1 /* 2 * x86 SMP booting functions 3 * 4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * Copyright 2001 Andi Kleen, SuSE Labs. 7 * 8 * Much of the core SMP work is based on previous work by Thomas Radke, to 9 * whom a great many thanks are extended. 10 * 11 * Thanks to Intel for making available several different Pentium, 12 * Pentium Pro and Pentium-II/Xeon MP machines. 13 * Original development of Linux SMP code supported by Caldera. 14 * 15 * This code is released under the GNU General Public License version 2 or 16 * later. 17 * 18 * Fixes 19 * Felix Koop : NR_CPUS used properly 20 * Jose Renau : Handle single CPU case. 21 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 22 * Greg Wright : Fix for kernel stacks panic. 23 * Erich Boleyn : MP v1.4 and additional changes. 24 * Matthias Sattler : Changes for 2.1 kernel map. 25 * Michel Lespinasse : Changes for 2.1 kernel map. 26 * Michael Chastain : Change trampoline.S to gnu as. 27 * Alan Cox : Dumb bug: 'B' step PPro's are fine 28 * Ingo Molnar : Added APIC timers, based on code 29 * from Jose Renau 30 * Ingo Molnar : various cleanups and rewrites 31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 33 * Andi Kleen : Changed for SMP boot into long mode. 34 * Martin J. Bligh : Added support for multi-quad systems 35 * Dave Jones : Report invalid combinations of Athlon CPUs. 36 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 37 * Andi Kleen : Converted to new state machine. 38 * Ashok Raj : CPU hotplug support 39 * Glauber Costa : i386 and x86_64 integration 40 */ 41 42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 43 44 #include <linux/init.h> 45 #include <linux/smp.h> 46 #include <linux/module.h> 47 #include <linux/sched.h> 48 #include <linux/percpu.h> 49 #include <linux/bootmem.h> 50 #include <linux/err.h> 51 #include <linux/nmi.h> 52 #include <linux/tboot.h> 53 #include <linux/stackprotector.h> 54 #include <linux/gfp.h> 55 #include <linux/cpuidle.h> 56 57 #include <asm/acpi.h> 58 #include <asm/desc.h> 59 #include <asm/nmi.h> 60 #include <asm/irq.h> 61 #include <asm/idle.h> 62 #include <asm/realmode.h> 63 #include <asm/cpu.h> 64 #include <asm/numa.h> 65 #include <asm/pgtable.h> 66 #include <asm/tlbflush.h> 67 #include <asm/mtrr.h> 68 #include <asm/mwait.h> 69 #include <asm/apic.h> 70 #include <asm/io_apic.h> 71 #include <asm/i387.h> 72 #include <asm/fpu-internal.h> 73 #include <asm/setup.h> 74 #include <asm/uv/uv.h> 75 #include <linux/mc146818rtc.h> 76 #include <asm/i8259.h> 77 #include <asm/realmode.h> 78 #include <asm/misc.h> 79 80 /* State of each CPU */ 81 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 82 83 /* Number of siblings per CPU package */ 84 int smp_num_siblings = 1; 85 EXPORT_SYMBOL(smp_num_siblings); 86 87 /* Last level cache ID of each logical CPU */ 88 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; 89 90 /* representing HT siblings of each logical CPU */ 91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 93 94 /* representing HT and core siblings of each logical CPU */ 95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 96 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 97 98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); 99 100 /* Per CPU bogomips and other parameters */ 101 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 102 EXPORT_PER_CPU_SYMBOL(cpu_info); 103 104 atomic_t init_deasserted; 105 106 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 107 { 108 unsigned long flags; 109 110 spin_lock_irqsave(&rtc_lock, flags); 111 CMOS_WRITE(0xa, 0xf); 112 spin_unlock_irqrestore(&rtc_lock, flags); 113 local_flush_tlb(); 114 pr_debug("1.\n"); 115 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = 116 start_eip >> 4; 117 pr_debug("2.\n"); 118 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 119 start_eip & 0xf; 120 pr_debug("3.\n"); 121 } 122 123 static inline void smpboot_restore_warm_reset_vector(void) 124 { 125 unsigned long flags; 126 127 /* 128 * Install writable page 0 entry to set BIOS data area. 129 */ 130 local_flush_tlb(); 131 132 /* 133 * Paranoid: Set warm reset code and vector here back 134 * to default values. 135 */ 136 spin_lock_irqsave(&rtc_lock, flags); 137 CMOS_WRITE(0, 0xf); 138 spin_unlock_irqrestore(&rtc_lock, flags); 139 140 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 141 } 142 143 /* 144 * Report back to the Boot Processor during boot time or to the caller processor 145 * during CPU online. 146 */ 147 static void smp_callin(void) 148 { 149 int cpuid, phys_id; 150 151 /* 152 * If waken up by an INIT in an 82489DX configuration 153 * we may get here before an INIT-deassert IPI reaches 154 * our local APIC. We have to wait for the IPI or we'll 155 * lock up on an APIC access. 156 * 157 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI. 158 */ 159 cpuid = smp_processor_id(); 160 if (apic->wait_for_init_deassert && cpuid) 161 while (!atomic_read(&init_deasserted)) 162 cpu_relax(); 163 164 /* 165 * (This works even if the APIC is not enabled.) 