xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 92a2c6b2)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/i387.h>
72 #include <asm/fpu-internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/realmode.h>
78 #include <asm/misc.h>
79 
80 /* State of each CPU */
81 DEFINE_PER_CPU(int, cpu_state) = { 0 };
82 
83 /* Number of siblings per CPU package */
84 int smp_num_siblings = 1;
85 EXPORT_SYMBOL(smp_num_siblings);
86 
87 /* Last level cache ID of each logical CPU */
88 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
89 
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
99 
100 /* Per CPU bogomips and other parameters */
101 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
102 EXPORT_PER_CPU_SYMBOL(cpu_info);
103 
104 atomic_t init_deasserted;
105 
106 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
107 {
108 	unsigned long flags;
109 
110 	spin_lock_irqsave(&rtc_lock, flags);
111 	CMOS_WRITE(0xa, 0xf);
112 	spin_unlock_irqrestore(&rtc_lock, flags);
113 	local_flush_tlb();
114 	pr_debug("1.\n");
115 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
116 							start_eip >> 4;
117 	pr_debug("2.\n");
118 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
119 							start_eip & 0xf;
120 	pr_debug("3.\n");
121 }
122 
123 static inline void smpboot_restore_warm_reset_vector(void)
124 {
125 	unsigned long flags;
126 
127 	/*
128 	 * Install writable page 0 entry to set BIOS data area.
129 	 */
130 	local_flush_tlb();
131 
132 	/*
133 	 * Paranoid:  Set warm reset code and vector here back
134 	 * to default values.
135 	 */
136 	spin_lock_irqsave(&rtc_lock, flags);
137 	CMOS_WRITE(0, 0xf);
138 	spin_unlock_irqrestore(&rtc_lock, flags);
139 
140 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
141 }
142 
143 /*
144  * Report back to the Boot Processor during boot time or to the caller processor
145  * during CPU online.
146  */
147 static void smp_callin(void)
148 {
149 	int cpuid, phys_id;
150 
151 	/*
152 	 * If waken up by an INIT in an 82489DX configuration
153 	 * we may get here before an INIT-deassert IPI reaches
154 	 * our local APIC.  We have to wait for the IPI or we'll
155 	 * lock up on an APIC access.
156 	 *
157 	 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
158 	 */
159 	cpuid = smp_processor_id();
160 	if (apic->wait_for_init_deassert && cpuid)
161 		while (!atomic_read(&init_deasserted))
162 			cpu_relax();
163 
164 	/*
165 	 * (This works even if the APIC is not enabled.)
166 	 */
167 	phys_id = read_apic_id();
168 
169 	/*
170 	 * the boot CPU has finished the init stage and is spinning
171 	 * on callin_map until we finish. We are free to set up this
172 	 * CPU, first the APIC. (this is probably redundant on most
173 	 * boards)
174 	 */
175 	apic_ap_setup();
176 
177 	/*
178 	 * Need to setup vector mappings before we enable interrupts.
179 	 */
180 	setup_vector_irq(smp_processor_id());
181 
182 	/*
183 	 * Save our processor parameters. Note: this information
184 	 * is needed for clock calibration.
185 	 */
186 	smp_store_cpu_info(cpuid);
187 
188 	/*
189 	 * Get our bogomips.
190 	 * Update loops_per_jiffy in cpu_data. Previous call to
191 	 * smp_store_cpu_info() stored a value that is close but not as
192 	 * accurate as the value just calculated.
193 	 */
194 	calibrate_delay();
195 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
196 	pr_debug("Stack at about %p\n", &cpuid);
197 
198 	/*
199 	 * This must be done before setting cpu_online_mask
200 	 * or calling notify_cpu_starting.
201 	 */
202 	set_cpu_sibling_map(raw_smp_processor_id());
203 	wmb();
204 
205 	notify_cpu_starting(cpuid);
206 
207 	/*
208 	 * Allow the master to continue.
209 	 */
210 	cpumask_set_cpu(cpuid, cpu_callin_mask);
211 }
212 
213 static int cpu0_logical_apicid;
214 static int enable_start_cpu0;
215 /*
216  * Activate a secondary processor.
217  */
218 static void notrace start_secondary(void *unused)
219 {
220 	/*
221 	 * Don't put *anything* before cpu_init(), SMP booting is too
222 	 * fragile that we want to limit the things done here to the
223 	 * most necessary things.
224 	 */
225 	cpu_init();
226 	x86_cpuinit.early_percpu_clock_init();
227 	preempt_disable();
228 	smp_callin();
229 
230 	enable_start_cpu0 = 0;
231 
232 #ifdef CONFIG_X86_32
233 	/* switch away from the initial page table */
234 	load_cr3(swapper_pg_dir);
235 	__flush_tlb_all();
236 #endif
237 
238 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
239 	barrier();
240 	/*
241 	 * Check TSC synchronization with the BP:
242 	 */
243 	check_tsc_sync_target();
244 
245 	/*
246 	 * Enable the espfix hack for this CPU
247 	 */
248 #ifdef CONFIG_X86_ESPFIX64
249 	init_espfix_ap();
250 #endif
251 
252 	/*
253 	 * We need to hold vector_lock so there the set of online cpus
254 	 * does not change while we are assigning vectors to cpus.  Holding
255 	 * this lock ensures we don't half assign or remove an irq from a cpu.
