1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * x86 SMP booting functions 4 * 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 7 * Copyright 2001 Andi Kleen, SuSE Labs. 8 * 9 * Much of the core SMP work is based on previous work by Thomas Radke, to 10 * whom a great many thanks are extended. 11 * 12 * Thanks to Intel for making available several different Pentium, 13 * Pentium Pro and Pentium-II/Xeon MP machines. 14 * Original development of Linux SMP code supported by Caldera. 15 * 16 * Fixes 17 * Felix Koop : NR_CPUS used properly 18 * Jose Renau : Handle single CPU case. 19 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 20 * Greg Wright : Fix for kernel stacks panic. 21 * Erich Boleyn : MP v1.4 and additional changes. 22 * Matthias Sattler : Changes for 2.1 kernel map. 23 * Michel Lespinasse : Changes for 2.1 kernel map. 24 * Michael Chastain : Change trampoline.S to gnu as. 25 * Alan Cox : Dumb bug: 'B' step PPro's are fine 26 * Ingo Molnar : Added APIC timers, based on code 27 * from Jose Renau 28 * Ingo Molnar : various cleanups and rewrites 29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 31 * Andi Kleen : Changed for SMP boot into long mode. 32 * Martin J. Bligh : Added support for multi-quad systems 33 * Dave Jones : Report invalid combinations of Athlon CPUs. 34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 35 * Andi Kleen : Converted to new state machine. 36 * Ashok Raj : CPU hotplug support 37 * Glauber Costa : i386 and x86_64 integration 38 */ 39 40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 41 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/export.h> 45 #include <linux/sched.h> 46 #include <linux/sched/topology.h> 47 #include <linux/sched/hotplug.h> 48 #include <linux/sched/task_stack.h> 49 #include <linux/percpu.h> 50 #include <linux/memblock.h> 51 #include <linux/err.h> 52 #include <linux/nmi.h> 53 #include <linux/tboot.h> 54 #include <linux/gfp.h> 55 #include <linux/cpuidle.h> 56 #include <linux/numa.h> 57 #include <linux/pgtable.h> 58 #include <linux/overflow.h> 59 60 #include <asm/acpi.h> 61 #include <asm/desc.h> 62 #include <asm/nmi.h> 63 #include <asm/irq.h> 64 #include <asm/realmode.h> 65 #include <asm/cpu.h> 66 #include <asm/numa.h> 67 #include <asm/tlbflush.h> 68 #include <asm/mtrr.h> 69 #include <asm/mwait.h> 70 #include <asm/apic.h> 71 #include <asm/io_apic.h> 72 #include <asm/fpu/api.h> 73 #include <asm/setup.h> 74 #include <asm/uv/uv.h> 75 #include <linux/mc146818rtc.h> 76 #include <asm/i8259.h> 77 #include <asm/misc.h> 78 #include <asm/qspinlock.h> 79 #include <asm/intel-family.h> 80 #include <asm/cpu_device_id.h> 81 #include <asm/spec-ctrl.h> 82 #include <asm/hw_irq.h> 83 #include <asm/stackprotector.h> 84 #include <asm/sev.h> 85 86 /* representing HT siblings of each logical CPU */ 87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 89 90 /* representing HT and core siblings of each logical CPU */ 91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 93 94 /* representing HT, core, and die siblings of each logical CPU */ 95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); 96 EXPORT_PER_CPU_SYMBOL(cpu_die_map); 97 98 /* Per CPU bogomips and other parameters */ 99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 100 EXPORT_PER_CPU_SYMBOL(cpu_info); 101 102 /* Logical package management. We might want to allocate that dynamically */ 103 unsigned int __max_logical_packages __read_mostly; 104 EXPORT_SYMBOL(__max_logical_packages); 105 static unsigned int logical_packages __read_mostly; 106 static unsigned int logical_die __read_mostly; 107 108 /* Maximum number of SMT threads on any online core */ 109 int __read_mostly __max_smt_threads = 1; 110 111 /* Flag to indicate if a complete sched domain rebuild is required */ 112 bool x86_topology_update; 113 114 int arch_update_cpu_topology(void) 115 { 116 int retval = x86_topology_update; 117 118 x86_topology_update = false; 119 return retval; 120 } 121 122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 123 { 124 unsigned long flags; 125 126 spin_lock_irqsave(&rtc_lock, flags); 127 CMOS_WRITE(0xa, 0xf); 128 spin_unlock_irqrestore(&rtc_lock, flags); 129 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = 130 start_eip >> 4; 131 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 132 start_eip & 0xf; 133 } 134 135 static inline void smpboot_restore_warm_reset_vector(void) 136 { 137 unsigned long flags; 138 139 /* 140 * Paranoid: Set warm reset code and vector here back 141 * to default values. 142 */ 143 spin_lock_irqsave(&rtc_lock, flags); 144 CMOS_WRITE(0, 0xf); 145 spin_unlock_irqrestore(&rtc_lock, flags); 146 147 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 148 } 149 150 /* 151 * Report back to the Boot Processor during boot time or to the caller processor 152 * during CPU online. 153 */ 154 static void smp_callin(void) 155 { 156 int cpuid; 157 158 /* 159 * If waken up by an INIT in an 82489DX configuration 160 * cpu_callout_mask guarantees we don't get here before 161 * an INIT_deassert IPI reaches our local APIC, so it is 162 * now safe to touch our local APIC. 163 */ 164 cpuid = smp_processor_id(); 165 166 /* 167 * the boot CPU has finished the init stage and is spinning 168 * on callin_map until we finish. We are free to set up this 169 * CPU, first the APIC. (this is probably redundant on most 170 * boards) 171 */ 172 apic_ap_setup(); 173 174 /* 175 * Save our processor parameters. Note: this information 176 * is needed for clock calibration. 177 */ 178 smp_store_cpu_info(cpuid); 179 180 /* 181 * The topology information must be up to date before 182 * calibrate_delay() and notify_cpu_starting(). 183 */ 184 set_cpu_sibling_map(raw_smp_processor_id()); 185 186 ap_init_aperfmperf(); 187 188 /* 189 * Get our bogomips. 190 * Update loops_per_jiffy in cpu_data. Previous call to 191 * smp_store_cpu_info() stored a value that is close but not as 192 * accurate as the value just calculated. 193 */ 194 calibrate_delay(); 195 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; 196 pr_debug("Stack at about %p\n", &cpuid); 197 198 wmb(); 199 200 notify_cpu_starting(cpuid); 201 202 /* 203 * Allow the master to continue. 204 */ 205 cpumask_set_cpu(cpuid, cpu_callin_mask); 206 } 207 208 static int cpu0_logical_apicid; 209 static int enable_start_cpu0; 210 /* 211 * Activate a secondary processor. 