166 */ 167 phys_id = read_apic_id(); 168 169 /* 170 * the boot CPU has finished the init stage and is spinning 171 * on callin_map until we finish. We are free to set up this 172 * CPU, first the APIC. (this is probably redundant on most 173 * boards) 174 */ 175 apic_ap_setup(); 176 177 /* 178 * Need to setup vector mappings before we enable interrupts. 179 */ 180 setup_vector_irq(smp_processor_id()); 181 182 /* 183 * Save our processor parameters. Note: this information 184 * is needed for clock calibration. 185 */ 186 smp_store_cpu_info(cpuid); 187 188 /* 189 * Get our bogomips. 190 * Update loops_per_jiffy in cpu_data. Previous call to 191 * smp_store_cpu_info() stored a value that is close but not as 192 * accurate as the value just calculated. 193 */ 194 calibrate_delay(); 195 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; 196 pr_debug("Stack at about %p\n", &cpuid); 197 198 /* 199 * This must be done before setting cpu_online_mask 200 * or calling notify_cpu_starting. 201 */ 202 set_cpu_sibling_map(raw_smp_processor_id()); 203 wmb(); 204 205 notify_cpu_starting(cpuid); 206 207 /* 208 * Allow the master to continue. 209 */ 210 cpumask_set_cpu(cpuid, cpu_callin_mask); 211 } 212 213 static int cpu0_logical_apicid; 214 static int enable_start_cpu0; 215 /* 216 * Activate a secondary processor. 217 */ 218 static void notrace start_secondary(void *unused) 219 { 220 /* 221 * Don't put *anything* before cpu_init(), SMP booting is too 222 * fragile that we want to limit the things done here to the 223 * most necessary things. 224 */ 225 cpu_init(); 226 x86_cpuinit.early_percpu_clock_init(); 227 preempt_disable(); 228 smp_callin(); 229 230 enable_start_cpu0 = 0; 231 232 #ifdef CONFIG_X86_32 233 /* switch away from the initial page table */ 234 load_cr3(swapper_pg_dir); 235 __flush_tlb_all(); 236 #endif 237 238 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 239 barrier(); 240 /* 241 * Check TSC synchronization with the BP: 242 */ 243 check_tsc_sync_target(); 244 245 /* 246 * Enable the espfix hack for this CPU 247 */ 248 #ifdef CONFIG_X86_ESPFIX64 249 init_espfix_ap(); 250 #endif 251 252 /* 253 * We need to hold vector_lock so there the set of online cpus 254 * does not change while we are assigning vectors to cpus. Holding 255 * this lock ensures we don't half assign or remove an irq from a cpu. 256 */ 257 lock_vector_lock(); 258 set_cpu_online(smp_processor_id(), true); 259 unlock_vector_lock(); 260 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 261 x86_platform.nmi_init(); 262 263 /* enable local interrupts */ 264 local_irq_enable(); 265 266 /* to prevent fake stack check failure in clock setup */ 267 boot_init_stack_canary(); 268 269 x86_cpuinit.setup_percpu_clockev(); 270 271 wmb(); 272 cpu_startup_entry(CPUHP_ONLINE); 273 } 274 275 void __init smp_store_boot_cpu_info(void) 276 { 277 int id = 0; /* CPU 0 */ 278 struct cpuinfo_x86 *c = &cpu_data(id); 279 280 *c = boot_cpu_data; 281 c->cpu_index = id; 282 } 283 284 /* 285 * The bootstrap kernel entry code has set these up. Save them for 286 * a given CPU 287 */ 288 void smp_store_cpu_info(int id) 289 { 290 struct cpuinfo_x86 *c = &cpu_data(id); 291 292 *c = boot_cpu_data; 293 c->cpu_index = id; 294 /* 295 * During boot time, CPU0 has this setup already. Save the info when 296 * bringing up AP or offlined CPU0. 297 */ 298 identify_secondary_cpu(c); 299 } 300 301 static bool 302 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 303 { 304 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 305 306 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 307 } 308 309 static bool 310 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 311 { 312 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 313 314 return !WARN_ONCE(!topology_same_node(c, o), 315 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 316 "[node: %d != %d]. Ignoring dependency.\n", 317 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 318 } 319 320 #define link_mask(_m, c1, c2) \ 321 do { \ 322 cpumask_set_cpu((c1), cpu_##_m##_mask(c2)); \ 323 cpumask_set_cpu((c2), cpu_##_m##_mask(c1)); \ 324 } while (0) 325 326 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 327 { 328 if (cpu_has_topoext) { 329 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 330 331 if (c->phys_proc_id == o->phys_proc_id && 332 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) && 333 c->compute_unit_id == o->compute_unit_id) 334 return topology_sane(c, o, "smt"); 335 336 } else if (c->phys_proc_id == o->phys_proc_id && 337 c->cpu_core_id == o->cpu_core_id) { 338 return topology_sane(c, o, "smt"); 339 } 340 341 return false; 342 } 343 344 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 345 { 346 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 347 348 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID && 349 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) 350 return topology_sane(c, o, "llc"); 351 352 return false; 353 } 354 355 /* 356 * Unlike the other levels, we do not enforce keeping a 357 * multicore group inside a NUMA node. If this happens, we will 358 * discard the MC level of the topology later. 