xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 6a613ac6)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/fpu/internal.h>
72 #include <asm/setup.h>
73 #include <asm/uv/uv.h>
74 #include <linux/mc146818rtc.h>
75 #include <asm/i8259.h>
76 #include <asm/realmode.h>
77 #include <asm/misc.h>
78 
79 /* Number of siblings per CPU package */
80 int smp_num_siblings = 1;
81 EXPORT_SYMBOL(smp_num_siblings);
82 
83 /* Last level cache ID of each logical CPU */
84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85 
86 /* representing HT siblings of each logical CPU */
87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 
90 /* representing HT and core siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95 
96 /* Per CPU bogomips and other parameters */
97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
98 EXPORT_PER_CPU_SYMBOL(cpu_info);
99 
100 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
101 {
102 	unsigned long flags;
103 
104 	spin_lock_irqsave(&rtc_lock, flags);
105 	CMOS_WRITE(0xa, 0xf);
106 	spin_unlock_irqrestore(&rtc_lock, flags);
107 	local_flush_tlb();
108 	pr_debug("1.\n");
109 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
110 							start_eip >> 4;
111 	pr_debug("2.\n");
112 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
113 							start_eip & 0xf;
114 	pr_debug("3.\n");
115 }
116 
117 static inline void smpboot_restore_warm_reset_vector(void)
118 {
119 	unsigned long flags;
120 
121 	/*
122 	 * Install writable page 0 entry to set BIOS data area.
123 	 */
124 	local_flush_tlb();
125 
126 	/*
127 	 * Paranoid:  Set warm reset code and vector here back
128 	 * to default values.
129 	 */
130 	spin_lock_irqsave(&rtc_lock, flags);
131 	CMOS_WRITE(0, 0xf);
132 	spin_unlock_irqrestore(&rtc_lock, flags);
133 
134 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
135 }
136 
137 /*
138  * Report back to the Boot Processor during boot time or to the caller processor
139  * during CPU online.
140  */
141 static void smp_callin(void)
142 {
143 	int cpuid, phys_id;
144 
145 	/*
146 	 * If waken up by an INIT in an 82489DX configuration
147 	 * cpu_callout_mask guarantees we don't get here before
148 	 * an INIT_deassert IPI reaches our local APIC, so it is
149 	 * now safe to touch our local APIC.
150 	 */
151 	cpuid = smp_processor_id();
152 
153 	/*
154 	 * (This works even if the APIC is not enabled.)
155 	 */
156 	phys_id = read_apic_id();
157 
158 	/*
159 	 * the boot CPU has finished the init stage and is spinning
160 	 * on callin_map until we finish. We are free to set up this
161 	 * CPU, first the APIC. (this is probably redundant on most
162 	 * boards)
163 	 */
164 	apic_ap_setup();
165 
166 	/*
167 	 * Save our processor parameters. Note: this information
168 	 * is needed for clock calibration.
169 	 */
170 	smp_store_cpu_info(cpuid);
171 
172 	/*
173 	 * Get our bogomips.
174 	 * Update loops_per_jiffy in cpu_data. Previous call to
175 	 * smp_store_cpu_info() stored a value that is close but not as
176 	 * accurate as the value just calculated.
177 	 */
178 	calibrate_delay();
179 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
180 	pr_debug("Stack at about %p\n", &cpuid);
181 
182 	/*
183 	 * This must be done before setting cpu_online_mask
184 	 * or calling notify_cpu_starting.
185 	 */
186 	set_cpu_sibling_map(raw_smp_processor_id());
187 	wmb();
188 
189 	notify_cpu_starting(cpuid);
190 
191 	/*
192 	 * Allow the master to continue.
193 	 */
194 	cpumask_set_cpu(cpuid, cpu_callin_mask);
195 }
196 
197 static int cpu0_logical_apicid;
198 static int enable_start_cpu0;
199 /*
200  * Activate a secondary processor.
201  */
202 static void notrace start_secondary(void *unused)
203 {
204 	/*
205 	 * Don't put *anything* before cpu_init(), SMP booting is too
206 	 * fragile that we want to limit the things done here to the
207 	 * most necessary things.
