node > (-1))
924 				pr_cont("\n");
925 			current_node = node;
926 
927 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
928 			       node_width - num_digits(node), " ", node);
929 		}
930 
931 		/* Add padding for the BSP */
932 		if (cpu == 1)
933 			pr_cont("%*s", width + 1, " ");
934 
935 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
936 
937 	} else
938 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
939 			node, cpu, apicid);
940 }
941 
942 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
943 {
944 	int cpu;
945 
946 	cpu = smp_processor_id();
947 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
948 		return NMI_HANDLED;
949 
950 	return NMI_DONE;
951 }
952 
953 /*
954  * Wake up AP by INIT, INIT, STARTUP sequence.
955  *
956  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
957  * boot-strap code which is not a desired behavior for waking up BSP. To
958  * void the boot-strap code, wake up CPU0 by NMI instead.
959  *
960  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
961  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
962  * We'll change this code in the future to wake up hard offlined CPU0 if
963  * real platform and request are available.
964  */
965 static int
966 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
967 	       int *cpu0_nmi_registered)
968 {
969 	int id;
970 	int boot_error;
971 
972 	preempt_disable();
973 
974 	/*
975 	 * Wake up AP by INIT, INIT, STARTUP sequence.
976 	 */
977 	if (cpu) {
978 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
979 		goto out;
980 	}
981 
982 	/*
983 	 * Wake up BSP by nmi.
984 	 *
985 	 * Register a NMI handler to help wake up CPU0.
986 	 */
987 	boot_error = register_nmi_handler(NMI_LOCAL,
988 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
989 
990 	if (!boot_error) {
991 		enable_start_cpu0 = 1;
992 		*cpu0_nmi_registered = 1;
993 		id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
994 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
995 	}
996 
997 out:
998 	preempt_enable();
999 
1000 	return boot_error;
1001 }
1002 
1003 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1004 {
1005 	int ret;
1006 
1007 	/* Just in case we booted with a single CPU. */
1008 	alternatives_enable_smp();
1009 
1010 	per_cpu(current_task, cpu) = idle;
1011 	cpu_init_stack_canary(cpu, idle);
1012 
1013 	/* Initialize the interrupt stack(s) */
1014 	ret = irq_init_percpu_irqstack(cpu);
1015 	if (ret)
1016 		return ret;
1017 
1018 #ifdef CONFIG_X86_32
1019 	/* Stack for startup_32 can be just as for start_secondary onwards */
1020 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1021 #else
1022 	initial_gs = per_cpu_offset(cpu);
1023 #endif
1024 	return 0;
1025 }
1026 
1027 /*
1028  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1029  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1030  * Returns zero if CPU booted OK, else error code from
1031  * ->wakeup_secondary_cpu.
1032  */
1033 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1034 		       int *cpu0_nmi_registered)
1035 {
1036 	/* start_ip had better be page-aligned! */
1037 	unsigned long start_ip = real_mode_header->trampoline_start;
1038 
1039 	unsigned long boot_error = 0;
1040 	unsigned long timeout;
1041 
1042 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1043 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1044 	initial_code = (unsigned long)start_secondary;
1045 	initial_stack  = idle->thread.sp;
1046 
1047 	/* Enable the espfix hack for this CPU */
1048 	init_espfix_ap(cpu);
1049 
1050 	/* So we see what's up */
1051 	announce_cpu(cpu, apicid);
1052 
1053 	/*
1054 	 * This grunge runs the startup process for
1055 	 * the targeted processor.
1056 	 */
1057 
1058 	if (x86_platform.legacy.warm_reset) {
1059 
1060 		pr_debug("Setting warm reset code and vector.\n");
1061 
1062 		smpboot_setup_warm_reset_vector(start_ip);
1063 		/*
1064 		 * Be paranoid about clearing APIC errors.
1065 		*/
1066 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1067 			apic_write(APIC_ESR, 0);
1068 			apic_read(APIC_ESR);
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * AP might wait on cpu_callout_mask in cpu_init() with
1074 	 * cpu_initialized_mask set if previous attempt to online
1075 	 * it timed-out. Clear cpu_initialized_mask so that after
1076 	 * INIT/SIPI it could start with a clean state.