359 */ 360 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 361 { 362 if (c->phys_proc_id == o->phys_proc_id) 363 return true; 364 return false; 365 } 366 367 static struct sched_domain_topology_level numa_inside_package_topology[] = { 368 #ifdef CONFIG_SCHED_SMT 369 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 370 #endif 371 #ifdef CONFIG_SCHED_MC 372 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 373 #endif 374 { NULL, }, 375 }; 376 /* 377 * set_sched_topology() sets the topology internal to a CPU. The 378 * NUMA topologies are layered on top of it to build the full 379 * system topology. 380 * 381 * If NUMA nodes are observed to occur within a CPU package, this 382 * function should be called. It forces the sched domain code to 383 * only use the SMT level for the CPU portion of the topology. 384 * This essentially falls back to relying on NUMA information 385 * from the SRAT table to describe the entire system topology 386 * (except for hyperthreads). 387 */ 388 static void primarily_use_numa_for_topology(void) 389 { 390 set_sched_topology(numa_inside_package_topology); 391 } 392 393 void set_cpu_sibling_map(int cpu) 394 { 395 bool has_smt = smp_num_siblings > 1; 396 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; 397 struct cpuinfo_x86 *c = &cpu_data(cpu); 398 struct cpuinfo_x86 *o; 399 int i; 400 401 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 402 403 if (!has_mp) { 404 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu)); 405 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 406 cpumask_set_cpu(cpu, cpu_core_mask(cpu)); 407 c->booted_cores = 1; 408 return; 409 } 410 411 for_each_cpu(i, cpu_sibling_setup_mask) { 412 o = &cpu_data(i); 413 414 if ((i == cpu) || (has_smt && match_smt(c, o))) 415 link_mask(sibling, cpu, i); 416 417 if ((i == cpu) || (has_mp && match_llc(c, o))) 418 link_mask(llc_shared, cpu, i); 419 420 } 421 422 /* 423 * This needs a separate iteration over the cpus because we rely on all 424 * cpu_sibling_mask links to be set-up. 425 */ 426 for_each_cpu(i, cpu_sibling_setup_mask) { 427 o = &cpu_data(i); 428 429 if ((i == cpu) || (has_mp && match_die(c, o))) { 430 link_mask(core, cpu, i); 431 432 /* 433 * Does this new cpu bringup a new core? 434 */ 435 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) { 436 /* 437 * for each core in package, increment 438 * the booted_cores for this new cpu 439 */ 440 if (cpumask_first(cpu_sibling_mask(i)) == i) 441 c->booted_cores++; 442 /* 443 * increment the core count for all 444 * the other cpus in this package 445 */ 446 if (i != cpu) 447 cpu_data(i).booted_cores++; 448 } else if (i != cpu && !c->booted_cores) 449 c->booted_cores = cpu_data(i).booted_cores; 450 } 451 if (match_die(c, o) && !topology_same_node(c, o)) 452 primarily_use_numa_for_topology(); 453 } 454 } 455 456 /* maps the cpu to the sched domain representing multi-core */ 457 const struct cpumask *cpu_coregroup_mask(int cpu) 458 { 459 return cpu_llc_shared_mask(cpu); 460 } 461 462 static void impress_friends(void) 463 { 464 int cpu; 465 unsigned long bogosum = 0; 466 /* 467 * Allow the user to impress friends. 468 */ 469 pr_debug("Before bogomips\n"); 470 for_each_possible_cpu(cpu) 471 if (cpumask_test_cpu(cpu, cpu_callout_mask)) 472 bogosum += cpu_data(cpu).loops_per_jiffy; 473 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 474 num_online_cpus(), 475 bogosum/(500000/HZ), 476 (bogosum/(5000/HZ))%100); 477 478 pr_debug("Before bogocount - setting activated=1\n"); 479 } 480 481 void __inquire_remote_apic(int apicid) 482 { 483 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 484 const char * const names[] = { "ID", "VERSION", "SPIV" }; 485 int timeout; 486 u32 status; 487 488 pr_info("Inquiring remote APIC 0x%x...\n", apicid); 489 490 for (i = 0; i < ARRAY_SIZE(regs); i++) { 491 pr_info("... APIC 0x%x %s: ", apicid, names[i]); 492 493 /* 494 * Wait for idle. 495 */ 496 status = safe_apic_wait_icr_idle(); 497 if (status) 498 pr_cont("a previous APIC delivery may have failed\n"); 499 500 apic_icr_write(APIC_DM_REMRD | regs[i], apicid); 501 502 timeout = 0; 503 do { 504 udelay(100); 505 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 506 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 507 508 switch (status) { 509 case APIC_ICR_RR_VALID: 510 status = apic_read(APIC_RRR); 511 pr_cont("%08x\n", status); 512 break; 513 default: 514 pr_cont("failed\n"); 515 } 516 } 517 } 518 519 /* 520 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 521 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 522 * won't ... remember to clear down the APIC, etc later. 523 */ 524 int 525 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) 526 { 527 unsigned long send_status, accept_status = 0; 528 int maxlvt; 529 530 /* Target chip */ 531 /* Boot on the stack */ 532 /* Kick the second */ 533 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid); 534 535 pr_debug("Waiting for send to finish...