212 */ 213 static void notrace start_secondary(void *unused) 214 { 215 /* 216 * Don't put *anything* except direct CPU state initialization 217 * before cpu_init(), SMP booting is too fragile that we want to 218 * limit the things done here to the most necessary things. 219 */ 220 cr4_init(); 221 222 #ifdef CONFIG_X86_32 223 /* switch away from the initial page table */ 224 load_cr3(swapper_pg_dir); 225 __flush_tlb_all(); 226 #endif 227 cpu_init_secondary(); 228 rcu_cpu_starting(raw_smp_processor_id()); 229 x86_cpuinit.early_percpu_clock_init(); 230 smp_callin(); 231 232 enable_start_cpu0 = 0; 233 234 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 235 barrier(); 236 /* 237 * Check TSC synchronization with the boot CPU: 238 */ 239 check_tsc_sync_target(); 240 241 speculative_store_bypass_ht_init(); 242 243 /* 244 * Lock vector_lock, set CPU online and bring the vector 245 * allocator online. Online must be set with vector_lock held 246 * to prevent a concurrent irq setup/teardown from seeing a 247 * half valid vector space. 248 */ 249 lock_vector_lock(); 250 set_cpu_online(smp_processor_id(), true); 251 lapic_online(); 252 unlock_vector_lock(); 253 cpu_set_state_online(smp_processor_id()); 254 x86_platform.nmi_init(); 255 256 /* enable local interrupts */ 257 local_irq_enable(); 258 259 x86_cpuinit.setup_percpu_clockev(); 260 261 wmb(); 262 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 263 } 264 265 /** 266 * topology_is_primary_thread - Check whether CPU is the primary SMT thread 267 * @cpu: CPU to check 268 */ 269 bool topology_is_primary_thread(unsigned int cpu) 270 { 271 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu)); 272 } 273 274 /** 275 * topology_smt_supported - Check whether SMT is supported by the CPUs 276 */ 277 bool topology_smt_supported(void) 278 { 279 return smp_num_siblings > 1; 280 } 281 282 /** 283 * topology_phys_to_logical_pkg - Map a physical package id to a logical 284 * 285 * Returns logical package id or -1 if not found 286 */ 287 int topology_phys_to_logical_pkg(unsigned int phys_pkg) 288 { 289 int cpu; 290 291 for_each_possible_cpu(cpu) { 292 struct cpuinfo_x86 *c = &cpu_data(cpu); 293 294 if (c->initialized && c->phys_proc_id == phys_pkg) 295 return c->logical_proc_id; 296 } 297 return -1; 298 } 299 EXPORT_SYMBOL(topology_phys_to_logical_pkg); 300 /** 301 * topology_phys_to_logical_die - Map a physical die id to logical 302 * 303 * Returns logical die id or -1 if not found 304 */ 305 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu) 306 { 307 int cpu; 308 int proc_id = cpu_data(cur_cpu).phys_proc_id; 309 310 for_each_possible_cpu(cpu) { 311 struct cpuinfo_x86 *c = &cpu_data(cpu); 312 313 if (c->initialized && c->cpu_die_id == die_id && 314 c->phys_proc_id == proc_id) 315 return c->logical_die_id; 316 } 317 return -1; 318 } 319 EXPORT_SYMBOL(topology_phys_to_logical_die); 320 321 /** 322 * topology_update_package_map - Update the physical to logical package map 323 * @pkg: The physical package id as retrieved via CPUID 324 * @cpu: The cpu for which this is updated 325 */ 326 int topology_update_package_map(unsigned int pkg, unsigned int cpu) 327 { 328 int new; 329 330 /* Already available somewhere? */ 331 new = topology_phys_to_logical_pkg(pkg); 332 if (new >= 0) 333 goto found; 334 335 new = logical_packages++; 336 if (new != pkg) { 337 pr_info("CPU %u Converting physical %u to logical package %u\n", 338 cpu, pkg, new); 339 } 340 found: 341 cpu_data(cpu).logical_proc_id = new; 342 return 0; 343 } 344 /** 345 * topology_update_die_map - Update the physical to logical die map 346 * @die: The die id as retrieved via CPUID 347 * @cpu: The cpu for which this is updated 348 */ 349 int topology_update_die_map(unsigned int die, unsigned int cpu) 350 { 351 int new; 352 353 /* Already available somewhere? */ 354 new = topology_phys_to_logical_die(die, cpu); 355 if (new >= 0) 356 goto found; 357 358 new = logical_die++; 359 if (new != die) { 360 pr_info("CPU %u Converting physical %u to logical die %u\n", 361 cpu, die, new); 362 } 363 found: 364 cpu_data(cpu).logical_die_id = new; 365 return 0; 366 } 367 368 void __init smp_store_boot_cpu_info(void) 369 { 370 int id = 0; /* CPU 0 */ 371 struct cpuinfo_x86 *c = &cpu_data(id); 372 373 *c = boot_cpu_data; 374 c->cpu_index = id; 375 topology_update_package_map(c->phys_proc_id, id); 376 topology_update_die_map(c->cpu_die_id, id); 377 c->initialized = true; 378 } 379 380 /* 381 * The bootstrap kernel entry code has set these up. Save them for 382 * a given CPU 383 */ 384 void smp_store_cpu_info(int id) 385 { 386 struct cpuinfo_x86 *c = &cpu_data(id); 387 388 /* Copy boot_cpu_data only on the first bringup */ 389 if (!c->initialized) 390 *c = boot_cpu_data; 391 c->cpu_index = id; 392 /* 393 * During boot time, CPU0 has this setup already. Save the info when 394 * bringing up AP or offlined CPU0. 395 */ 396 identify_secondary_cpu(c); 397 c->initialized = true; 398 } 399 400 static bool 401 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 402 { 403 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 404 405 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 406 } 407 408 static bool 409 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 410 { 411 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 412 413 return !WARN_ONCE(!topology_same_node(c, o), 414 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 415 "[node: %d != %d]. Ignoring dependency.\n", 416 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 417 } 418 419 #define link_mask(mfunc, c1, c2) \ 420 do { \ 421 cpumask_set_cpu((c1), mfunc(c2)); \ 422 cpumask_set_cpu((c2), mfunc(c1)); \ 423 } while (0) 424 425 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 426 { 427 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 428 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 429 430 if (c->phys_proc_id == o->phys_proc_id && 431 c->cpu_die_id == o->cpu_die_id && 432 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) { 433 if (c->cpu_core_id == o->cpu_core_id) 434 return topology_sane(c, o, "smt"); 435 436 if ((c->cu_id != 0xff) && 437 (o->cu_id != 0xff) && 438 (c->cu_id == o->cu_id)) 439 return topology_sane(c, o, "smt"); 440 } 441 442 } else if (c->phys_proc_id == o->phys_proc_id && 443 c->cpu_die_id == o->cpu_die_id && 444 c->cpu_core_id == o->cpu_core_id) { 445 return topology_sane(c, o, "smt"); 446 } 447 448 return false; 449 } 450 451 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 452 { 453 if (c->phys_proc_id == o->phys_proc_id && 454 c->cpu_die_id == o->cpu_die_id) 455 return true; 456 return false; 457 } 458 459 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 460 { 461 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 462 463 /* If the arch didn't set up l2c_id, fall back to SMT */ 464 if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID) 465 return match_smt(c, o); 466 467 /* Do not match if L2 cache id does not match: */ 468 if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2)) 469 return false; 470 471 return topology_sane(c, o, "l2c"); 472 } 473 474 /* 475 * Unlike the other levels, we do not enforce keeping a 476 * multicore group inside a NUMA node. If this happens, we will 477 * discard the MC level of the topology later. 