1 /* 2 * x86 SMP booting functions 3 * 4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * Copyright 2001 Andi Kleen, SuSE Labs. 7 * 8 * Much of the core SMP work is based on previous work by Thomas Radke, to 9 * whom a great many thanks are extended. 10 * 11 * Thanks to Intel for making available several different Pentium, 12 * Pentium Pro and Pentium-II/Xeon MP machines. 13 * Original development of Linux SMP code supported by Caldera. 14 * 15 * This code is released under the GNU General Public License version 2 or 16 * later. 17 * 18 * Fixes 19 * Felix Koop : NR_CPUS used properly 20 * Jose Renau : Handle single CPU case. 21 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 22 * Greg Wright : Fix for kernel stacks panic. 23 * Erich Boleyn : MP v1.4 and additional changes. 24 * Matthias Sattler : Changes for 2.1 kernel map. 25 * Michel Lespinasse : Changes for 2.1 kernel map. 26 * Michael Chastain : Change trampoline.S to gnu as. 27 * Alan Cox : Dumb bug: 'B' step PPro's are fine 28 * Ingo Molnar : Added APIC timers, based on code 29 * from Jose Renau 30 * Ingo Molnar : various cleanups and rewrites 31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 33 * Andi Kleen : Changed for SMP boot into long mode. 34 * Martin J. Bligh : Added support for multi-quad systems 35 * Dave Jones : Report invalid combinations of Athlon CPUs. 36 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 37 * Andi Kleen : Converted to new state machine. 38 * Ashok Raj : CPU hotplug support 39 * Glauber Costa : i386 and x86_64 integration 40 */ 41 42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 43 44 #include <linux/init.h> 45 #include <linux/smp.h> 46 #include <linux/export.h> 47 #include <linux/sched.h> 48 #include <linux/sched/topology.h> 49 #include <linux/sched/hotplug.h> 50 #include <linux/sched/task_stack.h> 51 #include <linux/percpu.h> 52 #include <linux/bootmem.h> 53 #include <linux/err.h> 54 #include <linux/nmi.h> 55 #include <linux/tboot.h> 56 #include <linux/stackprotector.h> 57 #include <linux/gfp.h> 58 #include <linux/cpuidle.h> 59 60 #include <asm/acpi.h> 61 #include <asm/desc.h> 62 #include <asm/nmi.h> 63 #include <asm/irq.h> 64 #include <asm/realmode.h> 65 #include <asm/cpu.h> 66 #include <asm/numa.h> 67 #include <asm/pgtable.h> 68 #include <asm/tlbflush.h> 69 #include <asm/mtrr.h> 70 #include <asm/mwait.h> 71 #include <asm/apic.h> 72 #include <asm/io_apic.h> 73 #include <asm/fpu/internal.h> 74 #include <asm/setup.h> 75 #include <asm/uv/uv.h> 76 #include <linux/mc146818rtc.h> 77 #include <asm/i8259.h> 78 #include <asm/misc.h> 79 #include <asm/qspinlock.h> 80 81 /* Number of siblings per CPU package */ 82 int smp_num_siblings = 1; 83 EXPORT_SYMBOL(smp_num_siblings); 84 85 /* Last level cache ID of each logical CPU */ 86 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; 87 88 /* representing HT siblings of each logical CPU */ 89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 90 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 91 92 /* representing HT and core siblings of each logical CPU */ 93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 94 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 95 96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); 97 98 /* Per CPU bogomips and other parameters */ 99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 100 EXPORT_PER_CPU_SYMBOL(cpu_info); 101 102 /* Logical package management. We might want to allocate that dynamically */ 103 unsigned int __max_logical_packages __read_mostly; 104 EXPORT_SYMBOL(__max_logical_packages); 105 static unsigned int logical_packages __read_mostly; 106 107 /* Maximum number of SMT threads on any online core */ 108 int __read_mostly __max_smt_threads = 1; 109 110 /* Flag to indicate if a complete sched domain rebuild is required */ 111 bool x86_topology_update; 112 113 int arch_update_cpu_topology(void) 114 { 115 int retval = x86_topology_update; 116 117 x86_topology_update = false; 118 return retval; 119 } 120 121 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 122 { 123 unsigned long flags; 124 125 spin_lock_irqsave(&rtc_lock, flags); 126 CMOS_WRITE(0xa, 0xf); 127 spin_unlock_irqrestore(&rtc_lock, flags); 128 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = 129 start_eip >> 4; 130 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 131 start_eip & 0xf; 132 } 133 134 static inline void smpboot_restore_warm_reset_vector(void) 135 { 136 unsigned long flags; 137 138 /* 139 * Paranoid: Set warm reset code and vector here back 140 * to default values. 141 */ 142 spin_lock_irqsave(&rtc_lock, flags); 143 CMOS_WRITE(0, 0xf); 144 spin_unlock_irqrestore(&rtc_lock, flags); 145 146 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 147 } 148 149 /* 150 * Report back to the Boot Processor during boot time or to the caller processor 151 * during CPU online. 152 */ 153 static void smp_callin(void) 154 { 155 int cpuid, phys_id; 156 157 /* 158 * If waken up by an INIT in an 82489DX configuration 159 * cpu_callout_mask guarantees we don't get here before 160 * an INIT_deassert IPI reaches our local APIC, so it is 161 * now safe to touch our local APIC. 162 */ 163 cpuid = smp_processor_id(); 164 165 /* 166 * (This works even if the APIC is not enabled.) 167 */ 168 phys_id = read_apic_id(); 169 170 /* 171 * the boot CPU has finished the init stage and is spinning 172 * on callin_map until we finish. We are free to set up this 173 * CPU, first the APIC. (this is probably redundant on most 174 * boards) 175 */ 176 apic_ap_setup(); 177 178 /* 179 * Save our processor parameters. Note: this information 180 * is needed for clock calibration. 