208 	 */
209 	cpu_init();
210 	x86_cpuinit.early_percpu_clock_init();
211 	preempt_disable();
212 	smp_callin();
213 
214 	enable_start_cpu0 = 0;
215 
216 #ifdef CONFIG_X86_32
217 	/* switch away from the initial page table */
218 	load_cr3(swapper_pg_dir);
219 	__flush_tlb_all();
220 #endif
221 
222 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
223 	barrier();
224 	/*
225 	 * Check TSC synchronization with the BP:
226 	 */
227 	check_tsc_sync_target();
228 
229 	/*
230 	 * Lock vector_lock and initialize the vectors on this cpu
231 	 * before setting the cpu online. We must set it online with
232 	 * vector_lock held to prevent a concurrent setup/teardown
233 	 * from seeing a half valid vector space.
234 	 */
235 	lock_vector_lock();
236 	setup_vector_irq(smp_processor_id());
237 	set_cpu_online(smp_processor_id(), true);
238 	unlock_vector_lock();
239 	cpu_set_state_online(smp_processor_id());
240 	x86_platform.nmi_init();
241 
242 	/* enable local interrupts */
243 	local_irq_enable();
244 
245 	/* to prevent fake stack check failure in clock setup */
246 	boot_init_stack_canary();
247 
248 	x86_cpuinit.setup_percpu_clockev();
249 
250 	wmb();
251 	cpu_startup_entry(CPUHP_ONLINE);
252 }
253 
254 void __init smp_store_boot_cpu_info(void)
255 {
256 	int id = 0; /* CPU 0 */
257 	struct cpuinfo_x86 *c = &cpu_data(id);
258 
259 	*c = boot_cpu_data;
260 	c->cpu_index = id;
261 }
262 
263 /*
264  * The bootstrap kernel entry code has set these up. Save them for
265  * a given CPU
266  */
267 void smp_store_cpu_info(int id)
268 {
269 	struct cpuinfo_x86 *c = &cpu_data(id);
270 
271 	*c = boot_cpu_data;
272 	c->cpu_index = id;
273 	/*
274 	 * During boot time, CPU0 has this setup already. Save the info when
275 	 * bringing up AP or offlined CPU0.
276 	 */
277 	identify_secondary_cpu(c);
278 }
279 
280 static bool
281 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
282 {
283 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
284 
285 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
286 }
287 
288 static bool
289 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
290 {
291 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
292 
293 	return !WARN_ONCE(!topology_same_node(c, o),
294 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
295 		"[node: %d != %d]. Ignoring dependency.\n",
296 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
297 }
298 
299 #define link_mask(mfunc, c1, c2)					\
300 do {									\
301 	cpumask_set_cpu((c1), mfunc(c2));				\
302 	cpumask_set_cpu((c2), mfunc(c1));				\
303 } while (0)
304 
305 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
306 {
307 	if (cpu_has_topoext) {
308 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
309 
310 		if (c->phys_proc_id == o->phys_proc_id &&
311 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
312 		    c->compute_unit_id == o->compute_unit_id)
313 			return topology_sane(c, o, "smt");
314 
315 	} else if (c->phys_proc_id == o->phys_proc_id &&
316 		   c->cpu_core_id == o->cpu_core_id) {
317 		return topology_sane(c, o, "smt");
318 	}
319 
320 	return false;
321 }
322 
323 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
324 {
325 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
326 
327 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
328 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
329 		return topology_sane(c, o, "llc");
330 
331 	return false;
332 }
333 
334 /*
335  * Unlike the other levels, we do not enforce keeping a
336  * multicore group inside a NUMA node.  If this happens, we will
337  * discard the MC level of the topology later.
338  */
339 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
340 {
341 	if (c->phys_proc_id == o->phys_proc_id)
342 		return true;
343 	return false;
344 }
345 
346 static struct sched_domain_topology_level numa_inside_package_topology[] = {
347 #ifdef CONFIG_SCHED_SMT
348 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
349 #endif
350 #ifdef CONFIG_SCHED_MC
351 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
352 #endif
353 	{ NULL, },
354 };
355 /*
356  * set_sched_topology() sets the topology internal to a CPU.  The
357  * NUMA topologies are layered on top of it to build the full
358  * system topology.
359  *
360  * If NUMA nodes are observed to occur within a CPU package, this
361  * function should be called.  It forces the sched domain code to
362  * only use the SMT level for the CPU portion of the topology.