478 */ 479 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 480 { 481 if (c->phys_proc_id == o->phys_proc_id) 482 return true; 483 return false; 484 } 485 486 /* 487 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs. 488 * 489 * Any Intel CPU that has multiple nodes per package and does not 490 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology. 491 * 492 * When in SNC mode, these CPUs enumerate an LLC that is shared 493 * by multiple NUMA nodes. The LLC is shared for off-package data 494 * access but private to the NUMA node (half of the package) for 495 * on-package access. CPUID (the source of the information about 496 * the LLC) can only enumerate the cache as shared or unshared, 497 * but not this particular configuration. 498 */ 499 500 static const struct x86_cpu_id intel_cod_cpu[] = { 501 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */ 502 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */ 503 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */ 504 {} 505 }; 506 507 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 508 { 509 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu); 510 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 511 bool intel_snc = id && id->driver_data; 512 513 /* Do not match if we do not have a valid APICID for cpu: */ 514 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID) 515 return false; 516 517 /* Do not match if LLC id does not match: */ 518 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2)) 519 return false; 520 521 /* 522 * Allow the SNC topology without warning. Return of false 523 * means 'c' does not share the LLC of 'o'. This will be 524 * reflected to userspace. 525 */ 526 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc) 527 return false; 528 529 return topology_sane(c, o, "llc"); 530 } 531 532 533 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC) 534 static inline int x86_sched_itmt_flags(void) 535 { 536 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; 537 } 538 539 #ifdef CONFIG_SCHED_MC 540 static int x86_core_flags(void) 541 { 542 return cpu_core_flags() | x86_sched_itmt_flags(); 543 } 544 #endif 545 #ifdef CONFIG_SCHED_SMT 546 static int x86_smt_flags(void) 547 { 548 return cpu_smt_flags() | x86_sched_itmt_flags(); 549 } 550 #endif 551 #ifdef CONFIG_SCHED_CLUSTER 552 static int x86_cluster_flags(void) 553 { 554 return cpu_cluster_flags() | x86_sched_itmt_flags(); 555 } 556 #endif 557 #endif 558 559 static struct sched_domain_topology_level x86_numa_in_package_topology[] = { 560 #ifdef CONFIG_SCHED_SMT 561 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 562 #endif 563 #ifdef CONFIG_SCHED_CLUSTER 564 { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) }, 565 #endif 566 #ifdef CONFIG_SCHED_MC 567 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 568 #endif 569 { NULL, }, 570 }; 571 572 static struct sched_domain_topology_level x86_hybrid_topology[] = { 573 #ifdef CONFIG_SCHED_SMT 574 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 575 #endif 576 #ifdef CONFIG_SCHED_MC 577 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 578 #endif 579 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 580 { NULL, }, 581 }; 582 583 static struct sched_domain_topology_level x86_topology[] = { 584 #ifdef CONFIG_SCHED_SMT 585 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 586 #endif 587 #ifdef CONFIG_SCHED_CLUSTER 588 { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) }, 589 #endif 590 #ifdef CONFIG_SCHED_MC 591 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 592 #endif 593 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 594 { NULL, }, 595 }; 596 597 /* 598 * Set if a package/die has multiple NUMA nodes inside. 599 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel 600 * Sub-NUMA Clustering have this. 601 */ 602 static bool x86_has_numa_in_package; 603 604 void set_cpu_sibling_map(int cpu) 605 { 606 bool has_smt = smp_num_siblings > 1; 607 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; 608 struct cpuinfo_x86 *c = &cpu_data(cpu); 609 struct cpuinfo_x86 *o; 610 int i, threads; 611 612 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 613 614 if (!has_mp) { 615 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 616 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 617 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu)); 618 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 619 cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); 620 c->booted_cores = 1; 621 return; 622 } 623 624 for_each_cpu(i, cpu_sibling_setup_mask) { 625 o = &cpu_data(i); 626 627 if (match_pkg(c, o) && !topology_same_node(c, o)) 628 x86_has_numa_in_package = true; 629 630 if ((i == cpu) || (has_smt && match_smt(c, o))) 631 link_mask(topology_sibling_cpumask, cpu, i); 632 633 if ((i == cpu) || (has_mp && match_llc(c, o))) 634 link_mask(cpu_llc_shared_mask, cpu, i); 635 636 if ((i == cpu) || (has_mp && match_l2c(c, o))) 637 link_mask(cpu_l2c_shared_mask, cpu, i); 638 639 if ((i == cpu) || (has_mp && match_die(c, o))) 640 link_mask(topology_die_cpumask, cpu, i); 641 } 642 643 threads = cpumask_weight(topology_sibling_cpumask(cpu)); 644 if (threads > __max_smt_threads) 645 __max_smt_threads = threads; 646 647 for_each_cpu(i, topology_sibling_cpumask(cpu)) 648 cpu_data(i).smt_active = threads > 1; 649 650 /* 651 * This needs a separate iteration over the cpus because we rely on all 652 * topology_sibling_cpumask links to be set-up. 653 */ 654 for_each_cpu(i, cpu_sibling_setup_mask) { 655 o = &cpu_data(i); 656 657 if ((i == cpu) || (has_mp && match_pkg(c, o))) { 658 link_mask(topology_core_cpumask, cpu, i); 659 660 /* 661 * Does this new cpu bringup a new core? 662 */ 663 if (threads == 1) { 664 /* 665 * for each core in package, increment 666 * the booted_cores for this new cpu 667 */ 668 if (cpumask_first( 669 topology_sibling_cpumask(i)) == i) 670 c->booted_cores++; 671 /* 672 * increment the core count for all 673 * the other cpus in this package 674 */ 675 if (i != cpu) 676 cpu_data(i).booted_cores++; 677 } else if (i != cpu && !c->booted_cores) 678 c->booted_cores = cpu_data(i).booted_cores; 679 } 680 } 681 } 682 683 /* maps the cpu to the sched domain representing multi-core */ 684 const struct cpumask *cpu_coregroup_mask(int cpu) 685 { 686 return cpu_llc_shared_mask(cpu); 687 } 688 689 const struct cpumask *cpu_clustergroup_mask(int cpu) 690 { 691 return cpu_l2c_shared_mask(cpu); 692 } 693 694 static void impress_friends(void) 695 { 696 int cpu; 697 unsigned long bogosum = 0; 698 /* 699 * Allow the user to impress friends. 