256 	 */
257 	lock_vector_lock();
258 	set_cpu_online(smp_processor_id(), true);
259 	unlock_vector_lock();
260 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
261 	x86_platform.nmi_init();
262 
263 	/* enable local interrupts */
264 	local_irq_enable();
265 
266 	/* to prevent fake stack check failure in clock setup */
267 	boot_init_stack_canary();
268 
269 	x86_cpuinit.setup_percpu_clockev();
270 
271 	wmb();
272 	cpu_startup_entry(CPUHP_ONLINE);
273 }
274 
275 void __init smp_store_boot_cpu_info(void)
276 {
277 	int id = 0; /* CPU 0 */
278 	struct cpuinfo_x86 *c = &cpu_data(id);
279 
280 	*c = boot_cpu_data;
281 	c->cpu_index = id;
282 }
283 
284 /*
285  * The bootstrap kernel entry code has set these up. Save them for
286  * a given CPU
287  */
288 void smp_store_cpu_info(int id)
289 {
290 	struct cpuinfo_x86 *c = &cpu_data(id);
291 
292 	*c = boot_cpu_data;
293 	c->cpu_index = id;
294 	/*
295 	 * During boot time, CPU0 has this setup already. Save the info when
296 	 * bringing up AP or offlined CPU0.
297 	 */
298 	identify_secondary_cpu(c);
299 }
300 
301 static bool
302 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
303 {
304 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
305 
306 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
307 }
308 
309 static bool
310 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
311 {
312 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
313 
314 	return !WARN_ONCE(!topology_same_node(c, o),
315 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
316 		"[node: %d != %d]. Ignoring dependency.\n",
317 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
318 }
319 
320 #define link_mask(_m, c1, c2)						\
321 do {									\
322 	cpumask_set_cpu((c1), cpu_##_m##_mask(c2));			\
323 	cpumask_set_cpu((c2), cpu_##_m##_mask(c1));			\
324 } while (0)
325 
326 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
327 {
328 	if (cpu_has_topoext) {
329 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
330 
331 		if (c->phys_proc_id == o->phys_proc_id &&
332 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
333 		    c->compute_unit_id == o->compute_unit_id)
334 			return topology_sane(c, o, "smt");
335 
336 	} else if (c->phys_proc_id == o->phys_proc_id &&
337 		   c->cpu_core_id == o->cpu_core_id) {
338 		return topology_sane(c, o, "smt");
339 	}
340 
341 	return false;
342 }
343 
344 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
345 {
346 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
347 
348 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
349 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
350 		return topology_sane(c, o, "llc");
351 
352 	return false;
353 }
354 
355 /*
356  * Unlike the other levels, we do not enforce keeping a
357  * multicore group inside a NUMA node.  If this happens, we will
358  * discard the MC level of the topology later.
359  */
360 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
361 {
362 	if (c->phys_proc_id == o->phys_proc_id)
363 		return true;
364 	return false;
365 }
366 
367 static struct sched_domain_topology_level numa_inside_package_topology[] = {
368 #ifdef CONFIG_SCHED_SMT
369 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
370 #endif
371 #ifdef CONFIG_SCHED_MC
372 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
373 #endif
374 	{ NULL, },
375 };
376 /*
377  * set_sched_topology() sets the topology internal to a CPU.  The
378  * NUMA topologies are layered on top of it to build the full
379  * system topology.
380  *
381  * If NUMA nodes are observed to occur within a CPU package, this
382  * function should be called.  It forces the sched domain code to
383  * only use the SMT level for the CPU portion of the topology.
384  * This essentially falls back to relying on NUMA information
385  * from the SRAT table to describe the entire system topology
386  * (except for hyperthreads).
387  */
388 static void primarily_use_numa_for_topology(void)
389 {
390 	set_sched_topology(numa_inside_package_topology);
391 }
392 
393 void set_cpu_sibling_map(int cpu)
394 {
395 	bool has_smt = smp_num_siblings > 1;
396 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
397 	struct cpuinfo_x86 *c = &cpu_data(cpu);
398 	struct cpuinfo_x86 *o;
399 	int i;
400 
401 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
402 
403 	if (!has_mp) {
404 		cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
405 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
406 		cpumask_set_cpu(cpu, cpu_core_mask(cpu));
407 		c->booted_cores = 1;
408 		return;
409 	}
410 
411 	for_each_cpu(i, cpu_sibling_setup_mask) {
412 		o = &cpu_data(i);
413 
414 		if ((i == cpu) || (has_smt && match_smt(c, o)))
415 			link_mask(sibling, cpu, i);
416 
417 		if ((i == cpu) || (has_mp && match_llc(c, o)))
418 			link_mask(llc_shared, cpu, i);
419 
420 	}
421 
422 	/*
423 	 * This needs a separate iteration over the cpus because we rely on all
424 	 * cpu_sibling_mask links to be set-up.
425 	 */
426 	for_each_cpu(i, cpu_sibling_setup_mask) {
427 		o = &cpu_data(i);
428 
429 		if ((i == cpu) || (has_mp && match_die(c, o))) {
430 			link_mask(core, cpu, i);
431 
432 			/*
433 			 *  Does this new cpu bringup a new core?