181 */ 182 smp_store_cpu_info(cpuid); 183 184 /* 185 * The topology information must be up to date before 186 * calibrate_delay() and notify_cpu_starting(). 187 */ 188 set_cpu_sibling_map(raw_smp_processor_id()); 189 190 /* 191 * Get our bogomips. 192 * Update loops_per_jiffy in cpu_data. Previous call to 193 * smp_store_cpu_info() stored a value that is close but not as 194 * accurate as the value just calculated. 195 */ 196 calibrate_delay(); 197 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; 198 pr_debug("Stack at about %p\n", &cpuid); 199 200 wmb(); 201 202 notify_cpu_starting(cpuid); 203 204 /* 205 * Allow the master to continue. 206 */ 207 cpumask_set_cpu(cpuid, cpu_callin_mask); 208 } 209 210 static int cpu0_logical_apicid; 211 static int enable_start_cpu0; 212 /* 213 * Activate a secondary processor. 214 */ 215 static void notrace start_secondary(void *unused) 216 { 217 /* 218 * Don't put *anything* except direct CPU state initialization 219 * before cpu_init(), SMP booting is too fragile that we want to 220 * limit the things done here to the most necessary things. 221 */ 222 if (boot_cpu_has(X86_FEATURE_PCID)) 223 __write_cr4(__read_cr4() | X86_CR4_PCIDE); 224 225 #ifdef CONFIG_X86_32 226 /* switch away from the initial page table */ 227 load_cr3(swapper_pg_dir); 228 __flush_tlb_all(); 229 #endif 230 load_current_idt(); 231 cpu_init(); 232 x86_cpuinit.early_percpu_clock_init(); 233 preempt_disable(); 234 smp_callin(); 235 236 enable_start_cpu0 = 0; 237 238 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 239 barrier(); 240 /* 241 * Check TSC synchronization with the boot CPU: 242 */ 243 check_tsc_sync_target(); 244 245 /* 246 * Lock vector_lock, set CPU online and bring the vector 247 * allocator online. Online must be set with vector_lock held 248 * to prevent a concurrent irq setup/teardown from seeing a 249 * half valid vector space. 250 */ 251 lock_vector_lock(); 252 set_cpu_online(smp_processor_id(), true); 253 lapic_online(); 254 unlock_vector_lock(); 255 cpu_set_state_online(smp_processor_id()); 256 x86_platform.nmi_init(); 257 258 /* enable local interrupts */ 259 local_irq_enable(); 260 261 /* to prevent fake stack check failure in clock setup */ 262 boot_init_stack_canary(); 263 264 x86_cpuinit.setup_percpu_clockev(); 265 266 wmb(); 267 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 268 } 269 270 /** 271 * topology_phys_to_logical_pkg - Map a physical package id to a logical 272 * 273 * Returns logical package id or -1 if not found 274 */ 275 int topology_phys_to_logical_pkg(unsigned int phys_pkg) 276 { 277 int cpu; 278 279 for_each_possible_cpu(cpu) { 280 struct cpuinfo_x86 *c = &cpu_data(cpu); 281 282 if (c->initialized && c->phys_proc_id == phys_pkg) 283 return c->logical_proc_id; 284 } 285 return -1; 286 } 287 EXPORT_SYMBOL(topology_phys_to_logical_pkg); 288 289 /** 290 * topology_update_package_map - Update the physical to logical package map 291 * @pkg: The physical package id as retrieved via CPUID 292 * @cpu: The cpu for which this is updated 293 */ 294 int topology_update_package_map(unsigned int pkg, unsigned int cpu) 295 { 296 int new; 297 298 /* Already available somewhere? */ 299 new = topology_phys_to_logical_pkg(pkg); 300 if (new >= 0) 301 goto found; 302 303 new = logical_packages++; 304 if (new != pkg) { 305 pr_info("CPU %u Converting physical %u to logical package %u\n", 306 cpu, pkg, new); 307 } 308 found: 309 cpu_data(cpu).logical_proc_id = new; 310 return 0; 311 } 312 313 void __init smp_store_boot_cpu_info(void) 314 { 315 int id = 0; /* CPU 0 */ 316 struct cpuinfo_x86 *c = &cpu_data(id); 317 318 *c = boot_cpu_data; 319 c->cpu_index = id; 320 topology_update_package_map(c->phys_proc_id, id); 321 c->initialized = true; 322 } 323 324 /* 325 * The bootstrap kernel entry code has set these up. Save them for 326 * a given CPU 327 */ 328 void smp_store_cpu_info(int id) 329 { 330 struct cpuinfo_x86 *c = &cpu_data(id); 331 332 /* Copy boot_cpu_data only on the first bringup */ 333 if (!c->initialized) 334 *c = boot_cpu_data; 335 c->cpu_index = id; 336 /* 337 * During boot time, CPU0 has this setup already. Save the info when 338 * bringing up AP or offlined CPU0. 339 */ 340 identify_secondary_cpu(c); 341 c->initialized = true; 342 } 343 344 static bool 345 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 346 { 347 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 348 349 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 350 } 351 352 static bool 353 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 354 { 355 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 356 357 return !WARN_ONCE(!topology_same_node(c, o), 358 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 359 "[node: %d != %d]. Ignoring dependency.