700 */ 701 pr_debug("Before bogomips\n"); 702 for_each_possible_cpu(cpu) 703 if (cpumask_test_cpu(cpu, cpu_callout_mask)) 704 bogosum += cpu_data(cpu).loops_per_jiffy; 705 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 706 num_online_cpus(), 707 bogosum/(500000/HZ), 708 (bogosum/(5000/HZ))%100); 709 710 pr_debug("Before bogocount - setting activated=1\n"); 711 } 712 713 void __inquire_remote_apic(int apicid) 714 { 715 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 716 const char * const names[] = { "ID", "VERSION", "SPIV" }; 717 int timeout; 718 u32 status; 719 720 pr_info("Inquiring remote APIC 0x%x...\n", apicid); 721 722 for (i = 0; i < ARRAY_SIZE(regs); i++) { 723 pr_info("... APIC 0x%x %s: ", apicid, names[i]); 724 725 /* 726 * Wait for idle. 727 */ 728 status = safe_apic_wait_icr_idle(); 729 if (status) 730 pr_cont("a previous APIC delivery may have failed\n"); 731 732 apic_icr_write(APIC_DM_REMRD | regs[i], apicid); 733 734 timeout = 0; 735 do { 736 udelay(100); 737 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 738 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 739 740 switch (status) { 741 case APIC_ICR_RR_VALID: 742 status = apic_read(APIC_RRR); 743 pr_cont("%08x\n", status); 744 break; 745 default: 746 pr_cont("failed\n"); 747 } 748 } 749 } 750 751 /* 752 * The Multiprocessor Specification 1.4 (1997) example code suggests 753 * that there should be a 10ms delay between the BSP asserting INIT 754 * and de-asserting INIT, when starting a remote processor. 755 * But that slows boot and resume on modern processors, which include 756 * many cores and don't require that delay. 757 * 758 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 759 * Modern processor families are quirked to remove the delay entirely. 760 */ 761 #define UDELAY_10MS_DEFAULT 10000 762 763 static unsigned int init_udelay = UINT_MAX; 764 765 static int __init cpu_init_udelay(char *str) 766 { 767 get_option(&str, &init_udelay); 768 769 return 0; 770 } 771 early_param("cpu_init_udelay", cpu_init_udelay); 772 773 static void __init smp_quirk_init_udelay(void) 774 { 775 /* if cmdline changed it from default, leave it alone */ 776 if (init_udelay != UINT_MAX) 777 return; 778 779 /* if modern processor, use no delay */ 780 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 781 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || 782 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 783 init_udelay = 0; 784 return; 785 } 786 /* else, use legacy delay */ 787 init_udelay = UDELAY_10MS_DEFAULT; 788 } 789 790 /* 791 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 792 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 793 * won't ... remember to clear down the APIC, etc later. 794 */ 795 int 796 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) 797 { 798 u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 799 unsigned long send_status, accept_status = 0; 800 int maxlvt; 801 802 /* Target chip */ 803 /* Boot on the stack */ 804 /* Kick the second */ 805 apic_icr_write(APIC_DM_NMI | dm, apicid); 806 807 pr_debug("Waiting for send to finish...\n"); 808 send_status = safe_apic_wait_icr_idle(); 809 810 /* 811 * Give the other CPU some time to accept the IPI. 812 */ 813 udelay(200); 814 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 815 maxlvt = lapic_get_maxlvt(); 816 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 817 apic_write(APIC_ESR, 0); 818 accept_status = (apic_read(APIC_ESR) & 0xEF); 819 } 820 pr_debug("NMI sent\n"); 821 822 if (send_status) 823 pr_err("APIC never delivered???\n"); 824 if (accept_status) 825 pr_err("APIC delivery error (%lx)\n", accept_status); 826 827 return (send_status | accept_status); 828 } 829 830 static int 831 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) 832 { 833 unsigned long send_status = 0, accept_status = 0; 834 int maxlvt, num_starts, j; 835 836 maxlvt = lapic_get_maxlvt(); 837 838 /* 839 * Be paranoid about clearing APIC errors. 840 */ 841 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 842 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 843 apic_write(APIC_ESR, 0); 844 apic_read(APIC_ESR); 845 } 846 847 pr_debug("Asserting INIT\n"); 848 849 /* 850 * Turn INIT on target chip 851 */ 852 /* 853 * Send IPI 854 */ 855 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, 856 phys_apicid); 857 858 pr_debug("Waiting for send to finish...\n"); 859 send_status = safe_apic_wait_icr_idle(); 860 861 udelay(init_udelay); 862 863 pr_debug("Deasserting INIT\n"); 864 865 /* Target chip */ 866 /* Send IPI */ 867 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 868 869 pr_debug("Waiting for send to finish...\n"); 870 send_status = safe_apic_wait_icr_idle(); 871 872 mb(); 873 874 /* 875 * Should we send STARTUP IPIs ? 876 * 877 * Determine this based on the APIC version. 878 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 879 */ 880 if (APIC_INTEGRATED(boot_cpu_apic_version)) 881 num_starts = 2; 882 else 883 num_starts = 0; 884 885 /* 886 * Run STARTUP IPI loop. 887 */ 888 pr_debug("#startup loops: %d\n", num_starts); 889 890 for (j = 1; j <= num_starts; j++) { 891 pr_debug("Sending STARTUP #%d\n", j); 892 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 893 apic_write(APIC_ESR, 0); 894 apic_read(APIC_ESR); 895 pr_debug("After apic_write\n"); 896 897 /* 898 * STARTUP IPI 899 */ 900 901 /* Target chip */ 902 /* Boot on the stack */ 903 /* Kick the second */ 904 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 905 phys_apicid); 906 907 /* 908 * Give the other CPU some time to accept the IPI. 909 */ 910 if (init_udelay == 0) 911 udelay(10); 912 else 913 udelay(300); 914 915 pr_debug("Startup point 1\n"); 916 917 pr_debug("Waiting for send to finish...