1077 	 */
1078 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1079 	smp_mb();
1080 
1081 	/*
1082 	 * Wake up a CPU in difference cases:
1083 	 * - Use the method in the APIC driver if it's defined
1084 	 * Otherwise,
1085 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1086 	 */
1087 	if (apic->wakeup_secondary_cpu)
1088 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1089 	else
1090 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1091 						     cpu0_nmi_registered);
1092 
1093 	if (!boot_error) {
1094 		/*
1095 		 * Wait 10s total for first sign of life from AP
1096 		 */
1097 		boot_error = -1;
1098 		timeout = jiffies + 10*HZ;
1099 		while (time_before(jiffies, timeout)) {
1100 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1101 				/*
1102 				 * Tell AP to proceed with initialization
1103 				 */
1104 				cpumask_set_cpu(cpu, cpu_callout_mask);
1105 				boot_error = 0;
1106 				break;
1107 			}
1108 			schedule();
1109 		}
1110 	}
1111 
1112 	if (!boot_error) {
1113 		/*
1114 		 * Wait till AP completes initial initialization
1115 		 */
1116 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1117 			/*
1118 			 * Allow other tasks to run while we wait for the
1119 			 * AP to come online. This also gives a chance
1120 			 * for the MTRR work(triggered by the AP coming online)
1121 			 * to be completed in the stop machine context.
1122 			 */
1123 			schedule();
1124 		}
1125 	}
1126 
1127 	if (x86_platform.legacy.warm_reset) {
1128 		/*
1129 		 * Cleanup possible dangling ends...
1130 		 */
1131 		smpboot_restore_warm_reset_vector();
1132 	}
1133 
1134 	return boot_error;
1135 }
1136 
1137 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1138 {
1139 	int apicid = apic->cpu_present_to_apicid(cpu);
1140 	int cpu0_nmi_registered = 0;
1141 	unsigned long flags;
1142 	int err, ret = 0;
1143 
1144 	lockdep_assert_irqs_enabled();
1145 
1146 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1147 
1148 	if (apicid == BAD_APICID ||
1149 	    !physid_isset(apicid, phys_cpu_present_map) ||
1150 	    !apic->apic_id_valid(apicid)) {
1151 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1152 		return -EINVAL;
1153 	}
1154 
1155 	/*
1156 	 * Already booted CPU?
1157 	 */
1158 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1159 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1160 		return -ENOSYS;
1161 	}
1162 
1163 	/*
1164 	 * Save current MTRR state in case it was changed since early boot
1165 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1166 	 */
1167 	mtrr_save_state();
1168 
1169 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1170 	err = cpu_check_up_prepare(cpu);
1171 	if (err && err != -EBUSY)
1172 		return err;
1173 
1174 	/* the FPU context is blank, nobody can own it */
1175 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1176 
1177 	err = common_cpu_up(cpu, tidle);
1178 	if (err)
1179 		return err;
1180 
1181 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1182 	if (err) {
1183 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1184 		ret = -EIO;
1185 		goto unreg_nmi;
1186 	}
1187 
1188 	/*
1189 	 * Check TSC synchronization with the AP (keep irqs disabled
1190 	 * while doing so):
1191 	 */
1192 	local_irq_save(flags);
1193 	check_tsc_sync_source(cpu);
1194 	local_irq_restore(flags);
1195 
1196 	while (!cpu_online(cpu)) {
1197 		cpu_relax();
1198 		touch_nmi_watchdog();
1199 	}
1200 
1201 unreg_nmi:
1202 	/*
1203 	 * Clean up the nmi handler. Do this after the callin and callout sync
1204 	 * to avoid impact of possible long unregister time.
1205 	 */
1206 	if (cpu0_nmi_registered)
1207 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1208 
1209 	return ret;
1210 }
1211 
1212 /**
1213  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1214  */
1215 void arch_disable_smp_support(void)
1216 {
1217 	disable_ioapic_support();
1218 }
1219 
1220 /*
1221  * Fall back to non SMP mode after errors.
1222  *
1223  * RED-PEN audit/test this more. I bet there is more state messed up here.
1224  */
1225 static __init void disable_smp(void)
1226 {
1227 	pr_info("SMP disabled\n");
1228 
1229 	disable_ioapic_support();
1230 
1231 	init_cpu_present(cpumask_of(0));
1232 	init_cpu_possible(cpumask_of(0));
1233 
1234 	if (smp_found_config)
1235 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1236 	else
1237 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1238 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1239 	cpumask_set_cpu(0, topology_core_cpumask(0));
1240 	cpumask_set_cpu(0, topology_die_cpumask(0));
1241 }
1242 
1243 /*
1244  * Various sanity checks.