\n", 360 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 361 } 362 363 #define link_mask(mfunc, c1, c2) \ 364 do { \ 365 cpumask_set_cpu((c1), mfunc(c2)); \ 366 cpumask_set_cpu((c2), mfunc(c1)); \ 367 } while (0) 368 369 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 370 { 371 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 372 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 373 374 if (c->phys_proc_id == o->phys_proc_id && 375 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) { 376 if (c->cpu_core_id == o->cpu_core_id) 377 return topology_sane(c, o, "smt"); 378 379 if ((c->cu_id != 0xff) && 380 (o->cu_id != 0xff) && 381 (c->cu_id == o->cu_id)) 382 return topology_sane(c, o, "smt"); 383 } 384 385 } else if (c->phys_proc_id == o->phys_proc_id && 386 c->cpu_core_id == o->cpu_core_id) { 387 return topology_sane(c, o, "smt"); 388 } 389 390 return false; 391 } 392 393 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 394 { 395 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 396 397 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID && 398 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) 399 return topology_sane(c, o, "llc"); 400 401 return false; 402 } 403 404 /* 405 * Unlike the other levels, we do not enforce keeping a 406 * multicore group inside a NUMA node. If this happens, we will 407 * discard the MC level of the topology later. 408 */ 409 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 410 { 411 if (c->phys_proc_id == o->phys_proc_id) 412 return true; 413 return false; 414 } 415 416 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) 417 static inline int x86_sched_itmt_flags(void) 418 { 419 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; 420 } 421 422 #ifdef CONFIG_SCHED_MC 423 static int x86_core_flags(void) 424 { 425 return cpu_core_flags() | x86_sched_itmt_flags(); 426 } 427 #endif 428 #ifdef CONFIG_SCHED_SMT 429 static int x86_smt_flags(void) 430 { 431 return cpu_smt_flags() | x86_sched_itmt_flags(); 432 } 433 #endif 434 #endif 435 436 static struct sched_domain_topology_level x86_numa_in_package_topology[] = { 437 #ifdef CONFIG_SCHED_SMT 438 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 439 #endif 440 #ifdef CONFIG_SCHED_MC 441 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 442 #endif 443 { NULL, }, 444 }; 445 446 static struct sched_domain_topology_level x86_topology[] = { 447 #ifdef CONFIG_SCHED_SMT 448 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 449 #endif 450 #ifdef CONFIG_SCHED_MC 451 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 452 #endif 453 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 454 { NULL, }, 455 }; 456 457 /* 458 * Set if a package/die has multiple NUMA nodes inside. 459 * AMD Magny-Cours and Intel Cluster-on-Die have this. 460 */ 461 static bool x86_has_numa_in_package; 462 463 void set_cpu_sibling_map(int cpu) 464 { 465 bool has_smt = smp_num_siblings > 1; 466 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; 467 struct cpuinfo_x86 *c = &cpu_data(cpu); 468 struct cpuinfo_x86 *o; 469 int i, threads; 470 471 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 472 473 if (!has_mp) { 474 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 475 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 476 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 477 c->booted_cores = 1; 478 return; 479 } 480 481 for_each_cpu(i, cpu_sibling_setup_mask) { 482 o = &cpu_data(i); 483 484 if ((i == cpu) || (has_smt && match_smt(c, o))) 485 link_mask(topology_sibling_cpumask, cpu, i); 486 487 if ((i == cpu) || (has_mp && match_llc(c, o))) 488 link_mask(cpu_llc_shared_mask, cpu, i); 489 490 } 491 492 /* 493 * This needs a separate iteration over the cpus because we rely on all 494 * topology_sibling_cpumask links to be set-up. 495 */ 496 for_each_cpu(i, cpu_sibling_setup_mask) { 497 o = &cpu_data(i); 498 499 if ((i == cpu) || (has_mp && match_die(c, o))) { 500 link_mask(topology_core_cpumask, cpu, i); 501 502 /* 503 * Does this new cpu bringup a new core? 504 */ 505 if (cpumask_weight( 506 topology_sibling_cpumask(cpu)) == 1) { 507 /* 508 * for each core in package, increment 509 * the booted_cores for this new cpu 510 */ 511 if (cpumask_first( 512 topology_sibling_cpumask(i)) == i) 513 c->booted_cores++; 514 /* 515 * increment the core count for all 516 * the other cpus in this package 517 */ 518 if (i != cpu) 519 cpu_data(i).booted_cores++; 520 } else if (i != cpu && !c->booted_cores) 521 c->booted_cores = cpu_data(i).booted_cores; 522 } 523 if (match_die(c, o) && !topology_same_node(c, o)) 524 x86_has_numa_in_package = true; 525 } 526 527 threads = cpumask_weight(topology_sibling_cpumask(cpu)); 528 if (threads > __max_smt_threads) 529 __max_smt_threads = threads; 530 } 531 532 /* maps the cpu to the sched domain representing multi-core */ 533 const struct cpumask *cpu_coregroup_mask(int cpu) 534 { 535 return cpu_llc_shared_mask(cpu); 536 } 537 538 static void impress_friends(void) 539 { 540 int cpu; 541 unsigned long bogosum = 0; 542 /* 543 * Allow the user to impress friends. 544 */ 545 pr_debug("Before bogomips\n"); 546 for_each_possible_cpu(cpu) 547 if (cpumask_test_cpu(cpu, cpu_callout_mask)) 548 bogosum += cpu_data(cpu).loops_per_jiffy; 549 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 550 num_online_cpus(), 551 bogosum/(500000/HZ), 552 (bogosum/(5000/HZ))%100); 553 554 pr_debug("Before bogocount - setting activated=1\n"); 555 } 556 557 void __inquire_remote_apic(int apicid) 558 { 559 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 560 const char * const names[] = { "ID", "VERSION", "SPIV" }; 561 int timeout; 562 u32 status; 563 564 pr_info("Inquiring remote APIC 0x%x...