363  * This essentially falls back to relying on NUMA information
364  * from the SRAT table to describe the entire system topology
365  * (except for hyperthreads).
366  */
367 static void primarily_use_numa_for_topology(void)
368 {
369 	set_sched_topology(numa_inside_package_topology);
370 }
371 
372 void set_cpu_sibling_map(int cpu)
373 {
374 	bool has_smt = smp_num_siblings > 1;
375 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
376 	struct cpuinfo_x86 *c = &cpu_data(cpu);
377 	struct cpuinfo_x86 *o;
378 	int i;
379 
380 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
381 
382 	if (!has_mp) {
383 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
384 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
385 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
386 		c->booted_cores = 1;
387 		return;
388 	}
389 
390 	for_each_cpu(i, cpu_sibling_setup_mask) {
391 		o = &cpu_data(i);
392 
393 		if ((i == cpu) || (has_smt && match_smt(c, o)))
394 			link_mask(topology_sibling_cpumask, cpu, i);
395 
396 		if ((i == cpu) || (has_mp && match_llc(c, o)))
397 			link_mask(cpu_llc_shared_mask, cpu, i);
398 
399 	}
400 
401 	/*
402 	 * This needs a separate iteration over the cpus because we rely on all
403 	 * topology_sibling_cpumask links to be set-up.
404 	 */
405 	for_each_cpu(i, cpu_sibling_setup_mask) {
406 		o = &cpu_data(i);
407 
408 		if ((i == cpu) || (has_mp && match_die(c, o))) {
409 			link_mask(topology_core_cpumask, cpu, i);
410 
411 			/*
412 			 *  Does this new cpu bringup a new core?
413 			 */
414 			if (cpumask_weight(
415 			    topology_sibling_cpumask(cpu)) == 1) {
416 				/*
417 				 * for each core in package, increment
418 				 * the booted_cores for this new cpu
419 				 */
420 				if (cpumask_first(
421 				    topology_sibling_cpumask(i)) == i)
422 					c->booted_cores++;
423 				/*
424 				 * increment the core count for all
425 				 * the other cpus in this package
426 				 */
427 				if (i != cpu)
428 					cpu_data(i).booted_cores++;
429 			} else if (i != cpu && !c->booted_cores)
430 				c->booted_cores = cpu_data(i).booted_cores;
431 		}
432 		if (match_die(c, o) && !topology_same_node(c, o))
433 			primarily_use_numa_for_topology();
434 	}
435 }
436 
437 /* maps the cpu to the sched domain representing multi-core */
438 const struct cpumask *cpu_coregroup_mask(int cpu)
439 {
440 	return cpu_llc_shared_mask(cpu);
441 }
442 
443 static void impress_friends(void)
444 {
445 	int cpu;
446 	unsigned long bogosum = 0;
447 	/*
448 	 * Allow the user to impress friends.
449 	 */
450 	pr_debug("Before bogomips\n");
451 	for_each_possible_cpu(cpu)
452 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
453 			bogosum += cpu_data(cpu).loops_per_jiffy;
454 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
455 		num_online_cpus(),
456 		bogosum/(500000/HZ),
457 		(bogosum/(5000/HZ))%100);
458 
459 	pr_debug("Before bogocount - setting activated=1\n");
460 }
461 
462 void __inquire_remote_apic(int apicid)
463 {
464 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
465 	const char * const names[] = { "ID", "VERSION", "SPIV" };
466 	int timeout;
467 	u32 status;
468 
469 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
470 
471 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
472 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
473 
474 		/*
475 		 * Wait for idle.
476 		 */
477 		status = safe_apic_wait_icr_idle();
478 		if (status)
479 			pr_cont("a previous APIC delivery may have failed\n");
480 
481 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
482 
483 		timeout = 0;
484 		do {
485 			udelay(100);
486 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
487 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
488 
489 		switch (status) {
490 		case APIC_ICR_RR_VALID:
491 			status = apic_read(APIC_RRR);
492 			pr_cont("%08x\n", status);
493 			break;
494 		default:
495 			pr_cont("failed\n");
496 		}
497 	}
498 }
499 
500 /*
501  * The Multiprocessor Specification 1.4 (1997) example code suggests
502  * that there should be a 10ms delay between the BSP asserting INIT
503  * and de-asserting INIT, when starting a remote processor.