1245  */
1246 static void __init smp_sanity_check(void)
1247 {
1248 	preempt_disable();
1249 
1250 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1251 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1252 		unsigned int cpu;
1253 		unsigned nr;
1254 
1255 		pr_warn("More than 8 CPUs detected - skipping them\n"
1256 			"Use CONFIG_X86_BIGSMP\n");
1257 
1258 		nr = 0;
1259 		for_each_present_cpu(cpu) {
1260 			if (nr >= 8)
1261 				set_cpu_present(cpu, false);
1262 			nr++;
1263 		}
1264 
1265 		nr = 0;
1266 		for_each_possible_cpu(cpu) {
1267 			if (nr >= 8)
1268 				set_cpu_possible(cpu, false);
1269 			nr++;
1270 		}
1271 
1272 		nr_cpu_ids = 8;
1273 	}
1274 #endif
1275 
1276 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1277 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1278 			hard_smp_processor_id());
1279 
1280 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1281 	}
1282 
1283 	/*
1284 	 * Should not be necessary because the MP table should list the boot
1285 	 * CPU too, but we do it for the sake of robustness anyway.
1286 	 */
1287 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1288 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1289 			  boot_cpu_physical_apicid);
1290 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1291 	}
1292 	preempt_enable();
1293 }
1294 
1295 static void __init smp_cpu_index_default(void)
1296 {
1297 	int i;
1298 	struct cpuinfo_x86 *c;
1299 
1300 	for_each_possible_cpu(i) {
1301 		c = &cpu_data(i);
1302 		/* mark all to hotplug */
1303 		c->cpu_index = nr_cpu_ids;
1304 	}
1305 }
1306 
1307 static void __init smp_get_logical_apicid(void)
1308 {
1309 	if (x2apic_mode)
1310 		cpu0_logical_apicid = apic_read(APIC_LDR);
1311 	else
1312 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1313 }
1314 
1315 /*
1316  * Prepare for SMP bootup.
1317  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1318  *            for common interface support.
1319  */
1320 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1321 {
1322 	unsigned int i;
1323 
1324 	smp_cpu_index_default();
1325 
1326 	/*
1327 	 * Setup boot CPU information
1328 	 */
1329 	smp_store_boot_cpu_info(); /* Final full version of the data */
1330 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1331 	mb();
1332 
1333 	for_each_possible_cpu(i) {
1334 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1335 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1336 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1337 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1338 	}
1339 
1340 	/*
1341 	 * Set 'default' x86 topology, this matches default_topology() in that
1342 	 * it has NUMA nodes as a topology level. See also
1343 	 * native_smp_cpus_done().
1344 	 *
1345 	 * Must be done before set_cpus_sibling_map() is ran.
1346 	 */
1347 	set_sched_topology(x86_topology);
1348 
1349 	set_cpu_sibling_map(0);
1350 	init_freq_invariance(false, false);
1351 	smp_sanity_check();
1352 
1353 	switch (apic_intr_mode) {
1354 	case APIC_PIC:
1355 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1356 		disable_smp();
1357 		return;
1358 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1359 		disable_smp();
1360 		/* Setup local timer */
1361 		x86_init.timers.setup_percpu_clockev();
1362 		return;
1363 	case APIC_VIRTUAL_WIRE:
1364 	case APIC_SYMMETRIC_IO:
1365 		break;
1366 	}
1367 
1368 	/* Setup local timer */
1369 	x86_init.timers.setup_percpu_clockev();
1370 
1371 	smp_get_logical_apicid();
1372 
1373 	pr_info("CPU0: ");
1374 	print_cpu_info(&cpu_data(0));
1375 
1376 	uv_system_init();
1377 
1378 	set_mtrr_aps_delayed_init();
1379 
1380 	smp_quirk_init_udelay();
1381 
1382 	speculative_store_bypass_ht_init();
1383 }
1384 
1385 void arch_thaw_secondary_cpus_begin(void)
1386 {
1387 	set_mtrr_aps_delayed_init();
1388 }
1389 
1390 void arch_thaw_secondary_cpus_end(void)
1391 {
1392 	mtrr_aps_init();
1393 }
1394 
1395 /*
1396  * Early setup to make printk work.
1397  */
1398 void __init native_smp_prepare_boot_cpu(void)
1399 {
1400 	int me = smp_processor_id();
1401 	switch_to_new_gdt(me);
1402 	/* already set me in cpu_online_mask in boot_cpu_init() */
1403 	cpumask_set_cpu(me, cpu_callout_mask);
1404 	cpu_set_state_online(me);
1405 	native_pv_lock_init();
1406 }
1407 
1408 void __init calculate_max_logical_packages(void)
1409 {
1410 	int ncpus;
1411 
1412 	/*
1413 	 * Today neither Intel nor AMD support heterogeneous systems so
1414 	 * extrapolate the boot cpu's data to all packages.