\n"); 918 send_status = safe_apic_wait_icr_idle(); 919 920 /* 921 * Give the other CPU some time to accept the IPI. 922 */ 923 if (init_udelay == 0) 924 udelay(10); 925 else 926 udelay(200); 927 928 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 929 apic_write(APIC_ESR, 0); 930 accept_status = (apic_read(APIC_ESR) & 0xEF); 931 if (send_status || accept_status) 932 break; 933 } 934 pr_debug("After Startup\n"); 935 936 if (send_status) 937 pr_err("APIC never delivered???\n"); 938 if (accept_status) 939 pr_err("APIC delivery error (%lx)\n", accept_status); 940 941 return (send_status | accept_status); 942 } 943 944 /* reduce the number of lines printed when booting a large cpu count system */ 945 static void announce_cpu(int cpu, int apicid) 946 { 947 static int current_node = NUMA_NO_NODE; 948 int node = early_cpu_to_node(cpu); 949 static int width, node_width; 950 951 if (!width) 952 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 953 954 if (!node_width) 955 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 956 957 if (cpu == 1) 958 printk(KERN_INFO "x86: Booting SMP configuration:\n"); 959 960 if (system_state < SYSTEM_RUNNING) { 961 if (node != current_node) { 962 if (current_node > (-1)) 963 pr_cont("\n"); 964 current_node = node; 965 966 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 967 node_width - num_digits(node), " ", node); 968 } 969 970 /* Add padding for the BSP */ 971 if (cpu == 1) 972 pr_cont("%*s", width + 1, " "); 973 974 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 975 976 } else 977 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 978 node, cpu, apicid); 979 } 980 981 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) 982 { 983 int cpu; 984 985 cpu = smp_processor_id(); 986 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) 987 return NMI_HANDLED; 988 989 return NMI_DONE; 990 } 991 992 /* 993 * Wake up AP by INIT, INIT, STARTUP sequence. 994 * 995 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS 996 * boot-strap code which is not a desired behavior for waking up BSP. To 997 * void the boot-strap code, wake up CPU0 by NMI instead. 998 * 999 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined 1000 * (i.e. physically hot removed and then hot added), NMI won't wake it up. 1001 * We'll change this code in the future to wake up hard offlined CPU0 if 1002 * real platform and request are available. 1003 */ 1004 static int 1005 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, 1006 int *cpu0_nmi_registered) 1007 { 1008 int id; 1009 int boot_error; 1010 1011 preempt_disable(); 1012 1013 /* 1014 * Wake up AP by INIT, INIT, STARTUP sequence. 1015 */ 1016 if (cpu) { 1017 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); 1018 goto out; 1019 } 1020 1021 /* 1022 * Wake up BSP by nmi. 1023 * 1024 * Register a NMI handler to help wake up CPU0. 1025 */ 1026 boot_error = register_nmi_handler(NMI_LOCAL, 1027 wakeup_cpu0_nmi, 0, "wake_cpu0"); 1028 1029 if (!boot_error) { 1030 enable_start_cpu0 = 1; 1031 *cpu0_nmi_registered = 1; 1032 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid; 1033 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); 1034 } 1035 1036 out: 1037 preempt_enable(); 1038 1039 return boot_error; 1040 } 1041 1042 int common_cpu_up(unsigned int cpu, struct task_struct *idle) 1043 { 1044 int ret; 1045 1046 /* Just in case we booted with a single CPU. */ 1047 alternatives_enable_smp(); 1048 1049 per_cpu(current_task, cpu) = idle; 1050 cpu_init_stack_canary(cpu, idle); 1051 1052 /* Initialize the interrupt stack(s) */ 1053 ret = irq_init_percpu_irqstack(cpu); 1054 if (ret) 1055 return ret; 1056 1057 #ifdef CONFIG_X86_32 1058 /* Stack for startup_32 can be just as for start_secondary onwards */ 1059 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle); 1060 #else 1061 initial_gs = per_cpu_offset(cpu); 1062 #endif 1063 return 0; 1064 } 1065 1066 /* 1067 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 1068 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 1069 * Returns zero if CPU booted OK, else error code from 1070 * ->wakeup_secondary_cpu. 1071 */ 1072 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle, 1073 int *cpu0_nmi_registered) 1074 { 1075 /* start_ip had better be page-aligned! */ 1076 unsigned long start_ip = real_mode_header->trampoline_start; 1077 1078 unsigned long boot_error = 0; 1079 unsigned long timeout; 1080 1081 #ifdef CONFIG_X86_64 1082 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */ 1083 if (apic->wakeup_secondary_cpu_64) 1084 start_ip = real_mode_header->trampoline_start64; 1085 #endif 1086 idle->thread.sp = (unsigned long)task_pt_regs(idle); 1087 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); 1088 initial_code = (unsigned long)start_secondary; 1089 initial_stack = idle->thread.sp; 1090 1091 /* Enable the espfix hack for this CPU */ 1092 init_espfix_ap(cpu); 1093 1094 /* So we see what's up */ 1095 announce_cpu(cpu, apicid); 1096 1097 /* 1098 * This grunge runs the startup process for 1099 * the targeted processor. 1100 */ 1101 1102 if (x86_platform.legacy.warm_reset) { 1103 1104 pr_debug("Setting warm reset code and vector.\n"); 1105 1106 smpboot_setup_warm_reset_vector(start_ip); 1107 /* 1108 * Be paranoid about clearing APIC errors. 1109 */ 1110 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 1111 apic_write(APIC_ESR, 0); 1112 apic_read(APIC_ESR); 1113 } 1114 } 1115 1116 /* 1117 * AP might wait on cpu_callout_mask in cpu_init() with 1118 * cpu_initialized_mask set if previous attempt to online 1119 * it timed-out. Clear cpu_initialized_mask so that after 1120 * INIT/SIPI it could start with a clean state. 