434 			 */
435 			if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
436 				/*
437 				 * for each core in package, increment
438 				 * the booted_cores for this new cpu
439 				 */
440 				if (cpumask_first(cpu_sibling_mask(i)) == i)
441 					c->booted_cores++;
442 				/*
443 				 * increment the core count for all
444 				 * the other cpus in this package
445 				 */
446 				if (i != cpu)
447 					cpu_data(i).booted_cores++;
448 			} else if (i != cpu && !c->booted_cores)
449 				c->booted_cores = cpu_data(i).booted_cores;
450 		}
451 		if (match_die(c, o) && !topology_same_node(c, o))
452 			primarily_use_numa_for_topology();
453 	}
454 }
455 
456 /* maps the cpu to the sched domain representing multi-core */
457 const struct cpumask *cpu_coregroup_mask(int cpu)
458 {
459 	return cpu_llc_shared_mask(cpu);
460 }
461 
462 static void impress_friends(void)
463 {
464 	int cpu;
465 	unsigned long bogosum = 0;
466 	/*
467 	 * Allow the user to impress friends.
468 	 */
469 	pr_debug("Before bogomips\n");
470 	for_each_possible_cpu(cpu)
471 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
472 			bogosum += cpu_data(cpu).loops_per_jiffy;
473 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
474 		num_online_cpus(),
475 		bogosum/(500000/HZ),
476 		(bogosum/(5000/HZ))%100);
477 
478 	pr_debug("Before bogocount - setting activated=1\n");
479 }
480 
481 void __inquire_remote_apic(int apicid)
482 {
483 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
484 	const char * const names[] = { "ID", "VERSION", "SPIV" };
485 	int timeout;
486 	u32 status;
487 
488 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
489 
490 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
491 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
492 
493 		/*
494 		 * Wait for idle.
495 		 */
496 		status = safe_apic_wait_icr_idle();
497 		if (status)
498 			pr_cont("a previous APIC delivery may have failed\n");
499 
500 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
501 
502 		timeout = 0;
503 		do {
504 			udelay(100);
505 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
506 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
507 
508 		switch (status) {
509 		case APIC_ICR_RR_VALID:
510 			status = apic_read(APIC_RRR);
511 			pr_cont("%08x\n", status);
512 			break;
513 		default:
514 			pr_cont("failed\n");
515 		}
516 	}
517 }
518 
519 /*
520  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
521  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
522  * won't ... remember to clear down the APIC, etc later.
523  */
524 int
525 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
526 {
527 	unsigned long send_status, accept_status = 0;
528 	int maxlvt;
529 
530 	/* Target chip */
531 	/* Boot on the stack */
532 	/* Kick the second */
533 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
534 
535 	pr_debug("Waiting for send to finish...\n");
536 	send_status = safe_apic_wait_icr_idle();
537 
538 	/*
539 	 * Give the other CPU some time to accept the IPI.
540 	 */
541 	udelay(200);
542 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
543 		maxlvt = lapic_get_maxlvt();
544 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
545 			apic_write(APIC_ESR, 0);
546 		accept_status = (apic_read(APIC_ESR) & 0xEF);
547 	}
548 	pr_debug("NMI sent\n");
549 
550 	if (send_status)
551 		pr_err("APIC never delivered???\n");
552 	if (accept_status)
553 		pr_err("APIC delivery error (%lx)\n", accept_status);
554 
555 	return (send_status | accept_status);
556 }
557 
558 static int
559 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
560 {
561 	unsigned long send_status, accept_status = 0;
562 	int maxlvt, num_starts, j;
563 
564 	maxlvt = lapic_get_maxlvt();
565 
566 	/*
567 	 * Be paranoid about clearing APIC errors.
568 	 */
569 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
570 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
571 			apic_write(APIC_ESR, 0);
572 		apic_read(APIC_ESR);
573 	}
574 
575 	pr_debug("Asserting INIT\n");
576 
577 	/*
578 	 * Turn INIT on target chip
579 	 */
580 	/*
581 	 * Send IPI
582 	 */
583 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
584 		       phys_apicid);
585 
586 	pr_debug("Waiting for send to finish...\n");
587 	send_status = safe_apic_wait_icr_idle();
588 
589 	mdelay(10);
590 
591 	pr_debug("Deasserting INIT\n");
592 
593 	/* Target chip */
594 	/* Send IPI */
595 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
596 
597 	pr_debug("Waiting for send to finish...\n");
598 	send_status = safe_apic_wait_icr_idle();
599 
600 	mb();
601 	atomic_set(&init_deasserted, 1);
602 
603 	/*
604 	 * Should we send STARTUP IPIs ?
605 	 *
606 	 * Determine this based on the APIC version.
607 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
608 	 */
609 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
610 		num_starts = 2;
611 	else
612 		num_starts = 0;
613 
614 	/*
615 	 * Paravirt / VMI wants a startup IPI hook here to set up the
616 	 * target processor state.
617 	 */
618 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
619 			 stack_start);
620 
621 	/*
622 	 * Run STARTUP IPI loop.