1415 	 */
1416 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1417 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1418 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1419 }
1420 
1421 void __init native_smp_cpus_done(unsigned int max_cpus)
1422 {
1423 	pr_debug("Boot done\n");
1424 
1425 	calculate_max_logical_packages();
1426 
1427 	if (x86_has_numa_in_package)
1428 		set_sched_topology(x86_numa_in_package_topology);
1429 
1430 	nmi_selftest();
1431 	impress_friends();
1432 	mtrr_aps_init();
1433 }
1434 
1435 static int __initdata setup_possible_cpus = -1;
1436 static int __init _setup_possible_cpus(char *str)
1437 {
1438 	get_option(&str, &setup_possible_cpus);
1439 	return 0;
1440 }
1441 early_param("possible_cpus", _setup_possible_cpus);
1442 
1443 
1444 /*
1445  * cpu_possible_mask should be static, it cannot change as cpu's
1446  * are onlined, or offlined. The reason is per-cpu data-structures
1447  * are allocated by some modules at init time, and don't expect to
1448  * do this dynamically on cpu arrival/departure.
1449  * cpu_present_mask on the other hand can change dynamically.
1450  * In case when cpu_hotplug is not compiled, then we resort to current
1451  * behaviour, which is cpu_possible == cpu_present.
1452  * - Ashok Raj
1453  *
1454  * Three ways to find out the number of additional hotplug CPUs:
1455  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1456  * - The user can overwrite it with possible_cpus=NUM
1457  * - Otherwise don't reserve additional CPUs.
1458  * We do this because additional CPUs waste a lot of memory.
1459  * -AK
1460  */
1461 __init void prefill_possible_map(void)
1462 {
1463 	int i, possible;
1464 
1465 	/* No boot processor was found in mptable or ACPI MADT */
1466 	if (!num_processors) {
1467 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1468 			int apicid = boot_cpu_physical_apicid;
1469 			int cpu = hard_smp_processor_id();
1470 
1471 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1472 
1473 			/* Make sure boot cpu is enumerated */
1474 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1475 			    apic->apic_id_valid(apicid))
1476 				generic_processor_info(apicid, boot_cpu_apic_version);
1477 		}
1478 
1479 		if (!num_processors)
1480 			num_processors = 1;
1481 	}
1482 
1483 	i = setup_max_cpus ?: 1;
1484 	if (setup_possible_cpus == -1) {
1485 		possible = num_processors;
1486 #ifdef CONFIG_HOTPLUG_CPU
1487 		if (setup_max_cpus)
1488 			possible += disabled_cpus;
1489 #else
1490 		if (possible > i)
1491 			possible = i;
1492 #endif
1493 	} else
1494 		possible = setup_possible_cpus;
1495 
1496 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1497 
1498 	/* nr_cpu_ids could be reduced via nr_cpus= */
1499 	if (possible > nr_cpu_ids) {
1500 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1501 			possible, nr_cpu_ids);
1502 		possible = nr_cpu_ids;
1503 	}
1504 
1505 #ifdef CONFIG_HOTPLUG_CPU
1506 	if (!setup_max_cpus)
1507 #endif
1508 	if (possible > i) {
1509 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1510 			possible, setup_max_cpus);
1511 		possible = i;
1512 	}
1513 
1514 	nr_cpu_ids = possible;
1515 
1516 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1517 		possible, max_t(int, possible - num_processors, 0));
1518 
1519 	reset_cpu_possible_mask();
1520 
1521 	for (i = 0; i < possible; i++)
1522 		set_cpu_possible(i, true);
1523 }
1524 
1525 #ifdef CONFIG_HOTPLUG_CPU
1526 
1527 /* Recompute SMT state for all CPUs on offline */
1528 static void recompute_smt_state(void)
1529 {
1530 	int max_threads, cpu;
1531 
1532 	max_threads = 0;
1533 	for_each_online_cpu (cpu) {
1534 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1535 
1536 		if (threads > max_threads)
1537 			max_threads = threads;
1538 	}
1539 	__max_smt_threads = max_threads;
1540 }
1541 
1542 static void remove_siblinginfo(int cpu)
1543 {
1544 	int sibling;
1545 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1546 
1547 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1548 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1549 		/*/
1550 		 * last thread sibling in this cpu core going down
1551 		 */
1552 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1553 			cpu_data(sibling).booted_cores--;
1554 	}
1555 
1556 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1557 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1558 