\n", apicid); 565 566 for (i = 0; i < ARRAY_SIZE(regs); i++) { 567 pr_info("... APIC 0x%x %s: ", apicid, names[i]); 568 569 /* 570 * Wait for idle. 571 */ 572 status = safe_apic_wait_icr_idle(); 573 if (status) 574 pr_cont("a previous APIC delivery may have failed\n"); 575 576 apic_icr_write(APIC_DM_REMRD | regs[i], apicid); 577 578 timeout = 0; 579 do { 580 udelay(100); 581 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 582 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 583 584 switch (status) { 585 case APIC_ICR_RR_VALID: 586 status = apic_read(APIC_RRR); 587 pr_cont("%08x\n", status); 588 break; 589 default: 590 pr_cont("failed\n"); 591 } 592 } 593 } 594 595 /* 596 * The Multiprocessor Specification 1.4 (1997) example code suggests 597 * that there should be a 10ms delay between the BSP asserting INIT 598 * and de-asserting INIT, when starting a remote processor. 599 * But that slows boot and resume on modern processors, which include 600 * many cores and don't require that delay. 601 * 602 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 603 * Modern processor families are quirked to remove the delay entirely. 604 */ 605 #define UDELAY_10MS_DEFAULT 10000 606 607 static unsigned int init_udelay = UINT_MAX; 608 609 static int __init cpu_init_udelay(char *str) 610 { 611 get_option(&str, &init_udelay); 612 613 return 0; 614 } 615 early_param("cpu_init_udelay", cpu_init_udelay); 616 617 static void __init smp_quirk_init_udelay(void) 618 { 619 /* if cmdline changed it from default, leave it alone */ 620 if (init_udelay != UINT_MAX) 621 return; 622 623 /* if modern processor, use no delay */ 624 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 625 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 626 init_udelay = 0; 627 return; 628 } 629 /* else, use legacy delay */ 630 init_udelay = UDELAY_10MS_DEFAULT; 631 } 632 633 /* 634 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 635 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 636 * won't ... remember to clear down the APIC, etc later. 637 */ 638 int 639 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) 640 { 641 unsigned long send_status, accept_status = 0; 642 int maxlvt; 643 644 /* Target chip */ 645 /* Boot on the stack */ 646 /* Kick the second */ 647 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid); 648 649 pr_debug("Waiting for send to finish...\n"); 650 send_status = safe_apic_wait_icr_idle(); 651 652 /* 653 * Give the other CPU some time to accept the IPI. 654 */ 655 udelay(200); 656 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 657 maxlvt = lapic_get_maxlvt(); 658 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 659 apic_write(APIC_ESR, 0); 660 accept_status = (apic_read(APIC_ESR) & 0xEF); 661 } 662 pr_debug("NMI sent\n"); 663 664 if (send_status) 665 pr_err("APIC never delivered???\n"); 666 if (accept_status) 667 pr_err("APIC delivery error (%lx)\n", accept_status); 668 669 return (send_status | accept_status); 670 } 671 672 static int 673 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) 674 { 675 unsigned long send_status = 0, accept_status = 0; 676 int maxlvt, num_starts, j; 677 678 maxlvt = lapic_get_maxlvt(); 679 680 /* 681 * Be paranoid about clearing APIC errors. 682 */ 683 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 684 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 685 apic_write(APIC_ESR, 0); 686 apic_read(APIC_ESR); 687 } 688 689 pr_debug("Asserting INIT\n"); 690 691 /* 692 * Turn INIT on target chip 693 */ 694 /* 695 * Send IPI 696 */ 697 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, 698 phys_apicid); 699 700 pr_debug("Waiting for send to finish...\n"); 701 send_status = safe_apic_wait_icr_idle(); 702 703 udelay(init_udelay); 704 705 pr_debug("Deasserting INIT\n"); 706 707 /* Target chip */ 708 /* Send IPI */ 709 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 710 711 pr_debug("Waiting for send to finish...\n"); 712 send_status = safe_apic_wait_icr_idle(); 713 714 mb(); 715 716 /* 717 * Should we send STARTUP IPIs ? 718 * 719 * Determine this based on the APIC version. 720 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 721 */ 722 if (APIC_INTEGRATED(boot_cpu_apic_version)) 723 num_starts = 2; 724 else 725 num_starts = 0; 726 727 /* 728 * Run STARTUP IPI loop. 729 */ 730 pr_debug("#startup loops: %d\n", num_starts); 731 732 for (j = 1; j <= num_starts; j++) { 733 pr_debug("Sending STARTUP #%d\n", j); 734 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 735 apic_write(APIC_ESR, 0); 736 apic_read(APIC_ESR); 737 pr_debug("After apic_write\n"); 738 739 /* 740 * STARTUP IPI 741 */ 742 743 /* Target chip */ 744 /* Boot on the stack */ 745 /* Kick the second */ 746 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 747 phys_apicid); 748 749 /* 750 * Give the other CPU some time to accept the IPI. 751 */ 752 if (init_udelay == 0) 753 udelay(10); 754 else 755 udelay(300); 756 757 pr_debug("Startup point 1\n"); 758 759 pr_debug("Waiting for send to finish...\n"); 760 send_status = safe_apic_wait_icr_idle(); 761 762 /* 763 * Give the other CPU some time to accept the IPI. 764 */ 765 if (init_udelay == 0) 766 udelay(10); 767 else 768 udelay(200); 769 770 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 771 apic_write(APIC_ESR, 0); 772 accept_status = (apic_read(APIC_ESR) & 0xEF); 773 if (send_status || accept_status) 774 break; 775 } 776 pr_debug("After Startup\n"); 777 778 if (send_status) 779 pr_err("APIC never delivered???