623 	 */
624 	pr_debug("#startup loops: %d\n", num_starts);
625 
626 	for (j = 1; j <= num_starts; j++) {
627 		pr_debug("Sending STARTUP #%d\n", j);
628 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
629 			apic_write(APIC_ESR, 0);
630 		apic_read(APIC_ESR);
631 		pr_debug("After apic_write\n");
632 
633 		/*
634 		 * STARTUP IPI
635 		 */
636 
637 		/* Target chip */
638 		/* Boot on the stack */
639 		/* Kick the second */
640 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
641 			       phys_apicid);
642 
643 		/*
644 		 * Give the other CPU some time to accept the IPI.
645 		 */
646 		udelay(300);
647 
648 		pr_debug("Startup point 1\n");
649 
650 		pr_debug("Waiting for send to finish...\n");
651 		send_status = safe_apic_wait_icr_idle();
652 
653 		/*
654 		 * Give the other CPU some time to accept the IPI.
655 		 */
656 		udelay(200);
657 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
658 			apic_write(APIC_ESR, 0);
659 		accept_status = (apic_read(APIC_ESR) & 0xEF);
660 		if (send_status || accept_status)
661 			break;
662 	}
663 	pr_debug("After Startup\n");
664 
665 	if (send_status)
666 		pr_err("APIC never delivered???\n");
667 	if (accept_status)
668 		pr_err("APIC delivery error (%lx)\n", accept_status);
669 
670 	return (send_status | accept_status);
671 }
672 
673 void smp_announce(void)
674 {
675 	int num_nodes = num_online_nodes();
676 
677 	printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
678 	       num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
679 }
680 
681 /* reduce the number of lines printed when booting a large cpu count system */
682 static void announce_cpu(int cpu, int apicid)
683 {
684 	static int current_node = -1;
685 	int node = early_cpu_to_node(cpu);
686 	static int width, node_width;
687 
688 	if (!width)
689 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
690 
691 	if (!node_width)
692 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
693 
694 	if (cpu == 1)
695 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
696 
697 	if (system_state == SYSTEM_BOOTING) {
698 		if (node != current_node) {
699 			if (current_node > (-1))
700 				pr_cont("\n");
701 			current_node = node;
702 
703 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
704 			       node_width - num_digits(node), " ", node);
705 		}
706 
707 		/* Add padding for the BSP */
708 		if (cpu == 1)
709 			pr_cont("%*s", width + 1, " ");
710 
711 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
712 
713 	} else
714 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
715 			node, cpu, apicid);
716 }
717 
718 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
719 {
720 	int cpu;
721 
722 	cpu = smp_processor_id();
723 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
724 		return NMI_HANDLED;
725 
726 	return NMI_DONE;
727 }
728 
729 /*
730  * Wake up AP by INIT, INIT, STARTUP sequence.
731  *
732  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
733  * boot-strap code which is not a desired behavior for waking up BSP. To
734  * void the boot-strap code, wake up CPU0 by NMI instead.
735  *
736  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
737  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
738  * We'll change this code in the future to wake up hard offlined CPU0 if
739  * real platform and request are available.
740  */
741 static int
742 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
743 	       int *cpu0_nmi_registered)
744 {
745 	int id;
746 	int boot_error;
747 
748 	preempt_disable();
749 
750 	/*
751 	 * Wake up AP by INIT, INIT, STARTUP sequence.
752 	 */
753 	if (cpu) {
754 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
755 		goto out;
756 	}
757 
758 	/*
759 	 * Wake up BSP by nmi.
760 	 *
761 	 * Register a NMI handler to help wake up CPU0.
762 	 */
763 	boot_error = register_nmi_handler(NMI_LOCAL,
764 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
765 
766 	if (!boot_error) {
767 		enable_start_cpu0 = 1;
768 		*cpu0_nmi_registered = 1;
769 		if (apic->dest_logical == APIC_DEST_LOGICAL)
770 			id = cpu0_logical_apicid;
771 		else
772 			id = apicid;
773 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
774 	}
775 
776 out:
777 	preempt_enable();
778 
779 	return boot_error;
780 }
781 
782 /*
783  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
784  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
785  * Returns zero if CPU booted OK, else error code from
786  * ->wakeup_secondary_cpu.
787  */
788 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
789 {
790 	volatile u32 *trampoline_status =
791 		(volatile u32 *) __va(real_mode_header->trampoline_status);
792 	/* start_ip had better be page-aligned! */
793 	unsigned long start_ip = real_mode_header->trampoline_start;
794 
795 	unsigned long boot_error = 0;
796 	int cpu0_nmi_registered = 0;
797 	unsigned long timeout;
798 
799 	/* Just in case we booted with a single CPU. */
800 	alternatives_enable_smp();
801 
802 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
803 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
804 	per_cpu(current_task, cpu) = idle;
805 
806 #ifdef CONFIG_X86_32
807 	/* Stack for startup_32 can be just as for start_secondary onwards */
808 	irq_ctx_init(cpu);
809 #else
810 	clear_tsk_thread_flag(idle, TIF_FORK);
811 	initial_gs = per_cpu_offset(cpu);
812 #endif
813 	per_cpu(kernel_stack, cpu) =
814 		(unsigned long)task_stack_page(idle) -
815 		KERNEL_STACK_OFFSET + THREAD_SIZE;
816 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
817 	initial_code = (unsigned long)start_secondary;
818 	stack_start  = idle->thread.sp;
819 
820 	/* So we see what's up */
821 	announce_cpu(cpu, apicid);
822 
823 	/*
824 	 * This grunge runs the startup process for
825 	 * the targeted processor.