1559 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1560 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1561 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1562 			cpu_data(sibling).smt_active = false;
1563 	}
1564 
1565 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1566 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1567 	cpumask_clear(cpu_llc_shared_mask(cpu));
1568 	cpumask_clear(topology_sibling_cpumask(cpu));
1569 	cpumask_clear(topology_core_cpumask(cpu));
1570 	cpumask_clear(topology_die_cpumask(cpu));
1571 	c->cpu_core_id = 0;
1572 	c->booted_cores = 0;
1573 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1574 	recompute_smt_state();
1575 }
1576 
1577 static void remove_cpu_from_maps(int cpu)
1578 {
1579 	set_cpu_online(cpu, false);
1580 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1581 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1582 	/* was set by cpu_init() */
1583 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1584 	numa_remove_cpu(cpu);
1585 }
1586 
1587 void cpu_disable_common(void)
1588 {
1589 	int cpu = smp_processor_id();
1590 
1591 	remove_siblinginfo(cpu);
1592 
1593 	/* It's now safe to remove this processor from the online map */
1594 	lock_vector_lock();
1595 	remove_cpu_from_maps(cpu);
1596 	unlock_vector_lock();
1597 	fixup_irqs();
1598 	lapic_offline();
1599 }
1600 
1601 int native_cpu_disable(void)
1602 {
1603 	int ret;
1604 
1605 	ret = lapic_can_unplug_cpu();
1606 	if (ret)
1607 		return ret;
1608 
1609 	cpu_disable_common();
1610 
1611         /*
1612          * Disable the local APIC. Otherwise IPI broadcasts will reach
1613          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1614          * messages.
1615          *
1616          * Disabling the APIC must happen after cpu_disable_common()
1617          * which invokes fixup_irqs().
1618          *
1619          * Disabling the APIC preserves already set bits in IRR, but
1620          * an interrupt arriving after disabling the local APIC does not
1621          * set the corresponding IRR bit.
1622          *
1623          * fixup_irqs() scans IRR for set bits so it can raise a not
1624          * yet handled interrupt on the new destination CPU via an IPI
1625          * but obviously it can't do so for IRR bits which are not set.
1626          * IOW, interrupts arriving after disabling the local APIC will
1627          * be lost.
1628          */
1629 	apic_soft_disable();
1630 
1631 	return 0;
1632 }
1633 
1634 int common_cpu_die(unsigned int cpu)
1635 {
1636 	int ret = 0;
1637 
1638 	/* We don't do anything here: idle task is faking death itself. */
1639 
1640 	/* They ack this in play_dead() by setting CPU_DEAD */
1641 	if (cpu_wait_death(cpu, 5)) {
1642 		if (system_state == SYSTEM_RUNNING)
1643 			pr_info("CPU %u is now offline\n", cpu);
1644 	} else {
1645 		pr_err("CPU %u didn't die...\n", cpu);
1646 		ret = -1;
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 void native_cpu_die(unsigned int cpu)
1653 {
1654 	common_cpu_die(cpu);
1655 }
1656 
1657 void play_dead_common(void)
1658 {
1659 	idle_task_exit();
1660 
1661 	/* Ack it */
1662 	(void)cpu_report_death();
1663 
1664 	/*
1665 	 * With physical CPU hotplug, we should halt the cpu
1666 	 */
1667 	local_irq_disable();
1668 }
1669 
1670 /**
1671  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1672  *
1673  * If NMI wants to wake up CPU0, start CPU0.
1674  */
1675 void cond_wakeup_cpu0(void)
1676 {
1677 	if (smp_processor_id() == 0 && enable_start_cpu0)
1678 		start_cpu0();
1679 }
1680 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1681 
1682 /*
1683  * We need to flush the caches before going to sleep, lest we have
1684  * dirty data in our caches when we come back up.
1685  */
1686 static inline void mwait_play_dead(void)
1687 {
1688 	unsigned int eax, ebx, ecx, edx;
1689 	unsigned int highest_cstate = 0;
1690 	unsigned int highest_subcstate = 0;
1691 	void *mwait_ptr;
1692 	int i;
1693 
1694 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1695 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1696 		return;
1697 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1698 		return;
1699 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1700 		return;
1701 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1702 		return;
1703 
1704 	eax = CPUID_MWAIT_LEAF;
1705 	ecx = 0;
1706 	native_cpuid(&eax, &ebx, &ecx, &edx);
1707 
1708 	/*
1709 	 * eax will be 0 if EDX enumeration is not valid.