\n"); 780 if (accept_status) 781 pr_err("APIC delivery error (%lx)\n", accept_status); 782 783 return (send_status | accept_status); 784 } 785 786 /* reduce the number of lines printed when booting a large cpu count system */ 787 static void announce_cpu(int cpu, int apicid) 788 { 789 static int current_node = -1; 790 int node = early_cpu_to_node(cpu); 791 static int width, node_width; 792 793 if (!width) 794 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 795 796 if (!node_width) 797 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 798 799 if (cpu == 1) 800 printk(KERN_INFO "x86: Booting SMP configuration:\n"); 801 802 if (system_state < SYSTEM_RUNNING) { 803 if (node != current_node) { 804 if (current_node > (-1)) 805 pr_cont("\n"); 806 current_node = node; 807 808 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 809 node_width - num_digits(node), " ", node); 810 } 811 812 /* Add padding for the BSP */ 813 if (cpu == 1) 814 pr_cont("%*s", width + 1, " "); 815 816 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 817 818 } else 819 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 820 node, cpu, apicid); 821 } 822 823 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) 824 { 825 int cpu; 826 827 cpu = smp_processor_id(); 828 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) 829 return NMI_HANDLED; 830 831 return NMI_DONE; 832 } 833 834 /* 835 * Wake up AP by INIT, INIT, STARTUP sequence. 836 * 837 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS 838 * boot-strap code which is not a desired behavior for waking up BSP. To 839 * void the boot-strap code, wake up CPU0 by NMI instead. 840 * 841 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined 842 * (i.e. physically hot removed and then hot added), NMI won't wake it up. 843 * We'll change this code in the future to wake up hard offlined CPU0 if 844 * real platform and request are available. 845 */ 846 static int 847 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, 848 int *cpu0_nmi_registered) 849 { 850 int id; 851 int boot_error; 852 853 preempt_disable(); 854 855 /* 856 * Wake up AP by INIT, INIT, STARTUP sequence. 857 */ 858 if (cpu) { 859 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); 860 goto out; 861 } 862 863 /* 864 * Wake up BSP by nmi. 865 * 866 * Register a NMI handler to help wake up CPU0. 867 */ 868 boot_error = register_nmi_handler(NMI_LOCAL, 869 wakeup_cpu0_nmi, 0, "wake_cpu0"); 870 871 if (!boot_error) { 872 enable_start_cpu0 = 1; 873 *cpu0_nmi_registered = 1; 874 if (apic->dest_logical == APIC_DEST_LOGICAL) 875 id = cpu0_logical_apicid; 876 else 877 id = apicid; 878 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); 879 } 880 881 out: 882 preempt_enable(); 883 884 return boot_error; 885 } 886 887 void common_cpu_up(unsigned int cpu, struct task_struct *idle) 888 { 889 /* Just in case we booted with a single CPU. */ 890 alternatives_enable_smp(); 891 892 per_cpu(current_task, cpu) = idle; 893 894 #ifdef CONFIG_X86_32 895 /* Stack for startup_32 can be just as for start_secondary onwards */ 896 irq_ctx_init(cpu); 897 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle); 898 #else 899 initial_gs = per_cpu_offset(cpu); 900 #endif 901 } 902 903 /* 904 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 905 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 906 * Returns zero if CPU booted OK, else error code from 907 * ->wakeup_secondary_cpu. 908 */ 909 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle, 910 int *cpu0_nmi_registered) 911 { 912 volatile u32 *trampoline_status = 913 (volatile u32 *) __va(real_mode_header->trampoline_status); 914 /* start_ip had better be page-aligned! */ 915 unsigned long start_ip = real_mode_header->trampoline_start; 916 917 unsigned long boot_error = 0; 918 unsigned long timeout; 919 920 idle->thread.sp = (unsigned long)task_pt_regs(idle); 921 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); 922 initial_code = (unsigned long)start_secondary; 923 initial_stack = idle->thread.sp; 924 925 /* Enable the espfix hack for this CPU */ 926 init_espfix_ap(cpu); 927 928 /* So we see what's up */ 929 announce_cpu(cpu, apicid); 930 931 /* 932 * This grunge runs the startup process for 933 * the targeted processor. 934 */ 935 936 if (x86_platform.legacy.warm_reset) { 937 938 pr_debug("Setting warm reset code and vector.\n"); 939 940 smpboot_setup_warm_reset_vector(start_ip); 941 /* 942 * Be paranoid about clearing APIC errors. 943 */ 944 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 945 apic_write(APIC_ESR, 0); 946 apic_read(APIC_ESR); 947 } 948 } 949 950 /* 951 * AP might wait on cpu_callout_mask in cpu_init() with 952 * cpu_initialized_mask set if previous attempt to online 953 * it timed-out. Clear cpu_initialized_mask so that after 954 * INIT/SIPI it could start with a clean state. 955 */ 956 cpumask_clear_cpu(cpu, cpu_initialized_mask); 957 smp_mb(); 958 959 /* 960 * Wake up a CPU in difference cases: 961 * - Use the method in the APIC driver if it's defined 962 * Otherwise, 963 * - Use an INIT boot APIC message for APs or NMI for BSP. 964 */ 965 if (apic->wakeup_secondary_cpu) 966 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); 967 else 968 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, 969 cpu0_nmi_registered); 970 971 if (!boot_error) { 972 /* 973 * Wait 10s total for first sign of life from AP 974 */ 975 boot_error = -1; 976 timeout = jiffies + 10*HZ; 977 while (time_before(jiffies, timeout)) { 978 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { 979 /* 980 * Tell AP to proceed with initialization 981 */ 982 cpumask_set_cpu(cpu, cpu_callout_mask); 983 boot_error = 0; 984 break; 985 } 986 schedule(); 987 } 988 } 989 990 if (!boot_error) { 991 /* 992 * Wait till AP completes initial initialization 993 */ 994 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { 995 /* 996 * Allow other tasks to run while we wait for the 997 * AP to come online. This also gives a chance 998 * for the MTRR work(triggered by the AP coming online) 999 * to be completed in the stop machine context. 