\n"); 536 send_status = safe_apic_wait_icr_idle(); 537 538 /* 539 * Give the other CPU some time to accept the IPI. 540 */ 541 udelay(200); 542 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { 543 maxlvt = lapic_get_maxlvt(); 544 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 545 apic_write(APIC_ESR, 0); 546 accept_status = (apic_read(APIC_ESR) & 0xEF); 547 } 548 pr_debug("NMI sent\n"); 549 550 if (send_status) 551 pr_err("APIC never delivered???\n"); 552 if (accept_status) 553 pr_err("APIC delivery error (%lx)\n", accept_status); 554 555 return (send_status | accept_status); 556 } 557 558 static int 559 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) 560 { 561 unsigned long send_status, accept_status = 0; 562 int maxlvt, num_starts, j; 563 564 maxlvt = lapic_get_maxlvt(); 565 566 /* 567 * Be paranoid about clearing APIC errors. 568 */ 569 if (APIC_INTEGRATED(apic_version[phys_apicid])) { 570 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 571 apic_write(APIC_ESR, 0); 572 apic_read(APIC_ESR); 573 } 574 575 pr_debug("Asserting INIT\n"); 576 577 /* 578 * Turn INIT on target chip 579 */ 580 /* 581 * Send IPI 582 */ 583 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, 584 phys_apicid); 585 586 pr_debug("Waiting for send to finish...\n"); 587 send_status = safe_apic_wait_icr_idle(); 588 589 mdelay(10); 590 591 pr_debug("Deasserting INIT\n"); 592 593 /* Target chip */ 594 /* Send IPI */ 595 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 596 597 pr_debug("Waiting for send to finish...\n"); 598 send_status = safe_apic_wait_icr_idle(); 599 600 mb(); 601 atomic_set(&init_deasserted, 1); 602 603 /* 604 * Should we send STARTUP IPIs ? 605 * 606 * Determine this based on the APIC version. 607 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 608 */ 609 if (APIC_INTEGRATED(apic_version[phys_apicid])) 610 num_starts = 2; 611 else 612 num_starts = 0; 613 614 /* 615 * Paravirt / VMI wants a startup IPI hook here to set up the 616 * target processor state. 617 */ 618 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, 619 stack_start); 620 621 /* 622 * Run STARTUP IPI loop. 623 */ 624 pr_debug("#startup loops: %d\n", num_starts); 625 626 for (j = 1; j <= num_starts; j++) { 627 pr_debug("Sending STARTUP #%d\n", j); 628 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 629 apic_write(APIC_ESR, 0); 630 apic_read(APIC_ESR); 631 pr_debug("After apic_write\n"); 632 633 /* 634 * STARTUP IPI 635 */ 636 637 /* Target chip */ 638 /* Boot on the stack */ 639 /* Kick the second */ 640 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 641 phys_apicid); 642 643 /* 644 * Give the other CPU some time to accept the IPI. 645 */ 646 udelay(300); 647 648 pr_debug("Startup point 1\n"); 649 650 pr_debug("Waiting for send to finish...\n"); 651 send_status = safe_apic_wait_icr_idle(); 652 653 /* 654 * Give the other CPU some time to accept the IPI. 655 */ 656 udelay(200); 657 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 658 apic_write(APIC_ESR, 0); 659 accept_status = (apic_read(APIC_ESR) & 0xEF); 660 if (send_status || accept_status) 661 break; 662 } 663 pr_debug("After Startup\n"); 664 665 if (send_status) 666 pr_err("APIC never delivered???\n"); 667 if (accept_status) 668 pr_err("APIC delivery error (%lx)\n", accept_status); 669 670 return (send_status | accept_status); 671 } 672 673 void smp_announce(void) 674 { 675 int num_nodes = num_online_nodes(); 676 677 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n", 678 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus()); 679 } 680 681 /* reduce the number of lines printed when booting a large cpu count system */ 682 static void announce_cpu(int cpu, int apicid) 683 { 684 static int current_node = -1; 685 int node = early_cpu_to_node(cpu); 686 static int width, node_width; 687 688 if (!width) 689 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 690 691 if (!node_width) 692 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 693 694 if (cpu == 1) 695 printk(KERN_INFO "x86: Booting SMP configuration:\n"); 696 697 if (system_state == SYSTEM_BOOTING) { 698 if (node != current_node) { 699 if (current_node > (-1)) 700 pr_cont("\n"); 701 current_node = node; 702 703 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 704 node_width - num_digits(node), " ", node); 705 } 706 707 /* Add padding for the BSP */ 708 if (cpu == 1) 709 pr_cont("%*s", width + 1, " "); 710 711 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 712 713 } else 714 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 715 node, cpu, apicid); 716 } 717 718 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) 719 { 720 int cpu; 721 722 cpu = smp_processor_id(); 723 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) 724 return NMI_HANDLED; 725 726 return NMI_DONE; 727 } 728 729 /* 730 * Wake up AP by INIT, INIT, STARTUP sequence. 731 * 732 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS 733 * boot-strap code which is not a desired behavior for waking up BSP. To 734 * void the boot-strap code, wake up CPU0 by NMI instead. 