1710 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1711 	 */
1712 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1713 		eax = 0;
1714 	} else {
1715 		edx >>= MWAIT_SUBSTATE_SIZE;
1716 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1717 			if (edx & MWAIT_SUBSTATE_MASK) {
1718 				highest_cstate = i;
1719 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1720 			}
1721 		}
1722 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1723 			(highest_subcstate - 1);
1724 	}
1725 
1726 	/*
1727 	 * This should be a memory location in a cache line which is
1728 	 * unlikely to be touched by other processors.  The actual
1729 	 * content is immaterial as it is not actually modified in any way.
1730 	 */
1731 	mwait_ptr = &current_thread_info()->flags;
1732 
1733 	wbinvd();
1734 
1735 	while (1) {
1736 		/*
1737 		 * The CLFLUSH is a workaround for erratum AAI65 for
1738 		 * the Xeon 7400 series.  It's not clear it is actually
1739 		 * needed, but it should be harmless in either case.
1740 		 * The WBINVD is insufficient due to the spurious-wakeup
1741 		 * case where we return around the loop.
1742 		 */
1743 		mb();
1744 		clflush(mwait_ptr);
1745 		mb();
1746 		__monitor(mwait_ptr, 0, 0);
1747 		mb();
1748 		__mwait(eax, 0);
1749 
1750 		cond_wakeup_cpu0();
1751 	}
1752 }
1753 
1754 void hlt_play_dead(void)
1755 {
1756 	if (__this_cpu_read(cpu_info.x86) >= 4)
1757 		wbinvd();
1758 
1759 	while (1) {
1760 		native_halt();
1761 
1762 		cond_wakeup_cpu0();
1763 	}
1764 }
1765 
1766 void native_play_dead(void)
1767 {
1768 	play_dead_common();
1769 	tboot_shutdown(TB_SHUTDOWN_WFS);
1770 
1771 	mwait_play_dead();	/* Only returns on failure */
1772 	if (cpuidle_play_dead())
1773 		hlt_play_dead();
1774 }
1775 
1776 #else /* ... !CONFIG_HOTPLUG_CPU */
1777 int native_cpu_disable(void)
1778 {
1779 	return -ENOSYS;
1780 }
1781 
1782 void native_cpu_die(unsigned int cpu)
1783 {
1784 	/* We said "no" in __cpu_disable */
1785 	BUG();
1786 }
1787 
1788 void native_play_dead(void)
1789 {
1790 	BUG();
1791 }
1792 
1793 #endif
1794 
1795 #ifdef CONFIG_X86_64
1796 /*
1797  * APERF/MPERF frequency ratio computation.
1798  *
1799  * The scheduler wants to do frequency invariant accounting and needs a <1
1800  * ratio to account for the 'current' frequency, corresponding to
1801  * freq_curr / freq_max.
1802  *
1803  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1804  * our P-state setting is little more than a request/hint, we need to observe
1805  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1806  * interval after discarding idle time. This is given by:
1807  *
1808  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1809  *
1810  * where freq_base is the max non-turbo P-state.
1811  *
1812  * The freq_max term has to be set to a somewhat arbitrary value, because we
1813  * can't know which turbo states will be available at a given point in time:
1814  * it all depends on the thermal headroom of the entire package. We set it to
1815  * the turbo level with 4 cores active.
1816  *
1817  * Benchmarks show that's a good compromise between the 1C turbo ratio
1818  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1819  * which would ignore the entire turbo range (a conspicuous part, making
1820  * freq_curr/freq_max always maxed out).
1821  *
1822  * An exception to the heuristic above is the Atom uarch, where we choose the
1823  * highest turbo level for freq_max since Atom's are generally oriented towards
1824  * power efficiency.