1000 */ 1001 schedule(); 1002 } 1003 } 1004 1005 /* mark "stuck" area as not stuck */ 1006 *trampoline_status = 0; 1007 1008 if (x86_platform.legacy.warm_reset) { 1009 /* 1010 * Cleanup possible dangling ends... 1011 */ 1012 smpboot_restore_warm_reset_vector(); 1013 } 1014 1015 return boot_error; 1016 } 1017 1018 int native_cpu_up(unsigned int cpu, struct task_struct *tidle) 1019 { 1020 int apicid = apic->cpu_present_to_apicid(cpu); 1021 int cpu0_nmi_registered = 0; 1022 unsigned long flags; 1023 int err, ret = 0; 1024 1025 lockdep_assert_irqs_enabled(); 1026 1027 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 1028 1029 if (apicid == BAD_APICID || 1030 !physid_isset(apicid, phys_cpu_present_map) || 1031 !apic->apic_id_valid(apicid)) { 1032 pr_err("%s: bad cpu %d\n", __func__, cpu); 1033 return -EINVAL; 1034 } 1035 1036 /* 1037 * Already booted CPU? 1038 */ 1039 if (cpumask_test_cpu(cpu, cpu_callin_mask)) { 1040 pr_debug("do_boot_cpu %d Already started\n", cpu); 1041 return -ENOSYS; 1042 } 1043 1044 /* 1045 * Save current MTRR state in case it was changed since early boot 1046 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 1047 */ 1048 mtrr_save_state(); 1049 1050 /* x86 CPUs take themselves offline, so delayed offline is OK. */ 1051 err = cpu_check_up_prepare(cpu); 1052 if (err && err != -EBUSY) 1053 return err; 1054 1055 /* the FPU context is blank, nobody can own it */ 1056 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; 1057 1058 common_cpu_up(cpu, tidle); 1059 1060 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered); 1061 if (err) { 1062 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 1063 ret = -EIO; 1064 goto unreg_nmi; 1065 } 1066 1067 /* 1068 * Check TSC synchronization with the AP (keep irqs disabled 1069 * while doing so): 1070 */ 1071 local_irq_save(flags); 1072 check_tsc_sync_source(cpu); 1073 local_irq_restore(flags); 1074 1075 while (!cpu_online(cpu)) { 1076 cpu_relax(); 1077 touch_nmi_watchdog(); 1078 } 1079 1080 unreg_nmi: 1081 /* 1082 * Clean up the nmi handler. Do this after the callin and callout sync 1083 * to avoid impact of possible long unregister time. 1084 */ 1085 if (cpu0_nmi_registered) 1086 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); 1087 1088 return ret; 1089 } 1090 1091 /** 1092 * arch_disable_smp_support() - disables SMP support for x86 at runtime 1093 */ 1094 void arch_disable_smp_support(void) 1095 { 1096 disable_ioapic_support(); 1097 } 1098 1099 /* 1100 * Fall back to non SMP mode after errors. 1101 * 1102 * RED-PEN audit/test this more. I bet there is more state messed up here. 1103 */ 1104 static __init void disable_smp(void) 1105 { 1106 pr_info("SMP disabled\n"); 1107 1108 disable_ioapic_support(); 1109 1110 init_cpu_present(cpumask_of(0)); 1111 init_cpu_possible(cpumask_of(0)); 1112 1113 if (smp_found_config) 1114 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1115 else 1116 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1117 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1118 cpumask_set_cpu(0, topology_core_cpumask(0)); 1119 } 1120 1121 /* 1122 * Various sanity checks. 1123 */ 1124 static void __init smp_sanity_check(void) 1125 { 1126 preempt_disable(); 1127 1128 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) 1129 if (def_to_bigsmp && nr_cpu_ids > 8) { 1130 unsigned int cpu; 1131 unsigned nr; 1132 1133 pr_warn("More than 8 CPUs detected - skipping them\n" 1134 "Use CONFIG_X86_BIGSMP\n"); 1135 1136 nr = 0; 1137 for_each_present_cpu(cpu) { 1138 if (nr >= 8) 1139 set_cpu_present(cpu, false); 1140 nr++; 1141 } 1142 1143 nr = 0; 1144 for_each_possible_cpu(cpu) { 1145 if (nr >= 8) 1146 set_cpu_possible(cpu, false); 1147 nr++; 1148 } 1149 1150 nr_cpu_ids = 8; 1151 } 1152 #endif 1153 1154 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 1155 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", 1156 hard_smp_processor_id()); 1157 1158 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1159 } 1160 1161 /* 1162 * Should not be necessary because the MP table should list the boot 1163 * CPU too, but we do it for the sake of robustness anyway. 1164 */ 1165 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { 1166 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", 1167 boot_cpu_physical_apicid); 1168 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1169 } 1170 preempt_enable(); 1171 } 1172 1173 static void __init smp_cpu_index_default(void) 1174 { 1175 int i; 1176 struct cpuinfo_x86 *c; 1177 1178 for_each_possible_cpu(i) { 1179 c = &cpu_data(i); 1180 /* mark all to hotplug */ 1181 c->cpu_index = nr_cpu_ids; 1182 } 1183 } 1184 1185 static void __init smp_get_logical_apicid(void) 1186 { 1187 if (x2apic_mode) 1188 cpu0_logical_apicid = apic_read(APIC_LDR); 1189 else 1190 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 1191 } 1192 1193 /* 1194 * Prepare for SMP bootup. 1195 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter 1196 * for common interface support. 1197 */ 1198 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1199 { 1200 unsigned int i; 1201 1202 smp_cpu_index_default(); 1203 1204 /* 1205 * Setup boot CPU information 1206 */ 1207 smp_store_boot_cpu_info(); /* Final full version of the data */ 1208 cpumask_copy(cpu_callin_mask, cpumask_of(0)); 1209 mb(); 1210 1211 for_each_possible_cpu(i) { 1212 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1213 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1214 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1215 } 1216 1217 /* 1218 * Set 'default' x86 topology, this matches default_topology() in that 1219 * it has NUMA nodes as a topology level. See also 1220 * native_smp_cpus_done(). 