735 * 736 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined 737 * (i.e. physically hot removed and then hot added), NMI won't wake it up. 738 * We'll change this code in the future to wake up hard offlined CPU0 if 739 * real platform and request are available. 740 */ 741 static int 742 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, 743 int *cpu0_nmi_registered) 744 { 745 int id; 746 int boot_error; 747 748 preempt_disable(); 749 750 /* 751 * Wake up AP by INIT, INIT, STARTUP sequence. 752 */ 753 if (cpu) { 754 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); 755 goto out; 756 } 757 758 /* 759 * Wake up BSP by nmi. 760 * 761 * Register a NMI handler to help wake up CPU0. 762 */ 763 boot_error = register_nmi_handler(NMI_LOCAL, 764 wakeup_cpu0_nmi, 0, "wake_cpu0"); 765 766 if (!boot_error) { 767 enable_start_cpu0 = 1; 768 *cpu0_nmi_registered = 1; 769 if (apic->dest_logical == APIC_DEST_LOGICAL) 770 id = cpu0_logical_apicid; 771 else 772 id = apicid; 773 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); 774 } 775 776 out: 777 preempt_enable(); 778 779 return boot_error; 780 } 781 782 /* 783 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 784 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 785 * Returns zero if CPU booted OK, else error code from 786 * ->wakeup_secondary_cpu. 787 */ 788 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle) 789 { 790 volatile u32 *trampoline_status = 791 (volatile u32 *) __va(real_mode_header->trampoline_status); 792 /* start_ip had better be page-aligned! */ 793 unsigned long start_ip = real_mode_header->trampoline_start; 794 795 unsigned long boot_error = 0; 796 int cpu0_nmi_registered = 0; 797 unsigned long timeout; 798 799 /* Just in case we booted with a single CPU. */ 800 alternatives_enable_smp(); 801 802 idle->thread.sp = (unsigned long) (((struct pt_regs *) 803 (THREAD_SIZE + task_stack_page(idle))) - 1); 804 per_cpu(current_task, cpu) = idle; 805 806 #ifdef CONFIG_X86_32 807 /* Stack for startup_32 can be just as for start_secondary onwards */ 808 irq_ctx_init(cpu); 809 #else 810 clear_tsk_thread_flag(idle, TIF_FORK); 811 initial_gs = per_cpu_offset(cpu); 812 #endif 813 per_cpu(kernel_stack, cpu) = 814 (unsigned long)task_stack_page(idle) - 815 KERNEL_STACK_OFFSET + THREAD_SIZE; 816 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); 817 initial_code = (unsigned long)start_secondary; 818 stack_start = idle->thread.sp; 819 820 /* So we see what's up */ 821 announce_cpu(cpu, apicid); 822 823 /* 824 * This grunge runs the startup process for 825 * the targeted processor. 826 */ 827 828 atomic_set(&init_deasserted, 0); 829 830 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 831 832 pr_debug("Setting warm reset code and vector.\n"); 833 834 smpboot_setup_warm_reset_vector(start_ip); 835 /* 836 * Be paranoid about clearing APIC errors. 837 */ 838 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) { 839 apic_write(APIC_ESR, 0); 840 apic_read(APIC_ESR); 841 } 842 } 843 844 /* 845 * AP might wait on cpu_callout_mask in cpu_init() with 846 * cpu_initialized_mask set if previous attempt to online 847 * it timed-out. Clear cpu_initialized_mask so that after 848 * INIT/SIPI it could start with a clean state. 849 */ 850 cpumask_clear_cpu(cpu, cpu_initialized_mask); 851 smp_mb(); 852 853 /* 854 * Wake up a CPU in difference cases: 855 * - Use the method in the APIC driver if it's defined 856 * Otherwise, 857 * - Use an INIT boot APIC message for APs or NMI for BSP. 858 */ 859 if (apic->wakeup_secondary_cpu) 860 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); 861 else 862 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, 863 &cpu0_nmi_registered); 864 865 if (!boot_error) { 866 /* 867 * Wait 10s total for a response from AP 868 */ 869 boot_error = -1; 870 timeout = jiffies + 10*HZ; 871 while (time_before(jiffies, timeout)) { 872 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { 873 /* 874 * Tell AP to proceed with initialization 875 */ 876 cpumask_set_cpu(cpu, cpu_callout_mask); 877 boot_error = 0; 878 break; 879 } 880 udelay(100); 881 schedule(); 882 } 883 } 884 885 if (!boot_error) { 886 /* 887 * Wait till AP completes initial initialization 888 */ 889 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { 890 /* 891 * Allow other tasks to run while we wait for the 892 * AP to come online. This also gives a chance 893 * for the MTRR work(triggered by the AP coming online) 894 * to be completed in the stop machine context. 