1121 */ 1122 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1123 smp_mb(); 1124 1125 /* 1126 * Wake up a CPU in difference cases: 1127 * - Use a method from the APIC driver if one defined, with wakeup 1128 * straight to 64-bit mode preferred over wakeup to RM. 1129 * Otherwise, 1130 * - Use an INIT boot APIC message for APs or NMI for BSP. 1131 */ 1132 if (apic->wakeup_secondary_cpu_64) 1133 boot_error = apic->wakeup_secondary_cpu_64(apicid, start_ip); 1134 else if (apic->wakeup_secondary_cpu) 1135 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); 1136 else 1137 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, 1138 cpu0_nmi_registered); 1139 1140 if (!boot_error) { 1141 /* 1142 * Wait 10s total for first sign of life from AP 1143 */ 1144 boot_error = -1; 1145 timeout = jiffies + 10*HZ; 1146 while (time_before(jiffies, timeout)) { 1147 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { 1148 /* 1149 * Tell AP to proceed with initialization 1150 */ 1151 cpumask_set_cpu(cpu, cpu_callout_mask); 1152 boot_error = 0; 1153 break; 1154 } 1155 schedule(); 1156 } 1157 } 1158 1159 if (!boot_error) { 1160 /* 1161 * Wait till AP completes initial initialization 1162 */ 1163 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { 1164 /* 1165 * Allow other tasks to run while we wait for the 1166 * AP to come online. This also gives a chance 1167 * for the MTRR work(triggered by the AP coming online) 1168 * to be completed in the stop machine context. 1169 */ 1170 schedule(); 1171 } 1172 } 1173 1174 if (x86_platform.legacy.warm_reset) { 1175 /* 1176 * Cleanup possible dangling ends... 1177 */ 1178 smpboot_restore_warm_reset_vector(); 1179 } 1180 1181 return boot_error; 1182 } 1183 1184 int native_cpu_up(unsigned int cpu, struct task_struct *tidle) 1185 { 1186 int apicid = apic->cpu_present_to_apicid(cpu); 1187 int cpu0_nmi_registered = 0; 1188 unsigned long flags; 1189 int err, ret = 0; 1190 1191 lockdep_assert_irqs_enabled(); 1192 1193 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 1194 1195 if (apicid == BAD_APICID || 1196 !physid_isset(apicid, phys_cpu_present_map) || 1197 !apic->apic_id_valid(apicid)) { 1198 pr_err("%s: bad cpu %d\n", __func__, cpu); 1199 return -EINVAL; 1200 } 1201 1202 /* 1203 * Already booted CPU? 1204 */ 1205 if (cpumask_test_cpu(cpu, cpu_callin_mask)) { 1206 pr_debug("do_boot_cpu %d Already started\n", cpu); 1207 return -ENOSYS; 1208 } 1209 1210 /* 1211 * Save current MTRR state in case it was changed since early boot 1212 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 1213 */ 1214 mtrr_save_state(); 1215 1216 /* x86 CPUs take themselves offline, so delayed offline is OK. */ 1217 err = cpu_check_up_prepare(cpu); 1218 if (err && err != -EBUSY) 1219 return err; 1220 1221 /* the FPU context is blank, nobody can own it */ 1222 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; 1223 1224 err = common_cpu_up(cpu, tidle); 1225 if (err) 1226 return err; 1227 1228 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered); 1229 if (err) { 1230 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 1231 ret = -EIO; 1232 goto unreg_nmi; 1233 } 1234 1235 /* 1236 * Check TSC synchronization with the AP (keep irqs disabled 1237 * while doing so): 1238 */ 1239 local_irq_save(flags); 1240 check_tsc_sync_source(cpu); 1241 local_irq_restore(flags); 1242 1243 while (!cpu_online(cpu)) { 1244 cpu_relax(); 1245 touch_nmi_watchdog(); 1246 } 1247 1248 unreg_nmi: 1249 /* 1250 * Clean up the nmi handler. Do this after the callin and callout sync 1251 * to avoid impact of possible long unregister time. 1252 */ 1253 if (cpu0_nmi_registered) 1254 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); 1255 1256 return ret; 1257 } 1258 1259 /** 1260 * arch_disable_smp_support() - disables SMP support for x86 at runtime 1261 */ 1262 void arch_disable_smp_support(void) 1263 { 1264 disable_ioapic_support(); 1265 } 1266 1267 /* 1268 * Fall back to non SMP mode after errors. 1269 * 1270 * RED-PEN audit/test this more. I bet there is more state messed up here. 1271 */ 1272 static __init void disable_smp(void) 1273 { 1274 pr_info("SMP disabled\n"); 1275 1276 disable_ioapic_support(); 1277 1278 init_cpu_present(cpumask_of(0)); 1279 init_cpu_possible(cpumask_of(0)); 1280 1281 if (smp_found_config) 1282 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1283 else 1284 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1285 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1286 cpumask_set_cpu(0, topology_core_cpumask(0)); 1287 cpumask_set_cpu(0, topology_die_cpumask(0)); 1288 } 1289 1290 /* 1291 * Various sanity checks. 1292 */ 1293 static void __init smp_sanity_check(void) 1294 { 1295 preempt_disable(); 1296 1297 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) 1298 if (def_to_bigsmp && nr_cpu_ids > 8) { 1299 unsigned int cpu; 1300 unsigned nr; 1301 1302 pr_warn("More than 8 CPUs detected - skipping them\n" 1303 "Use CONFIG_X86_BIGSMP\n"); 1304 1305 nr = 0; 1306 for_each_present_cpu(cpu) { 1307 if (nr >= 8) 1308 set_cpu_present(cpu, false); 1309 nr++; 1310 } 1311 1312 nr = 0; 1313 for_each_possible_cpu(cpu) { 1314 if (nr >= 8) 1315 set_cpu_possible(cpu, false); 1316 nr++; 1317 } 1318 1319 set_nr_cpu_ids(8); 1320 } 1321 #endif 1322 1323 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 1324 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", 1325 hard_smp_processor_id()); 1326 1327 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1328 } 1329 1330 /* 1331 * Should not be necessary because the MP table should list the boot 1332 * CPU too, but we do it for the sake of robustness anyway. 1333 */ 1334 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { 1335 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", 1336 boot_cpu_physical_apicid); 1337 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1338 } 1339 preempt_enable(); 1340 } 1341 1342 static void __init smp_cpu_index_default(void) 1343 { 1344 int i; 1345 struct cpuinfo_x86 *c; 1346 1347 for_each_possible_cpu(i) { 1348 c = &cpu_data(i); 1349 /* mark all to hotplug */ 1350 c->cpu_index = nr_cpu_ids; 1351 } 1352 } 1353 1354 static void __init smp_get_logical_apicid(void) 1355 { 1356 if (x2apic_mode) 1357 cpu0_logical_apicid = apic_read(APIC_LDR); 1358 else 1359 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 1360 } 1361 1362 void __init smp_prepare_cpus_common(void) 1363 { 1364 unsigned int i; 1365 1366 smp_cpu_index_default(); 1367 1368 /* 1369 * Setup boot CPU information 1370 */ 1371 smp_store_boot_cpu_info(); /* Final full version of the data */ 1372 cpumask_copy(cpu_callin_mask, cpumask_of(0)); 1373 mb(); 1374 1375 for_each_possible_cpu(i) { 1376 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1377 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1378 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); 1379 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1380 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL); 1381 } 1382 1383 /* 1384 * Set 'default' x86 topology, this matches default_topology() in that 1385 * it has NUMA nodes as a topology level. See also 1386 * native_smp_cpus_done(). 