826 	 */
827 
828 	atomic_set(&init_deasserted, 0);
829 
830 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
831 
832 		pr_debug("Setting warm reset code and vector.\n");
833 
834 		smpboot_setup_warm_reset_vector(start_ip);
835 		/*
836 		 * Be paranoid about clearing APIC errors.
837 		*/
838 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
839 			apic_write(APIC_ESR, 0);
840 			apic_read(APIC_ESR);
841 		}
842 	}
843 
844 	/*
845 	 * AP might wait on cpu_callout_mask in cpu_init() with
846 	 * cpu_initialized_mask set if previous attempt to online
847 	 * it timed-out. Clear cpu_initialized_mask so that after
848 	 * INIT/SIPI it could start with a clean state.
849 	 */
850 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
851 	smp_mb();
852 
853 	/*
854 	 * Wake up a CPU in difference cases:
855 	 * - Use the method in the APIC driver if it's defined
856 	 * Otherwise,
857 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
858 	 */
859 	if (apic->wakeup_secondary_cpu)
860 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
861 	else
862 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
863 						     &cpu0_nmi_registered);
864 
865 	if (!boot_error) {
866 		/*
867 		 * Wait 10s total for a response from AP
868 		 */
869 		boot_error = -1;
870 		timeout = jiffies + 10*HZ;
871 		while (time_before(jiffies, timeout)) {
872 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
873 				/*
874 				 * Tell AP to proceed with initialization
875 				 */
876 				cpumask_set_cpu(cpu, cpu_callout_mask);
877 				boot_error = 0;
878 				break;
879 			}
880 			udelay(100);
881 			schedule();
882 		}
883 	}
884 
885 	if (!boot_error) {
886 		/*
887 		 * Wait till AP completes initial initialization
888 		 */
889 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
890 			/*
891 			 * Allow other tasks to run while we wait for the
892 			 * AP to come online. This also gives a chance
893 			 * for the MTRR work(triggered by the AP coming online)
894 			 * to be completed in the stop machine context.
895 			 */
896 			udelay(100);
897 			schedule();
898 		}
899 	}
900 
901 	/* mark "stuck" area as not stuck */
902 	*trampoline_status = 0;
903 
904 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
905 		/*
906 		 * Cleanup possible dangling ends...
907 		 */
908 		smpboot_restore_warm_reset_vector();
909 	}
910 	/*
911 	 * Clean up the nmi handler. Do this after the callin and callout sync
912 	 * to avoid impact of possible long unregister time.
913 	 */
914 	if (cpu0_nmi_registered)
915 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
916 
917 	return boot_error;
918 }
919 
920 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
921 {
922 	int apicid = apic->cpu_present_to_apicid(cpu);
923 	unsigned long flags;
924 	int err;
925 
926 	WARN_ON(irqs_disabled());
927 
928 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
929 
930 	if (apicid == BAD_APICID ||
931 	    !physid_isset(apicid, phys_cpu_present_map) ||
932 	    !apic->apic_id_valid(apicid)) {
933 		pr_err("%s: bad cpu %d\n", __func__, cpu);
934 		return -EINVAL;
935 	}
936 
937 	/*
938 	 * Already booted CPU?
939 	 */
940 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
941 		pr_debug("do_boot_cpu %d Already started\n", cpu);
942 		return -ENOSYS;
943 	}
944 
945 	/*
946 	 * Save current MTRR state in case it was changed since early boot
947 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
948 	 */
949 	mtrr_save_state();
950 
951 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
952 
953 	/* the FPU context is blank, nobody can own it */
954 	__cpu_disable_lazy_restore(cpu);
955 
956 	err = do_boot_cpu(apicid, cpu, tidle);
957 	if (err) {
958 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
959 		return -EIO;
960 	}
961 
962 	/*
963 	 * Check TSC synchronization with the AP (keep irqs disabled
964 	 * while doing so):
965 	 */
966 	local_irq_save(flags);
967 	check_tsc_sync_source(cpu);
968 	local_irq_restore(flags);
969 
970 	while (!cpu_online(cpu)) {
971 		cpu_relax();
972 		touch_nmi_watchdog();
973 	}
974 
975 	return 0;
976 }
977 
978 /**
979  * arch_disable_smp_support() - disables SMP support for x86 at runtime
980  */
981 void arch_disable_smp_support(void)
982 {
983 	disable_ioapic_support();
984 }
985 
986 /*
987  * Fall back to non SMP mode after errors.
988  *
989  * RED-PEN audit/test this more. I bet there is more state messed up here.
990  */
991 static __init void disable_smp(void)
992 {
993 	pr_info("SMP disabled\n");
994 
995 	disable_ioapic_support();
996 
997 	init_cpu_present(cpumask_of(0));
998 	init_cpu_possible(cpumask_of(0));
999 
1000 	if (smp_found_config)
1001 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1002 	else
1003 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1004 	cpumask_set_cpu(0, cpu_sibling_mask(0));
1005 	cpumask_set_cpu(0, cpu_core_mask(0));
1006 }
1007 
1008 enum {
1009 	SMP_OK,
1010 	SMP_NO_CONFIG,
1011 	SMP_NO_APIC,
1012 	SMP_FORCE_UP,
1013 };
1014 
1015 /*
1016  * Various sanity checks.