895 */ 896 udelay(100); 897 schedule(); 898 } 899 } 900 901 /* mark "stuck" area as not stuck */ 902 *trampoline_status = 0; 903 904 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 905 /* 906 * Cleanup possible dangling ends... 907 */ 908 smpboot_restore_warm_reset_vector(); 909 } 910 /* 911 * Clean up the nmi handler. Do this after the callin and callout sync 912 * to avoid impact of possible long unregister time. 913 */ 914 if (cpu0_nmi_registered) 915 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); 916 917 return boot_error; 918 } 919 920 int native_cpu_up(unsigned int cpu, struct task_struct *tidle) 921 { 922 int apicid = apic->cpu_present_to_apicid(cpu); 923 unsigned long flags; 924 int err; 925 926 WARN_ON(irqs_disabled()); 927 928 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 929 930 if (apicid == BAD_APICID || 931 !physid_isset(apicid, phys_cpu_present_map) || 932 !apic->apic_id_valid(apicid)) { 933 pr_err("%s: bad cpu %d\n", __func__, cpu); 934 return -EINVAL; 935 } 936 937 /* 938 * Already booted CPU? 939 */ 940 if (cpumask_test_cpu(cpu, cpu_callin_mask)) { 941 pr_debug("do_boot_cpu %d Already started\n", cpu); 942 return -ENOSYS; 943 } 944 945 /* 946 * Save current MTRR state in case it was changed since early boot 947 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 948 */ 949 mtrr_save_state(); 950 951 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 952 953 /* the FPU context is blank, nobody can own it */ 954 __cpu_disable_lazy_restore(cpu); 955 956 err = do_boot_cpu(apicid, cpu, tidle); 957 if (err) { 958 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 959 return -EIO; 960 } 961 962 /* 963 * Check TSC synchronization with the AP (keep irqs disabled 964 * while doing so): 965 */ 966 local_irq_save(flags); 967 check_tsc_sync_source(cpu); 968 local_irq_restore(flags); 969 970 while (!cpu_online(cpu)) { 971 cpu_relax(); 972 touch_nmi_watchdog(); 973 } 974 975 return 0; 976 } 977 978 /** 979 * arch_disable_smp_support() - disables SMP support for x86 at runtime 980 */ 981 void arch_disable_smp_support(void) 982 { 983 disable_ioapic_support(); 984 } 985 986 /* 987 * Fall back to non SMP mode after errors. 988 * 989 * RED-PEN audit/test this more. I bet there is more state messed up here. 990 */ 991 static __init void disable_smp(void) 992 { 993 pr_info("SMP disabled\n"); 994 995 disable_ioapic_support(); 996 997 init_cpu_present(cpumask_of(0)); 998 init_cpu_possible(cpumask_of(0)); 999 1000 if (smp_found_config) 1001 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1002 else 1003 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1004 cpumask_set_cpu(0, cpu_sibling_mask(0)); 1005 cpumask_set_cpu(0, cpu_core_mask(0)); 1006 } 1007 1008 enum { 1009 SMP_OK, 1010 SMP_NO_CONFIG, 1011 SMP_NO_APIC, 1012 SMP_FORCE_UP, 1013 }; 1014 1015 /* 1016 * Various sanity checks. 1017 */ 1018 static int __init smp_sanity_check(unsigned max_cpus) 1019 { 1020 preempt_disable(); 1021 1022 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) 1023 if (def_to_bigsmp && nr_cpu_ids > 8) { 1024 unsigned int cpu; 1025 unsigned nr; 1026 1027 pr_warn("More than 8 CPUs detected - skipping them\n" 1028 "Use CONFIG_X86_BIGSMP\n"); 1029 1030 nr = 0; 1031 for_each_present_cpu(cpu) { 1032 if (nr >= 8) 1033 set_cpu_present(cpu, false); 1034 nr++; 1035 } 1036 1037 nr = 0; 1038 for_each_possible_cpu(cpu) { 1039 if (nr >= 8) 1040 set_cpu_possible(cpu, false); 1041 nr++; 1042 } 1043 1044 nr_cpu_ids = 8; 1045 } 1046 #endif 1047 1048 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 1049 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", 1050 hard_smp_processor_id()); 1051 1052 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1053 } 1054 1055 /* 1056 * If we couldn't find an SMP configuration at boot time, 1057 * get out of here now! 1058 */ 1059 if (!smp_found_config && !acpi_lapic) { 1060 preempt_enable(); 1061 pr_notice("SMP motherboard not detected\n"); 1062 return SMP_NO_CONFIG; 1063 } 1064 1065 /* 1066 * Should not be necessary because the MP table should list the boot 1067 * CPU too, but we do it for the sake of robustness anyway. 1068 */ 1069 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { 1070 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", 1071 boot_cpu_physical_apicid); 1072 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1073 } 1074 preempt_enable(); 1075 1076 /* 1077 * If we couldn't find a local APIC, then get out of here now! 1078 */ 1079 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && 1080 !cpu_has_apic) { 1081 if (!disable_apic) { 1082 pr_err("BIOS bug, local APIC #%d not detected!...\n", 1083 boot_cpu_physical_apicid); 1084 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n"); 1085 } 1086 return SMP_NO_APIC; 1087 } 1088 1089 verify_local_APIC(); 1090 1091 /* 1092 * If SMP should be disabled, then really disable it! 1093 */ 1094 if (!max_cpus) { 1095 pr_info("SMP mode deactivated\n"); 1096 return SMP_FORCE_UP; 1097 } 1098 1099 return SMP_OK; 1100 } 1101 1102 static void __init smp_cpu_index_default(void) 1103 { 1104 int i; 1105 struct cpuinfo_x86 *c; 1106 1107 for_each_possible_cpu(i) { 1108 c = &cpu_data(i); 1109 /* mark all to hotplug */ 1110 c->cpu_index = nr_cpu_ids; 1111 } 1112 } 1113 1114 /* 1115 * Prepare for SMP bootup. The MP table or ACPI has been read 1116 * earlier. Just do some sanity checking here and enable APIC mode. 1117 */ 1118 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1119 { 1120 unsigned int i; 1121 1122 smp_cpu_index_default(); 1123 1124 /* 1125 * Setup boot CPU information 1126 */ 1127 smp_store_boot_cpu_info(); /* Final full version of the data */ 1128 cpumask_copy(cpu_callin_mask, cpumask_of(0)); 