1387 * 1388 * Must be done before set_cpus_sibling_map() is ran. 1389 */ 1390 set_sched_topology(x86_topology); 1391 1392 set_cpu_sibling_map(0); 1393 } 1394 1395 /* 1396 * Prepare for SMP bootup. 1397 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter 1398 * for common interface support. 1399 */ 1400 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1401 { 1402 smp_prepare_cpus_common(); 1403 1404 smp_sanity_check(); 1405 1406 switch (apic_intr_mode) { 1407 case APIC_PIC: 1408 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1409 disable_smp(); 1410 return; 1411 case APIC_SYMMETRIC_IO_NO_ROUTING: 1412 disable_smp(); 1413 /* Setup local timer */ 1414 x86_init.timers.setup_percpu_clockev(); 1415 return; 1416 case APIC_VIRTUAL_WIRE: 1417 case APIC_SYMMETRIC_IO: 1418 break; 1419 } 1420 1421 /* Setup local timer */ 1422 x86_init.timers.setup_percpu_clockev(); 1423 1424 smp_get_logical_apicid(); 1425 1426 pr_info("CPU0: "); 1427 print_cpu_info(&cpu_data(0)); 1428 1429 uv_system_init(); 1430 1431 set_mtrr_aps_delayed_init(); 1432 1433 smp_quirk_init_udelay(); 1434 1435 speculative_store_bypass_ht_init(); 1436 1437 snp_set_wakeup_secondary_cpu(); 1438 } 1439 1440 void arch_thaw_secondary_cpus_begin(void) 1441 { 1442 set_mtrr_aps_delayed_init(); 1443 } 1444 1445 void arch_thaw_secondary_cpus_end(void) 1446 { 1447 mtrr_aps_init(); 1448 } 1449 1450 /* 1451 * Early setup to make printk work. 1452 */ 1453 void __init native_smp_prepare_boot_cpu(void) 1454 { 1455 int me = smp_processor_id(); 1456 switch_to_new_gdt(me); 1457 /* already set me in cpu_online_mask in boot_cpu_init() */ 1458 cpumask_set_cpu(me, cpu_callout_mask); 1459 cpu_set_state_online(me); 1460 native_pv_lock_init(); 1461 } 1462 1463 void __init calculate_max_logical_packages(void) 1464 { 1465 int ncpus; 1466 1467 /* 1468 * Today neither Intel nor AMD support heterogeneous systems so 1469 * extrapolate the boot cpu's data to all packages. 1470 */ 1471 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads(); 1472 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); 1473 pr_info("Max logical packages: %u\n", __max_logical_packages); 1474 } 1475 1476 void __init native_smp_cpus_done(unsigned int max_cpus) 1477 { 1478 pr_debug("Boot done\n"); 1479 1480 calculate_max_logical_packages(); 1481 1482 /* XXX for now assume numa-in-package and hybrid don't overlap */ 1483 if (x86_has_numa_in_package) 1484 set_sched_topology(x86_numa_in_package_topology); 1485 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) 1486 set_sched_topology(x86_hybrid_topology); 1487 1488 nmi_selftest(); 1489 impress_friends(); 1490 mtrr_aps_init(); 1491 } 1492 1493 static int __initdata setup_possible_cpus = -1; 1494 static int __init _setup_possible_cpus(char *str) 1495 { 1496 get_option(&str, &setup_possible_cpus); 1497 return 0; 1498 } 1499 early_param("possible_cpus", _setup_possible_cpus); 1500 1501 1502 /* 1503 * cpu_possible_mask should be static, it cannot change as cpu's 1504 * are onlined, or offlined. The reason is per-cpu data-structures 1505 * are allocated by some modules at init time, and don't expect to 1506 * do this dynamically on cpu arrival/departure. 1507 * cpu_present_mask on the other hand can change dynamically. 1508 * In case when cpu_hotplug is not compiled, then we resort to current 1509 * behaviour, which is cpu_possible == cpu_present. 1510 * - Ashok Raj 1511 * 1512 * Three ways to find out the number of additional hotplug CPUs: 1513 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1514 * - The user can overwrite it with possible_cpus=NUM 1515 * - Otherwise don't reserve additional CPUs. 1516 * We do this because additional CPUs waste a lot of memory. 1517 * -AK 1518 */ 1519 __init void prefill_possible_map(void) 1520 { 1521 int i, possible; 1522 1523 /* No boot processor was found in mptable or ACPI MADT */ 1524 if (!num_processors) { 1525 if (boot_cpu_has(X86_FEATURE_APIC)) { 1526 int apicid = boot_cpu_physical_apicid; 1527 int cpu = hard_smp_processor_id(); 1528 1529 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu); 1530 1531 /* Make sure boot cpu is enumerated */ 1532 if (apic->cpu_present_to_apicid(0) == BAD_APICID && 1533 apic->apic_id_valid(apicid)) 1534 generic_processor_info(apicid, boot_cpu_apic_version); 1535 } 1536 1537 if (!num_processors) 1538 num_processors = 1; 1539 } 1540 1541 i = setup_max_cpus ?: 1; 1542 if (setup_possible_cpus == -1) { 1543 possible = num_processors; 1544 #ifdef CONFIG_HOTPLUG_CPU 1545 if (setup_max_cpus) 1546 possible += disabled_cpus; 1547 #else 1548 if (possible > i) 1549 possible = i; 1550 #endif 1551 } else 1552 possible = setup_possible_cpus; 1553 1554 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1555 1556 /* nr_cpu_ids could be reduced via nr_cpus= */ 1557 if (possible > nr_cpu_ids) { 1558 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n", 1559 possible, nr_cpu_ids); 1560 possible = nr_cpu_ids; 1561 } 1562 1563 #ifdef CONFIG_HOTPLUG_CPU 1564 if (!setup_max_cpus) 1565 #endif 1566 if (possible > i) { 1567 pr_warn("%d Processors exceeds max_cpus limit of %u\n", 1568 possible, setup_max_cpus); 1569 possible = i; 1570 } 1571 1572 set_nr_cpu_ids(possible); 1573 1574 pr_info("Allowing %d CPUs, %d hotplug CPUs\n", 1575 possible, max_t(int, possible - num_processors, 0)); 1576 1577 reset_cpu_possible_mask(); 1578 1579 for (i = 0; i < possible; i++) 1580 set_cpu_possible(i, true); 1581 } 1582 1583 #ifdef CONFIG_HOTPLUG_CPU 1584 1585 /* Recompute SMT state for all CPUs on offline */ 1586 static void recompute_smt_state(void) 1587 { 1588 int max_threads, cpu; 1589 1590 max_threads = 0; 1591 for_each_online_cpu (cpu) { 1592 int threads = cpumask_weight(topology_sibling_cpumask(cpu)); 1593 1594 if (threads > max_threads) 1595 max_threads = threads; 1596 } 1597 __max_smt_threads = max_threads; 1598 } 1599 1600 static void remove_siblinginfo(int cpu) 1601 { 1602 int sibling; 1603 struct cpuinfo_x86 *c = &cpu_data(cpu); 1604 1605 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1606 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1607 /*/ 1608 * last thread sibling in this cpu core going down 1609 */ 1610 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1611 cpu_data(sibling).booted_cores--; 1612 } 1613 1614 for_each_cpu(sibling, topology_die_cpumask(cpu)) 