1825  *
1826  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1827  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1828  */
1829 
1830 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1831 
1832 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1833 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1834 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1835 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1836 
1837 void arch_set_max_freq_ratio(bool turbo_disabled)
1838 {
1839 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1840 					arch_turbo_freq_ratio;
1841 }
1842 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1843 
1844 static bool turbo_disabled(void)
1845 {
1846 	u64 misc_en;
1847 	int err;
1848 
1849 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1850 	if (err)
1851 		return false;
1852 
1853 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1854 }
1855 
1856 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1857 {
1858 	int err;
1859 
1860 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1861 	if (err)
1862 		return false;
1863 
1864 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1865 	if (err)
1866 		return false;
1867 
1868 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1869 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1870 
1871 	return true;
1872 }
1873 
1874 #define X86_MATCH(model)					\
1875 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1876 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1877 
1878 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1879 	X86_MATCH(XEON_PHI_KNL),
1880 	X86_MATCH(XEON_PHI_KNM),
1881 	{}
1882 };
1883 
1884 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1885 	X86_MATCH(SKYLAKE_X),
1886 	{}
1887 };
1888 
1889 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1890 	X86_MATCH(ATOM_GOLDMONT),
1891 	X86_MATCH(ATOM_GOLDMONT_D),
1892 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1893 	{}
1894 };
1895 
1896 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1897 				int num_delta_fratio)
1898 {
1899 	int fratio, delta_fratio, found;
1900 	int err, i;
1901 	u64 msr;
1902 
1903 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1904 	if (err)
1905 		return false;
1906 
1907 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1908 
1909 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1910 	if (err)
1911 		return false;
1912 
1913 	fratio = (msr >> 8) & 0xFF;
1914 	i = 16;
1915 	found = 0;
1916 	do {
1917 		if (found >= num_delta_fratio) {
1918 			*turbo_freq = fratio;
1919 			return true;
1920 		}
1921 
1922 		delta_fratio = (msr >> (i + 5)) & 0x7;
1923 
1924 		if (delta_fratio) {
1925 			found += 1;
1926 			fratio -= delta_fratio;
1927 		}
1928 
1929 		i += 8;
1930 	} while (i < 64);
1931 
1932 	return true;
1933 }
1934 
1935 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1936 {
1937 	u64 ratios, counts;
1938 	u32 group_size;
1939 	int err, i;
1940 
1941 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1942 	if (err)
1943 		return false;
1944 
1945 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1946 
1947 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1948 	if (err)
1949 		return false;
1950 
1951 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1952 	if (err)
1953 		return false;
1954 
1955 	for (i = 0; i < 64; i += 8) {
1956 		group_size = (counts >> i) & 0xFF;
1957 		if (group_size >= size) {
1958 			*turbo_freq = (ratios >> i) & 0xFF;
1959 			return true;
1960 		}
1961 	}
1962 
1963 	return false;
1964 }
1965 
1966 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1967 {
1968 	u64 msr;
1969 	int err;
1970 
1971 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1972 	if (err)
1973 		return false;
1974 
1975 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1976 	if (err)
1977 		return false;
1978 
1979 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1980 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1981 
1982 	/* The CPU may have less than 4 cores */
1983 	if (!*turbo_freq)
1984 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1985 
1986 	return true;
1987 }
1988 
1989 static bool intel_set_max_freq_ratio(void)
1990 {
1991 	u64 base_freq, turbo_freq;
1992 	u64 turbo_ratio;
1993 
1994 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1995 		goto out;
1996 
1997 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1998 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1999 		goto out;
2000 
2001 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
2002 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2003 		goto out;
2004 
2005 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2006 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2007 		goto out;
2008 
2009 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2010 		goto out;
2011 
2012 	return false;
2013 
2014 out:
2015 	/*
2016 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2017 	 * but then fill all MSR's with zeroes.
2018 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2019 	 * in MSR_TURBO_RATIO_LIMIT.