1221 * 1222 * Must be done before set_cpus_sibling_map() is ran. 1223 */ 1224 set_sched_topology(x86_topology); 1225 1226 set_cpu_sibling_map(0); 1227 1228 smp_sanity_check(); 1229 1230 switch (apic_intr_mode) { 1231 case APIC_PIC: 1232 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1233 disable_smp(); 1234 return; 1235 case APIC_SYMMETRIC_IO_NO_ROUTING: 1236 disable_smp(); 1237 /* Setup local timer */ 1238 x86_init.timers.setup_percpu_clockev(); 1239 return; 1240 case APIC_VIRTUAL_WIRE: 1241 case APIC_SYMMETRIC_IO: 1242 break; 1243 } 1244 1245 /* Setup local timer */ 1246 x86_init.timers.setup_percpu_clockev(); 1247 1248 smp_get_logical_apicid(); 1249 1250 pr_info("CPU0: "); 1251 print_cpu_info(&cpu_data(0)); 1252 1253 native_pv_lock_init(); 1254 1255 uv_system_init(); 1256 1257 set_mtrr_aps_delayed_init(); 1258 1259 smp_quirk_init_udelay(); 1260 } 1261 1262 void arch_enable_nonboot_cpus_begin(void) 1263 { 1264 set_mtrr_aps_delayed_init(); 1265 } 1266 1267 void arch_enable_nonboot_cpus_end(void) 1268 { 1269 mtrr_aps_init(); 1270 } 1271 1272 /* 1273 * Early setup to make printk work. 1274 */ 1275 void __init native_smp_prepare_boot_cpu(void) 1276 { 1277 int me = smp_processor_id(); 1278 switch_to_new_gdt(me); 1279 /* already set me in cpu_online_mask in boot_cpu_init() */ 1280 cpumask_set_cpu(me, cpu_callout_mask); 1281 cpu_set_state_online(me); 1282 } 1283 1284 void __init native_smp_cpus_done(unsigned int max_cpus) 1285 { 1286 int ncpus; 1287 1288 pr_debug("Boot done\n"); 1289 /* 1290 * Today neither Intel nor AMD support heterogenous systems so 1291 * extrapolate the boot cpu's data to all packages. 1292 */ 1293 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads(); 1294 __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus); 1295 pr_info("Max logical packages: %u\n", __max_logical_packages); 1296 1297 if (x86_has_numa_in_package) 1298 set_sched_topology(x86_numa_in_package_topology); 1299 1300 nmi_selftest(); 1301 impress_friends(); 1302 mtrr_aps_init(); 1303 } 1304 1305 static int __initdata setup_possible_cpus = -1; 1306 static int __init _setup_possible_cpus(char *str) 1307 { 1308 get_option(&str, &setup_possible_cpus); 1309 return 0; 1310 } 1311 early_param("possible_cpus", _setup_possible_cpus); 1312 1313 1314 /* 1315 * cpu_possible_mask should be static, it cannot change as cpu's 1316 * are onlined, or offlined. The reason is per-cpu data-structures 1317 * are allocated by some modules at init time, and dont expect to 1318 * do this dynamically on cpu arrival/departure. 1319 * cpu_present_mask on the other hand can change dynamically. 1320 * In case when cpu_hotplug is not compiled, then we resort to current 1321 * behaviour, which is cpu_possible == cpu_present. 1322 * - Ashok Raj 1323 * 1324 * Three ways to find out the number of additional hotplug CPUs: 1325 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1326 * - The user can overwrite it with possible_cpus=NUM 1327 * - Otherwise don't reserve additional CPUs. 1328 * We do this because additional CPUs waste a lot of memory. 1329 * -AK 1330 */ 1331 __init void prefill_possible_map(void) 1332 { 1333 int i, possible; 1334 1335 /* No boot processor was found in mptable or ACPI MADT */ 1336 if (!num_processors) { 1337 if (boot_cpu_has(X86_FEATURE_APIC)) { 1338 int apicid = boot_cpu_physical_apicid; 1339 int cpu = hard_smp_processor_id(); 1340 1341 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu); 1342 1343 /* Make sure boot cpu is enumerated */ 1344 if (apic->cpu_present_to_apicid(0) == BAD_APICID && 1345 apic->apic_id_valid(apicid)) 1346 generic_processor_info(apicid, boot_cpu_apic_version); 1347 } 1348 1349 if (!num_processors) 1350 num_processors = 1; 1351 } 1352 1353 i = setup_max_cpus ?: 1; 1354 if (setup_possible_cpus == -1) { 1355 possible = num_processors; 1356 #ifdef CONFIG_HOTPLUG_CPU 1357 if (setup_max_cpus) 1358 possible += disabled_cpus; 1359 #else 1360 if (possible > i) 1361 possible = i; 1362 #endif 1363 } else 1364 possible = setup_possible_cpus; 1365 1366 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1367 1368 /* nr_cpu_ids could be reduced via nr_cpus= */ 1369 if (possible > nr_cpu_ids) { 1370 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n", 1371 possible, nr_cpu_ids); 1372 possible = nr_cpu_ids; 1373 } 1374 1375 #ifdef CONFIG_HOTPLUG_CPU 1376 if (!setup_max_cpus) 1377 #endif 1378 if (possible > i) { 1379 pr_warn("%d Processors exceeds max_cpus limit of %u\n", 1380 possible, setup_max_cpus); 1381 possible = i; 1382 } 1383 1384 nr_cpu_ids = possible; 1385 1386 pr_info("Allowing %d CPUs, %d hotplug CPUs\n", 1387 possible, max_t(int, possible - num_processors, 0)); 1388 1389 reset_cpu_possible_mask(); 1390 1391 for (i = 0; i < possible; i++) 1392 set_cpu_possible(i, true); 1393 } 1394 1395 #ifdef CONFIG_HOTPLUG_CPU 1396 1397 /* Recompute SMT state for all CPUs on offline */ 1398 static void recompute_smt_state(void) 1399 { 1400 int max_threads, cpu; 1401 1402 max_threads = 0; 1403 for_each_online_cpu (cpu) { 1404 int threads = cpumask_weight(topology_sibling_cpumask(cpu)); 1405 1406 if (threads > max_threads) 1407 max_threads = threads; 1408 } 1409 __max_smt_threads = max_threads; 1410 } 1411 1412 static void remove_siblinginfo(int