1615 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); 1616 1617 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) { 1618 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1619 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1) 1620 cpu_data(sibling).smt_active = false; 1621 } 1622 1623 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1624 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1625 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu)) 1626 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling)); 1627 cpumask_clear(cpu_llc_shared_mask(cpu)); 1628 cpumask_clear(cpu_l2c_shared_mask(cpu)); 1629 cpumask_clear(topology_sibling_cpumask(cpu)); 1630 cpumask_clear(topology_core_cpumask(cpu)); 1631 cpumask_clear(topology_die_cpumask(cpu)); 1632 c->cpu_core_id = 0; 1633 c->booted_cores = 0; 1634 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1635 recompute_smt_state(); 1636 } 1637 1638 static void remove_cpu_from_maps(int cpu) 1639 { 1640 set_cpu_online(cpu, false); 1641 cpumask_clear_cpu(cpu, cpu_callout_mask); 1642 cpumask_clear_cpu(cpu, cpu_callin_mask); 1643 /* was set by cpu_init() */ 1644 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1645 numa_remove_cpu(cpu); 1646 } 1647 1648 void cpu_disable_common(void) 1649 { 1650 int cpu = smp_processor_id(); 1651 1652 remove_siblinginfo(cpu); 1653 1654 /* It's now safe to remove this processor from the online map */ 1655 lock_vector_lock(); 1656 remove_cpu_from_maps(cpu); 1657 unlock_vector_lock(); 1658 fixup_irqs(); 1659 lapic_offline(); 1660 } 1661 1662 int native_cpu_disable(void) 1663 { 1664 int ret; 1665 1666 ret = lapic_can_unplug_cpu(); 1667 if (ret) 1668 return ret; 1669 1670 cpu_disable_common(); 1671 1672 /* 1673 * Disable the local APIC. Otherwise IPI broadcasts will reach 1674 * it. It still responds normally to INIT, NMI, SMI, and SIPI 1675 * messages. 1676 * 1677 * Disabling the APIC must happen after cpu_disable_common() 1678 * which invokes fixup_irqs(). 1679 * 1680 * Disabling the APIC preserves already set bits in IRR, but 1681 * an interrupt arriving after disabling the local APIC does not 1682 * set the corresponding IRR bit. 1683 * 1684 * fixup_irqs() scans IRR for set bits so it can raise a not 1685 * yet handled interrupt on the new destination CPU via an IPI 1686 * but obviously it can't do so for IRR bits which are not set. 1687 * IOW, interrupts arriving after disabling the local APIC will 1688 * be lost. 1689 */ 1690 apic_soft_disable(); 1691 1692 return 0; 1693 } 1694 1695 int common_cpu_die(unsigned int cpu) 1696 { 1697 int ret = 0; 1698 1699 /* We don't do anything here: idle task is faking death itself. */ 1700 1701 /* They ack this in play_dead() by setting CPU_DEAD */ 1702 if (cpu_wait_death(cpu, 5)) { 1703 if (system_state == SYSTEM_RUNNING) 1704 pr_info("CPU %u is now offline\n", cpu); 1705 } else { 1706 pr_err("CPU %u didn't die...\n", cpu); 1707 ret = -1; 1708 } 1709 1710 return ret; 1711 } 1712 1713 void native_cpu_die(unsigned int cpu) 1714 { 1715 common_cpu_die(cpu); 1716 } 1717 1718 void play_dead_common(void) 1719 { 1720 idle_task_exit(); 1721 1722 /* Ack it */ 1723 (void)cpu_report_death(); 1724 1725 /* 1726 * With physical CPU hotplug, we should halt the cpu 1727 */ 1728 local_irq_disable(); 1729 } 1730 1731 /** 1732 * cond_wakeup_cpu0 - Wake up CPU0 if needed. 1733 * 1734 * If NMI wants to wake up CPU0, start CPU0. 1735 */ 1736 void cond_wakeup_cpu0(void) 1737 { 1738 if (smp_processor_id() == 0 && enable_start_cpu0) 1739 start_cpu0(); 1740 } 1741 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0); 1742 1743 /* 1744 * We need to flush the caches before going to sleep, lest we have 1745 * dirty data in our caches when we come back up. 1746 */ 1747 static inline void mwait_play_dead(void) 1748 { 1749 unsigned int eax, ebx, ecx, edx; 1750 unsigned int highest_cstate = 0; 1751 unsigned int highest_subcstate = 0; 1752 void *mwait_ptr; 1753 int i; 1754 1755 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1756 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 1757 return; 1758 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1759 return; 1760 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1761 return; 1762 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1763 return; 1764 1765 eax = CPUID_MWAIT_LEAF; 1766 ecx = 0; 1767 native_cpuid(&eax, &ebx, &ecx, &edx); 1768 1769 /* 1770 * eax will be 0 if EDX enumeration is not valid. 1771 * Initialized below to cstate, sub_cstate value when EDX is valid. 1772 */ 1773 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1774 eax = 0; 1775 } else { 1776 edx >>= MWAIT_SUBSTATE_SIZE; 1777 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1778 if (edx & MWAIT_SUBSTATE_MASK) { 1779 highest_cstate = i; 1780 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1781 } 1782 } 1783 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1784 (highest_subcstate - 1); 1785 } 1786 1787 /* 1788 * This should be a memory location in a cache line which is 1789 * unlikely to be touched by other processors. The actual 1790 * content is immaterial as it is not actually modified in any way. 1791 */ 1792 mwait_ptr = ¤t_thread_info()->flags; 1793 1794 wbinvd(); 1795 1796 while (1) { 1797 /* 1798 * The CLFLUSH is a workaround for erratum AAI65 for 1799 * the Xeon 7400 series. It's not clear it is actually 1800 * needed, but it should be harmless in either case. 1801 * The WBINVD is insufficient due to the spurious-wakeup 1802 * case where we return around the loop. 1803 */ 1804 mb(); 1805 clflush(mwait_ptr); 1806 mb(); 1807 __monitor(mwait_ptr, 0, 0); 1808 mb(); 1809 __mwait(eax, 0); 1810 1811 cond_wakeup_cpu0(); 1812 } 1813 } 1814 1815 void hlt_play_dead(void) 1816 { 1817 if (__this_cpu_read(cpu_info.x86) >= 4) 1818 wbinvd(); 1819 1820 while (1) { 1821 native_halt(); 1822 1823 cond_wakeup_cpu0(); 1824 } 1825 } 1826 1827 void native_play_dead(void) 1828 { 1829 play_dead_common(); 1830 tboot_shutdown(TB_SHUTDOWN_WFS); 1831 1832 mwait_play_dead(); /* Only returns on failure */ 1833 if (cpuidle_play_dead()) 1834 hlt_play_dead(); 1835 } 1836 1837 #else /* ... !CONFIG_HOTPLUG_CPU */ 1838 int native_cpu_disable(void) 1839 { 1840 return -ENOSYS; 1841 } 1842 1843 void native_cpu_die(unsigned int cpu) 1844 { 1845 /* We said "no" in __cpu_disable */ 1846 BUG(); 1847 } 1848 1849 void native_play_dead(void) 1850 { 1851 BUG(); 1852 } 1853 1854 #endif 1855