2020 	 */
2021 	if (!base_freq || !turbo_freq) {
2022 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2023 		return false;
2024 	}
2025 
2026 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2027 	if (!turbo_ratio) {
2028 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2029 		return false;
2030 	}
2031 
2032 	arch_turbo_freq_ratio = turbo_ratio;
2033 	arch_set_max_freq_ratio(turbo_disabled());
2034 
2035 	return true;
2036 }
2037 
2038 #ifdef CONFIG_ACPI_CPPC_LIB
2039 static bool amd_set_max_freq_ratio(void)
2040 {
2041 	struct cppc_perf_caps perf_caps;
2042 	u64 highest_perf, nominal_perf;
2043 	u64 perf_ratio;
2044 	int rc;
2045 
2046 	rc = cppc_get_perf_caps(0, &perf_caps);
2047 	if (rc) {
2048 		pr_debug("Could not retrieve perf counters (%d)\n", rc);
2049 		return false;
2050 	}
2051 
2052 	highest_perf = amd_get_highest_perf();
2053 	nominal_perf = perf_caps.nominal_perf;
2054 
2055 	if (!highest_perf || !nominal_perf) {
2056 		pr_debug("Could not retrieve highest or nominal performance\n");
2057 		return false;
2058 	}
2059 
2060 	perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2061 	/* midpoint between max_boost and max_P */
2062 	perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2063 	if (!perf_ratio) {
2064 		pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2065 		return false;
2066 	}
2067 
2068 	arch_turbo_freq_ratio = perf_ratio;
2069 	arch_set_max_freq_ratio(false);
2070 
2071 	return true;
2072 }
2073 #else
2074 static bool amd_set_max_freq_ratio(void)
2075 {
2076 	return false;
2077 }
2078 #endif
2079 
2080 static void init_counter_refs(void)
2081 {
2082 	u64 aperf, mperf;
2083 
2084 	rdmsrl(MSR_IA32_APERF, aperf);
2085 	rdmsrl(MSR_IA32_MPERF, mperf);
2086 
2087 	this_cpu_write(arch_prev_aperf, aperf);
2088 	this_cpu_write(arch_prev_mperf, mperf);
2089 }
2090 
2091 #ifdef CONFIG_PM_SLEEP
2092 static struct syscore_ops freq_invariance_syscore_ops = {
2093 	.resume = init_counter_refs,
2094 };
2095 
2096 static void register_freq_invariance_syscore_ops(void)
2097 {
2098 	/* Bail out if registered already. */
2099 	if (freq_invariance_syscore_ops.node.prev)
2100 		return;
2101 
2102 	register_syscore_ops(&freq_invariance_syscore_ops);
2103 }
2104 #else
2105 static inline void register_freq_invariance_syscore_ops(void) {}
2106 #endif
2107 
2108 static void init_freq_invariance(bool secondary, bool cppc_ready)
2109 {
2110 	bool ret = false;
2111 
2112 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2113 		return;
2114 
2115 	if (secondary) {
2116 		if (static_branch_likely(&arch_scale_freq_key)) {
2117 			init_counter_refs();
2118 		}
2119 		return;
2120 	}
2121 
2122 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2123 		ret = intel_set_max_freq_ratio();
2124 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2125 		if (!cppc_ready) {
2126 			return;
2127 		}
2128 		ret = amd_set_max_freq_ratio();
2129 	}
2130 
2131 	if (ret) {
2132 		init_counter_refs();
2133 		static_branch_enable(&arch_scale_freq_key);
2134 		register_freq_invariance_syscore_ops();
2135 		pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2136 	} else {
2137 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2138 	}
2139 }
2140 
2141 #ifdef CONFIG_ACPI_CPPC_LIB
2142 static DEFINE_MUTEX(freq_invariance_lock);
2143 
2144 void init_freq_invariance_cppc(void)
2145 {
2146 	static bool secondary;
2147 
2148 	mutex_lock(&freq_invariance_lock);
2149 
2150 	init_freq_invariance(secondary, true);
2151 	secondary = true;
2152 
2153 	mutex_unlock(&freq_invariance_lock);
2154 }
2155 #endif
2156 
2157 static void disable_freq_invariance_workfn(struct work_struct *work)
2158 {
2159 	static_branch_disable(&arch_scale_freq_key);
2160 }
2161 
2162 static DECLARE_WORK(disable_freq_invariance_work,
2163 		    disable_freq_invariance_workfn);
2164 
2165 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2166 
2167 void arch_scale_freq_tick(void)
2168 {
2169 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2170 	u64 aperf, mperf;
2171 	u64 acnt, mcnt;
2172 
2173 	if (!arch_scale_freq_invariant())
2174 		return;
2175 
2176 	rdmsrl(MSR_IA32_APERF, aperf);
2177 	rdmsrl(MSR_IA32_MPERF, mperf);
2178 
2179 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2180 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2181 
2182 	this_cpu_write(arch_prev_aperf, aperf);
2183 	this_cpu_write(arch_prev_mperf, mperf);
2184 
2185 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2186 		goto error;
2187 
2188 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2189 		goto error;
2190 
2191 	freq_scale = div64_u64(acnt, mcnt);
2192 	if (!freq_scale)
2193 		goto error;
2194 
2195 	if (freq_scale > SCHED_CAPACITY_SCALE)
2196 		freq_scale = SCHED_CAPACITY_SCALE;
2197 
2198 	this_cpu_write(arch_freq_scale, freq_scale);
2199 	return;
2200 
2201 error:
2202 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2203 	schedule_work(&disable_freq_invariance_work);
2204 }
2205 #else
2206 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2207 {
2208 }
2209 #endif /* CONFIG_X86_64 */
2210