cpu) 1413 { 1414 int sibling; 1415 struct cpuinfo_x86 *c = &cpu_data(cpu); 1416 1417 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1418 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1419 /*/ 1420 * last thread sibling in this cpu core going down 1421 */ 1422 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1423 cpu_data(sibling).booted_cores--; 1424 } 1425 1426 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 1427 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1428 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1429 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1430 cpumask_clear(cpu_llc_shared_mask(cpu)); 1431 cpumask_clear(topology_sibling_cpumask(cpu)); 1432 cpumask_clear(topology_core_cpumask(cpu)); 1433 c->phys_proc_id = 0; 1434 c->cpu_core_id = 0; 1435 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1436 recompute_smt_state(); 1437 } 1438 1439 static void remove_cpu_from_maps(int cpu) 1440 { 1441 set_cpu_online(cpu, false); 1442 cpumask_clear_cpu(cpu, cpu_callout_mask); 1443 cpumask_clear_cpu(cpu, cpu_callin_mask); 1444 /* was set by cpu_init() */ 1445 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1446 numa_remove_cpu(cpu); 1447 } 1448 1449 void cpu_disable_common(void) 1450 { 1451 int cpu = smp_processor_id(); 1452 1453 remove_siblinginfo(cpu); 1454 1455 /* It's now safe to remove this processor from the online map */ 1456 lock_vector_lock(); 1457 remove_cpu_from_maps(cpu); 1458 unlock_vector_lock(); 1459 fixup_irqs(); 1460 lapic_offline(); 1461 } 1462 1463 int native_cpu_disable(void) 1464 { 1465 int ret; 1466 1467 ret = lapic_can_unplug_cpu(); 1468 if (ret) 1469 return ret; 1470 1471 clear_local_APIC(); 1472 cpu_disable_common(); 1473 1474 return 0; 1475 } 1476 1477 int common_cpu_die(unsigned int cpu) 1478 { 1479 int ret = 0; 1480 1481 /* We don't do anything here: idle task is faking death itself. */ 1482 1483 /* They ack this in play_dead() by setting CPU_DEAD */ 1484 if (cpu_wait_death(cpu, 5)) { 1485 if (system_state == SYSTEM_RUNNING) 1486 pr_info("CPU %u is now offline\n", cpu); 1487 } else { 1488 pr_err("CPU %u didn't die...\n", cpu); 1489 ret = -1; 1490 } 1491 1492 return ret; 1493 } 1494 1495 void native_cpu_die(unsigned int cpu) 1496 { 1497 common_cpu_die(cpu); 1498 } 1499 1500 void play_dead_common(void) 1501 { 1502 idle_task_exit(); 1503 1504 /* Ack it */ 1505 (void)cpu_report_death(); 1506 1507 /* 1508 * With physical CPU hotplug, we should halt the cpu 1509 */ 1510 local_irq_disable(); 1511 } 1512 1513 static bool wakeup_cpu0(void) 1514 { 1515 if (smp_processor_id() == 0 && enable_start_cpu0) 1516 return true; 1517 1518 return false; 1519 } 1520 1521 /* 1522 * We need to flush the caches before going to sleep, lest we have 1523 * dirty data in our caches when we come back up. 1524 */ 1525 static inline void mwait_play_dead(void) 1526 { 1527 unsigned int eax, ebx, ecx, edx; 1528 unsigned int highest_cstate = 0; 1529 unsigned int highest_subcstate = 0; 1530 void *mwait_ptr; 1531 int i; 1532 1533 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1534 return; 1535 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1536 return; 1537 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1538 return; 1539 1540 eax = CPUID_MWAIT_LEAF; 1541 ecx = 0; 1542 native_cpuid(&eax, &ebx, &ecx, &edx); 1543 1544 /* 1545 * eax will be 0 if EDX enumeration is not valid. 1546 * Initialized below to cstate, sub_cstate value when EDX is valid. 1547 */ 1548 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1549 eax = 0; 1550 } else { 1551 edx >>= MWAIT_SUBSTATE_SIZE; 1552 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1553 if (edx & MWAIT_SUBSTATE_MASK) { 1554 highest_cstate = i; 1555 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1556 } 1557 } 1558 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1559 (highest_subcstate - 1); 1560 } 1561 1562 /* 1563 * This should be a memory location in a cache line which is 1564 * unlikely to be touched by other processors. The actual 1565 * content is immaterial as it is not actually modified in any way. 1566 */ 1567 mwait_ptr = ¤t_thread_info()->flags; 1568 1569 wbinvd(); 1570 1571 while (1) { 1572 /* 1573 * The CLFLUSH is a workaround for erratum AAI65 for 1574 * the Xeon 7400 series. It's not clear it is actually 1575 * needed, but it should be harmless in either case. 1576 * The WBINVD is insufficient due to the spurious-wakeup 1577 * case where we return around the loop. 1578 */ 1579 mb(); 1580 clflush(mwait_ptr); 1581 mb(); 1582 __monitor(mwait_ptr, 0, 0); 1583 mb(); 1584 __mwait(eax, 0); 1585 /* 1586 * If NMI wants to wake up CPU0, start CPU0. 1587 */ 1588 if (wakeup_cpu0()) 1589 start_cpu0(); 1590 } 1591 } 1592 1593 void hlt_play_dead(void) 1594 { 1595 if (__this_cpu_read(cpu_info.x86) >= 4) 1596 wbinvd(); 1597 1598 while (1) { 1599 native_halt(); 1600 /* 1601 * If NMI wants to wake up CPU0, start CPU0. 1602 */ 1603 if (wakeup_cpu0()) 1604 start_cpu0(); 1605 } 1606 } 1607 1608 void native_play_dead(void) 1609 { 1610 play_dead_common(); 1611 tboot_shutdown(TB_SHUTDOWN_WFS); 1612 1613 mwait_play_dead(); /* Only returns on failure */ 1614 if (cpuidle_play_dead()) 1615 hlt_play_dead(); 1616 } 1617 1618 #else /* ... !CONFIG_HOTPLUG_CPU */ 1619 int native_cpu_disable(void) 1620 { 1621 return -ENOSYS; 1622 } 1623 1624 void native_cpu_die(unsigned int cpu) 1625 { 1626 /* We said "no" in __cpu_disable */ 1627 BUG(); 1628 } 1629 1630 void native_play_dead(void) 1631 { 1632 BUG(); 1633 } 1634 1635 #endif 1636