1017  */
1018 static int __init smp_sanity_check(unsigned max_cpus)
1019 {
1020 	preempt_disable();
1021 
1022 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1023 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1024 		unsigned int cpu;
1025 		unsigned nr;
1026 
1027 		pr_warn("More than 8 CPUs detected - skipping them\n"
1028 			"Use CONFIG_X86_BIGSMP\n");
1029 
1030 		nr = 0;
1031 		for_each_present_cpu(cpu) {
1032 			if (nr >= 8)
1033 				set_cpu_present(cpu, false);
1034 			nr++;
1035 		}
1036 
1037 		nr = 0;
1038 		for_each_possible_cpu(cpu) {
1039 			if (nr >= 8)
1040 				set_cpu_possible(cpu, false);
1041 			nr++;
1042 		}
1043 
1044 		nr_cpu_ids = 8;
1045 	}
1046 #endif
1047 
1048 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1049 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1050 			hard_smp_processor_id());
1051 
1052 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1053 	}
1054 
1055 	/*
1056 	 * If we couldn't find an SMP configuration at boot time,
1057 	 * get out of here now!
1058 	 */
1059 	if (!smp_found_config && !acpi_lapic) {
1060 		preempt_enable();
1061 		pr_notice("SMP motherboard not detected\n");
1062 		return SMP_NO_CONFIG;
1063 	}
1064 
1065 	/*
1066 	 * Should not be necessary because the MP table should list the boot
1067 	 * CPU too, but we do it for the sake of robustness anyway.
1068 	 */
1069 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1070 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1071 			  boot_cpu_physical_apicid);
1072 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1073 	}
1074 	preempt_enable();
1075 
1076 	/*
1077 	 * If we couldn't find a local APIC, then get out of here now!
1078 	 */
1079 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1080 	    !cpu_has_apic) {
1081 		if (!disable_apic) {
1082 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1083 				boot_cpu_physical_apicid);
1084 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1085 		}
1086 		return SMP_NO_APIC;
1087 	}
1088 
1089 	verify_local_APIC();
1090 
1091 	/*
1092 	 * If SMP should be disabled, then really disable it!
1093 	 */
1094 	if (!max_cpus) {
1095 		pr_info("SMP mode deactivated\n");
1096 		return SMP_FORCE_UP;
1097 	}
1098 
1099 	return SMP_OK;
1100 }
1101 
1102 static void __init smp_cpu_index_default(void)
1103 {
1104 	int i;
1105 	struct cpuinfo_x86 *c;
1106 
1107 	for_each_possible_cpu(i) {
1108 		c = &cpu_data(i);
1109 		/* mark all to hotplug */
1110 		c->cpu_index = nr_cpu_ids;
1111 	}
1112 }
1113 
1114 /*
1115  * Prepare for SMP bootup.  The MP table or ACPI has been read
1116  * earlier.  Just do some sanity checking here and enable APIC mode.
1117  */
1118 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1119 {
1120 	unsigned int i;
1121 
1122 	smp_cpu_index_default();
1123 
1124 	/*
1125 	 * Setup boot CPU information
1126 	 */
1127 	smp_store_boot_cpu_info(); /* Final full version of the data */
1128 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1129 	mb();
1130 
1131 	current_thread_info()->cpu = 0;  /* needed? */
1132 	for_each_possible_cpu(i) {
1133 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1134 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1135 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1136 	}
1137 	set_cpu_sibling_map(0);
1138 
1139 	switch (smp_sanity_check(max_cpus)) {
1140 	case SMP_NO_CONFIG:
1141 		disable_smp();
1142 		if (APIC_init_uniprocessor())
1143 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1144 		return;
1145 	case SMP_NO_APIC:
1146 		disable_smp();
1147 		return;
1148 	case SMP_FORCE_UP:
1149 		disable_smp();
1150 		apic_bsp_setup(false);
1151 		return;
1152 	case SMP_OK:
1153 		break;
1154 	}
1155 
1156 	default_setup_apic_routing();
1157 
1158 	if (read_apic_id() != boot_cpu_physical_apicid) {
1159 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1160 		     read_apic_id(), boot_cpu_physical_apicid);
1161 		/* Or can we switch back to PIC here? */
1162 	}
1163 
1164 	cpu0_logical_apicid = apic_bsp_setup(false);
1165 
1166 	pr_info("CPU%d: ", 0);
1167 	print_cpu_info(&cpu_data(0));
1168 
1169 	if (is_uv_system())
1170 		uv_system_init();
1171 
1172 	set_mtrr_aps_delayed_init();
1173 }
1174 
1175 void arch_enable_nonboot_cpus_begin(void)
1176 {
1177 	set_mtrr_aps_delayed_init();
1178 }
1179 
1180 void arch_enable_nonboot_cpus_end(void)
1181 {
1182 	mtrr_aps_init();
1183 }
1184 
1185 /*
1186  * Early setup to make printk work.