1129 mb(); 1130 1131 current_thread_info()->cpu = 0; /* needed? */ 1132 for_each_possible_cpu(i) { 1133 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1134 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1135 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1136 } 1137 set_cpu_sibling_map(0); 1138 1139 switch (smp_sanity_check(max_cpus)) { 1140 case SMP_NO_CONFIG: 1141 disable_smp(); 1142 if (APIC_init_uniprocessor()) 1143 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n"); 1144 return; 1145 case SMP_NO_APIC: 1146 disable_smp(); 1147 return; 1148 case SMP_FORCE_UP: 1149 disable_smp(); 1150 apic_bsp_setup(false); 1151 return; 1152 case SMP_OK: 1153 break; 1154 } 1155 1156 default_setup_apic_routing(); 1157 1158 if (read_apic_id() != boot_cpu_physical_apicid) { 1159 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1160 read_apic_id(), boot_cpu_physical_apicid); 1161 /* Or can we switch back to PIC here? */ 1162 } 1163 1164 cpu0_logical_apicid = apic_bsp_setup(false); 1165 1166 pr_info("CPU%d: ", 0); 1167 print_cpu_info(&cpu_data(0)); 1168 1169 if (is_uv_system()) 1170 uv_system_init(); 1171 1172 set_mtrr_aps_delayed_init(); 1173 } 1174 1175 void arch_enable_nonboot_cpus_begin(void) 1176 { 1177 set_mtrr_aps_delayed_init(); 1178 } 1179 1180 void arch_enable_nonboot_cpus_end(void) 1181 { 1182 mtrr_aps_init(); 1183 } 1184 1185 /* 1186 * Early setup to make printk work. 1187 */ 1188 void __init native_smp_prepare_boot_cpu(void) 1189 { 1190 int me = smp_processor_id(); 1191 switch_to_new_gdt(me); 1192 /* already set me in cpu_online_mask in boot_cpu_init() */ 1193 cpumask_set_cpu(me, cpu_callout_mask); 1194 per_cpu(cpu_state, me) = CPU_ONLINE; 1195 } 1196 1197 void __init native_smp_cpus_done(unsigned int max_cpus) 1198 { 1199 pr_debug("Boot done\n"); 1200 1201 nmi_selftest(); 1202 impress_friends(); 1203 setup_ioapic_dest(); 1204 mtrr_aps_init(); 1205 } 1206 1207 static int __initdata setup_possible_cpus = -1; 1208 static int __init _setup_possible_cpus(char *str) 1209 { 1210 get_option(&str, &setup_possible_cpus); 1211 return 0; 1212 } 1213 early_param("possible_cpus", _setup_possible_cpus); 1214 1215 1216 /* 1217 * cpu_possible_mask should be static, it cannot change as cpu's 1218 * are onlined, or offlined. The reason is per-cpu data-structures 1219 * are allocated by some modules at init time, and dont expect to 1220 * do this dynamically on cpu arrival/departure. 1221 * cpu_present_mask on the other hand can change dynamically. 1222 * In case when cpu_hotplug is not compiled, then we resort to current 1223 * behaviour, which is cpu_possible == cpu_present. 1224 * - Ashok Raj 1225 * 1226 * Three ways to find out the number of additional hotplug CPUs: 1227 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1228 * - The user can overwrite it with possible_cpus=NUM 1229 * - Otherwise don't reserve additional CPUs. 1230 * We do this because additional CPUs waste a lot of memory. 1231 * -AK 1232 */ 1233 __init void prefill_possible_map(void) 1234 { 1235 int i, possible; 1236 1237 /* no processor from mptable or madt */ 1238 if (!num_processors) 1239 num_processors = 1; 1240 1241 i = setup_max_cpus ?: 1; 1242 if (setup_possible_cpus == -1) { 1243 possible = num_processors; 1244 #ifdef CONFIG_HOTPLUG_CPU 1245 if (setup_max_cpus) 1246 possible += disabled_cpus; 1247 #else 1248 if (possible > i) 1249 possible = i; 1250 #endif 1251 } else 1252 possible = setup_possible_cpus; 1253 1254 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1255 1256 /* nr_cpu_ids could be reduced via nr_cpus= */ 1257 if (possible > nr_cpu_ids) { 1258 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n", 1259 possible, nr_cpu_ids); 1260 possible = nr_cpu_ids; 1261 } 1262 1263 #ifdef CONFIG_HOTPLUG_CPU 1264 if (!setup_max_cpus) 1265 #endif 1266 if (possible > i) { 1267 pr_warn("%d Processors exceeds max_cpus limit of %u\n", 1268 possible, setup_max_cpus); 1269 possible = i; 1270 } 1271 1272 pr_info("Allowing %d CPUs, %d hotplug CPUs\n", 1273 possible, max_t(int, possible - num_processors, 0)); 1274 1275 for (i = 0; i < possible; i++) 1276 set_cpu_possible(i, true); 1277 for (; i < NR_CPUS; i++) 1278 set_cpu_possible(i, false); 1279 1280 nr_cpu_ids = possible; 1281 } 1282 1283 #ifdef CONFIG_HOTPLUG_CPU 1284 1285 static void remove_siblinginfo(int cpu) 1286 { 1287 int sibling; 1288 struct cpuinfo_x86 *c = &cpu_data(cpu); 1289 1290 for_each_cpu(sibling, cpu_core_mask(cpu)) { 1291 cpumask_clear_cpu(cpu, cpu_core_mask(sibling)); 1292 /*/ 1293 * last thread sibling in this cpu core going down 1294 */ 1295 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) 1296 cpu_data(sibling).booted_cores--; 1297 } 1298 1299 for_each_cpu(sibling, cpu_sibling_mask(cpu)) 1300 cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling)); 1301 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1302 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1303 cpumask_clear(cpu_llc_shared_mask(cpu)); 1304 cpumask_clear(cpu_sibling_mask(cpu)); 1305 cpumask_clear(cpu_core_mask(cpu)); 1306 