1187  */
1188 void __init native_smp_prepare_boot_cpu(void)
1189 {
1190 	int me = smp_processor_id();
1191 	switch_to_new_gdt(me);
1192 	/* already set me in cpu_online_mask in boot_cpu_init() */
1193 	cpumask_set_cpu(me, cpu_callout_mask);
1194 	per_cpu(cpu_state, me) = CPU_ONLINE;
1195 }
1196 
1197 void __init native_smp_cpus_done(unsigned int max_cpus)
1198 {
1199 	pr_debug("Boot done\n");
1200 
1201 	nmi_selftest();
1202 	impress_friends();
1203 	setup_ioapic_dest();
1204 	mtrr_aps_init();
1205 }
1206 
1207 static int __initdata setup_possible_cpus = -1;
1208 static int __init _setup_possible_cpus(char *str)
1209 {
1210 	get_option(&str, &setup_possible_cpus);
1211 	return 0;
1212 }
1213 early_param("possible_cpus", _setup_possible_cpus);
1214 
1215 
1216 /*
1217  * cpu_possible_mask should be static, it cannot change as cpu's
1218  * are onlined, or offlined. The reason is per-cpu data-structures
1219  * are allocated by some modules at init time, and dont expect to
1220  * do this dynamically on cpu arrival/departure.
1221  * cpu_present_mask on the other hand can change dynamically.
1222  * In case when cpu_hotplug is not compiled, then we resort to current
1223  * behaviour, which is cpu_possible == cpu_present.
1224  * - Ashok Raj
1225  *
1226  * Three ways to find out the number of additional hotplug CPUs:
1227  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1228  * - The user can overwrite it with possible_cpus=NUM
1229  * - Otherwise don't reserve additional CPUs.
1230  * We do this because additional CPUs waste a lot of memory.
1231  * -AK
1232  */
1233 __init void prefill_possible_map(void)
1234 {
1235 	int i, possible;
1236 
1237 	/* no processor from mptable or madt */
1238 	if (!num_processors)
1239 		num_processors = 1;
1240 
1241 	i = setup_max_cpus ?: 1;
1242 	if (setup_possible_cpus == -1) {
1243 		possible = num_processors;
1244 #ifdef CONFIG_HOTPLUG_CPU
1245 		if (setup_max_cpus)
1246 			possible += disabled_cpus;
1247 #else
1248 		if (possible > i)
1249 			possible = i;
1250 #endif
1251 	} else
1252 		possible = setup_possible_cpus;
1253 
1254 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1255 
1256 	/* nr_cpu_ids could be reduced via nr_cpus= */
1257 	if (possible > nr_cpu_ids) {
1258 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1259 			possible, nr_cpu_ids);
1260 		possible = nr_cpu_ids;
1261 	}
1262 
1263 #ifdef CONFIG_HOTPLUG_CPU
1264 	if (!setup_max_cpus)
1265 #endif
1266 	if (possible > i) {
1267 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1268 			possible, setup_max_cpus);
1269 		possible = i;
1270 	}
1271 
1272 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1273 		possible, max_t(int, possible - num_processors, 0));
1274 
1275 	for (i = 0; i < possible; i++)
1276 		set_cpu_possible(i, true);
1277 	for (; i < NR_CPUS; i++)
1278 		set_cpu_possible(i, false);
1279 
1280 	nr_cpu_ids = possible;
1281 }
1282 
1283 #ifdef CONFIG_HOTPLUG_CPU
1284 
1285 static void remove_siblinginfo(int cpu)
1286 {
1287 	int sibling;
1288 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1289 
1290 	for_each_cpu(sibling, cpu_core_mask(cpu)) {
1291 		cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1292 		/*/
1293 		 * last thread sibling in this cpu core going down
1294 		 */
1295 		if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1296 			cpu_data(sibling).booted_cores--;
1297 	}
1298 
1299 	for_each_cpu(sibling, cpu_sibling_mask(cpu))
1300 		cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1301 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1302 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1303 	cpumask_clear(cpu_llc_shared_mask(cpu));
1304 	cpumask_clear(cpu_sibling_mask(cpu));
1305 	cpumask_clear(cpu_core_mask(cpu));
1306 	c->phys_proc_id = 0;
1307 	c->cpu_core_id = 0;
1308 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1309 }
1310 
1311 static void __ref remove_cpu_from_maps(int cpu)
1312 {
1313 	set_cpu_online(cpu, false);
1314 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1315 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1316 	/* was set by cpu_init() */
1317 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1318 	numa_remove_cpu(cpu);
1319 }
1320 
1321 static DEFINE_PER_CPU(struct completion, die_complete);
1322 
1323 void cpu_disable_common(void)
1324 {
1325 	int cpu = smp_processor_id();
1326 
1327 	init_completion(&per_cpu(die_complete, smp_processor_id()));
1328 
1329 	remove_siblinginfo(cpu);
1330 
1331 	/* It's now safe to remove this processor from the online map */