c->phys_proc_id = 0; 1307 c->cpu_core_id = 0; 1308 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1309 } 1310 1311 static void __ref remove_cpu_from_maps(int cpu) 1312 { 1313 set_cpu_online(cpu, false); 1314 cpumask_clear_cpu(cpu, cpu_callout_mask); 1315 cpumask_clear_cpu(cpu, cpu_callin_mask); 1316 /* was set by cpu_init() */ 1317 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1318 numa_remove_cpu(cpu); 1319 } 1320 1321 static DEFINE_PER_CPU(struct completion, die_complete); 1322 1323 void cpu_disable_common(void) 1324 { 1325 int cpu = smp_processor_id(); 1326 1327 init_completion(&per_cpu(die_complete, smp_processor_id())); 1328 1329 remove_siblinginfo(cpu); 1330 1331 /* It's now safe to remove this processor from the online map */ 1332 lock_vector_lock(); 1333 remove_cpu_from_maps(cpu); 1334 unlock_vector_lock(); 1335 fixup_irqs(); 1336 } 1337 1338 int native_cpu_disable(void) 1339 { 1340 int ret; 1341 1342 ret = check_irq_vectors_for_cpu_disable(); 1343 if (ret) 1344 return ret; 1345 1346 clear_local_APIC(); 1347 cpu_disable_common(); 1348 1349 return 0; 1350 } 1351 1352 void cpu_die_common(unsigned int cpu) 1353 { 1354 wait_for_completion_timeout(&per_cpu(die_complete, cpu), HZ); 1355 } 1356 1357 void native_cpu_die(unsigned int cpu) 1358 { 1359 /* We don't do anything here: idle task is faking death itself. */ 1360 1361 cpu_die_common(cpu); 1362 1363 /* They ack this in play_dead() by setting CPU_DEAD */ 1364 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 1365 if (system_state == SYSTEM_RUNNING) 1366 pr_info("CPU %u is now offline\n", cpu); 1367 } else { 1368 pr_err("CPU %u didn't die...\n", cpu); 1369 } 1370 } 1371 1372 void play_dead_common(void) 1373 { 1374 idle_task_exit(); 1375 reset_lazy_tlbstate(); 1376 amd_e400_remove_cpu(raw_smp_processor_id()); 1377 1378 mb(); 1379 /* Ack it */ 1380 __this_cpu_write(cpu_state, CPU_DEAD); 1381 complete(&per_cpu(die_complete, smp_processor_id())); 1382 1383 /* 1384 * With physical CPU hotplug, we should halt the cpu 1385 */ 1386 local_irq_disable(); 1387 } 1388 1389 static bool wakeup_cpu0(void) 1390 { 1391 if (smp_processor_id() == 0 && enable_start_cpu0) 1392 return true; 1393 1394 return false; 1395 } 1396 1397 /* 1398 * We need to flush the caches before going to sleep, lest we have 1399 * dirty data in our caches when we come back up. 1400 */ 1401 static inline void mwait_play_dead(void) 1402 { 1403 unsigned int eax, ebx, ecx, edx; 1404 unsigned int highest_cstate = 0; 1405 unsigned int highest_subcstate = 0; 1406 void *mwait_ptr; 1407 int i; 1408 1409 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1410 return; 1411 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1412 return; 1413 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1414 return; 1415 1416 eax = CPUID_MWAIT_LEAF; 1417 ecx = 0; 1418 native_cpuid(&eax, &ebx, &ecx, &edx); 1419 1420 /* 1421 * eax will be 0 if EDX enumeration is not valid. 1422 * Initialized below to cstate, sub_cstate value when EDX is valid. 1423 */ 1424 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1425 eax = 0; 1426 } else { 1427 edx >>= MWAIT_SUBSTATE_SIZE; 1428 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1429 if (edx & MWAIT_SUBSTATE_MASK) { 1430 highest_cstate = i; 1431 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1432 } 1433 } 1434 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1435 (highest_subcstate - 1); 1436 } 1437 1438 /* 1439 * This should be a memory location in a cache line which is 1440 * unlikely to be touched by other processors. The actual 1441 * content is immaterial as it is not actually modified in any way. 1442 */ 1443 mwait_ptr = ¤t_thread_info()->flags; 1444 1445 wbinvd(); 1446 1447 while (1) { 1448 /* 1449 * The CLFLUSH is a workaround for erratum AAI65 for 1450 * the Xeon 7400 series. It's not clear it is actually 1451 * needed, but it should be harmless in either case. 1452 * The WBINVD is insufficient due to the spurious-wakeup 1453 * case where we return around the loop. 1454 */ 1455 mb(); 1456 clflush(mwait_ptr); 1457 mb(); 1458 __monitor(mwait_ptr, 0, 0); 1459 mb(); 1460 __mwait(eax, 0); 1461 /* 1462 * If NMI wants to wake up CPU0, start CPU0. 1463 */ 1464 if (wakeup_cpu0()) 1465 start_cpu0(); 1466 } 1467 } 1468 1469 static inline void hlt_play_dead(void) 1470 { 1471 if (__this_cpu_read(cpu_info.x86) >= 4) 1472 wbinvd(); 1473 1474 while (1) { 1475 native_halt(); 1476 /* 1477 * If NMI wants to wake up CPU0, start CPU0. 1478 */ 1479 if (wakeup_cpu0()) 1480 start_cpu0(); 1481 } 1482 } 1483 1484 void native_play_dead(void) 1485 { 1486 play_dead_common(); 1487 tboot_shutdown(TB_SHUTDOWN_WFS); 1488 1489 mwait_play_dead(); /* Only returns on failure */ 1490 if (cpuidle_play_dead()) 1491 hlt_play_dead(); 1492 } 1493 1494 #else /* ... !CONFIG_HOTPLUG_CPU */ 1495 int native_cpu_disable(void) 1496 { 1497 return -ENOSYS; 1498 } 1499 1500 void native_cpu_die(unsigned int cpu) 1501 { 1502 /* We said "no" in __cpu_disable */ 1503 BUG(); 1504 } 1505 1506 void native_play_dead(void) 1507 { 1508 BUG(); 1509 } 1510 1511 #endif 1512