1332 	lock_vector_lock();
1333 	remove_cpu_from_maps(cpu);
1334 	unlock_vector_lock();
1335 	fixup_irqs();
1336 }
1337 
1338 int native_cpu_disable(void)
1339 {
1340 	int ret;
1341 
1342 	ret = check_irq_vectors_for_cpu_disable();
1343 	if (ret)
1344 		return ret;
1345 
1346 	clear_local_APIC();
1347 	cpu_disable_common();
1348 
1349 	return 0;
1350 }
1351 
1352 void cpu_die_common(unsigned int cpu)
1353 {
1354 	wait_for_completion_timeout(&per_cpu(die_complete, cpu), HZ);
1355 }
1356 
1357 void native_cpu_die(unsigned int cpu)
1358 {
1359 	/* We don't do anything here: idle task is faking death itself. */
1360 
1361 	cpu_die_common(cpu);
1362 
1363 	/* They ack this in play_dead() by setting CPU_DEAD */
1364 	if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1365 		if (system_state == SYSTEM_RUNNING)
1366 			pr_info("CPU %u is now offline\n", cpu);
1367 	} else {
1368 		pr_err("CPU %u didn't die...\n", cpu);
1369 	}
1370 }
1371 
1372 void play_dead_common(void)
1373 {
1374 	idle_task_exit();
1375 	reset_lazy_tlbstate();
1376 	amd_e400_remove_cpu(raw_smp_processor_id());
1377 
1378 	mb();
1379 	/* Ack it */
1380 	__this_cpu_write(cpu_state, CPU_DEAD);
1381 	complete(&per_cpu(die_complete, smp_processor_id()));
1382 
1383 	/*
1384 	 * With physical CPU hotplug, we should halt the cpu
1385 	 */
1386 	local_irq_disable();
1387 }
1388 
1389 static bool wakeup_cpu0(void)
1390 {
1391 	if (smp_processor_id() == 0 && enable_start_cpu0)
1392 		return true;
1393 
1394 	return false;
1395 }
1396 
1397 /*
1398  * We need to flush the caches before going to sleep, lest we have
1399  * dirty data in our caches when we come back up.
1400  */
1401 static inline void mwait_play_dead(void)
1402 {
1403 	unsigned int eax, ebx, ecx, edx;
1404 	unsigned int highest_cstate = 0;
1405 	unsigned int highest_subcstate = 0;
1406 	void *mwait_ptr;
1407 	int i;
1408 
1409 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1410 		return;
1411 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1412 		return;
1413 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1414 		return;
1415 
1416 	eax = CPUID_MWAIT_LEAF;
1417 	ecx = 0;
1418 	native_cpuid(&eax, &ebx, &ecx, &edx);
1419 
1420 	/*
1421 	 * eax will be 0 if EDX enumeration is not valid.
1422 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1423 	 */
1424 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1425 		eax = 0;
1426 	} else {
1427 		edx >>= MWAIT_SUBSTATE_SIZE;
1428 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1429 			if (edx & MWAIT_SUBSTATE_MASK) {
1430 				highest_cstate = i;
1431 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1432 			}
1433 		}
1434 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1435 			(highest_subcstate - 1);
1436 	}
1437 
1438 	/*
1439 	 * This should be a memory location in a cache line which is
1440 	 * unlikely to be touched by other processors.  The actual
1441 	 * content is immaterial as it is not actually modified in any way.
1442 	 */
1443 	mwait_ptr = &current_thread_info()->flags;
1444 
1445 	wbinvd();
1446 
1447 	while (1) {
1448 		/*
1449 		 * The CLFLUSH is a workaround for erratum AAI65 for
1450 		 * the Xeon 7400 series.  It's not clear it is actually
1451 		 * needed, but it should be harmless in either case.
1452 		 * The WBINVD is insufficient due to the spurious-wakeup
1453 		 * case where we return around the loop.
1454 		 */
1455 		mb();
1456 		clflush(mwait_ptr);
1457 		mb();
1458 		__monitor(mwait_ptr, 0, 0);
1459 		mb();
1460 		__mwait(eax, 0);
1461 		/*
1462 		 * If NMI wants to wake up CPU0, start CPU0.
1463 		 */
1464 		if (wakeup_cpu0())
1465 			start_cpu0();
1466 	}
1467 }
1468 
1469 static inline void hlt_play_dead(void)
1470 {
1471 	if (__this_cpu_read(cpu_info.x86) >= 4)
1472 		wbinvd();
1473 
1474 	while (1) {
1475 		native_halt();
1476 		/*
1477 		 * If NMI wants to wake up CPU0, start CPU0.
1478 		 */
1479 		if (wakeup_cpu0())
1480 			start_cpu0();
1481 	}
1482 }
1483 
1484 void native_play_dead(void)
1485 {
1486 	play_dead_common();
1487 	tboot_shutdown(TB_SHUTDOWN_WFS);
1488 
1489 	mwait_play_dead();	/* Only returns on failure */
1490 	if (cpuidle_play_dead())
1491 		hlt_play_dead();
1492 }
1493 
1494 #else /* ... !CONFIG_HOTPLUG_CPU */
1495 int native_cpu_disable(void)
1496 {
1497 	return -ENOSYS;
1498 }
1499 
1500 void native_cpu_die(unsigned int cpu)
1501 {
1502 	/* We said "no" in __cpu_disable */
1503 	BUG();
1504 }
1505 
1506 void native_play_dead(void)
1507 {
1508 	BUG();
1509 }
1510 
1511 #endif
1512