504  * But that slows boot and resume on modern processors, which include
505  * many cores and don't require that delay.
506  *
507  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
508  * Modern processor families are quirked to remove the delay entirely.
509  */
510 #define UDELAY_10MS_DEFAULT 10000
511 
512 static unsigned int init_udelay = UINT_MAX;
513 
514 static int __init cpu_init_udelay(char *str)
515 {
516 	get_option(&str, &init_udelay);
517 
518 	return 0;
519 }
520 early_param("cpu_init_udelay", cpu_init_udelay);
521 
522 static void __init smp_quirk_init_udelay(void)
523 {
524 	/* if cmdline changed it from default, leave it alone */
525 	if (init_udelay != UINT_MAX)
526 		return;
527 
528 	/* if modern processor, use no delay */
529 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
530 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
531 		init_udelay = 0;
532 		return;
533 	}
534 	/* else, use legacy delay */
535 	init_udelay = UDELAY_10MS_DEFAULT;
536 }
537 
538 /*
539  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
540  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
541  * won't ... remember to clear down the APIC, etc later.
542  */
543 int
544 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
545 {
546 	unsigned long send_status, accept_status = 0;
547 	int maxlvt;
548 
549 	/* Target chip */
550 	/* Boot on the stack */
551 	/* Kick the second */
552 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
553 
554 	pr_debug("Waiting for send to finish...\n");
555 	send_status = safe_apic_wait_icr_idle();
556 
557 	/*
558 	 * Give the other CPU some time to accept the IPI.
559 	 */
560 	udelay(200);
561 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
562 		maxlvt = lapic_get_maxlvt();
563 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
564 			apic_write(APIC_ESR, 0);
565 		accept_status = (apic_read(APIC_ESR) & 0xEF);
566 	}
567 	pr_debug("NMI sent\n");
568 
569 	if (send_status)
570 		pr_err("APIC never delivered???\n");
571 	if (accept_status)
572 		pr_err("APIC delivery error (%lx)\n", accept_status);
573 
574 	return (send_status | accept_status);
575 }
576 
577 static int
578 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
579 {
580 	unsigned long send_status = 0, accept_status = 0;
581 	int maxlvt, num_starts, j;
582 
583 	maxlvt = lapic_get_maxlvt();
584 
585 	/*
586 	 * Be paranoid about clearing APIC errors.
587 	 */
588 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
589 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
590 			apic_write(APIC_ESR, 0);
591 		apic_read(APIC_ESR);
592 	}
593 
594 	pr_debug("Asserting INIT\n");
595 
596 	/*
597 	 * Turn INIT on target chip
598 	 */
599 	/*
600 	 * Send IPI
601 	 */
602 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
603 		       phys_apicid);
604 
605 	pr_debug("Waiting for send to finish...\n");
606 	send_status = safe_apic_wait_icr_idle();
607 
608 	udelay(init_udelay);
609 
610 	pr_debug("Deasserting INIT\n");
611 
612 	/* Target chip */
613 	/* Send IPI */
614 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
615 
616 	pr_debug("Waiting for send to finish...\n");
617 	send_status = safe_apic_wait_icr_idle();
618 
619 	mb();
620 
621 	/*
622 	 * Should we send STARTUP IPIs ?
623 	 *
624 	 * Determine this based on the APIC version.
625 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
626 	 */
627 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
628 		num_starts = 2;
629 	else
630 		num_starts = 0;
631 
632 	/*
633 	 * Paravirt / VMI wants a startup IPI hook here to set up the
634 	 * target processor state.
635 	 */
636 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
637 			 stack_start);
638 
639 	/*
640 	 * Run STARTUP IPI loop.
641 	 */
642 	pr_debug("#startup loops: %d\n", num_starts);
643 
644 	for (j = 1; j <= num_starts; j++) {
645 		pr_debug("Sending STARTUP #%d\n", j);
646 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
647 			apic_write(APIC_ESR, 0);
648 		apic_read(APIC_ESR);
649 		pr_debug("After apic_write\n");
650 
651 		/*
652 		 * STARTUP IPI
653 		 */
654 
655 		/* Target chip */
656 		/* Boot on the stack */
657 		/* Kick the second */
658 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
659 			       phys_apicid);
660 
661 		/*
662 		 * Give the other CPU some time to accept the IPI.
663 		 */
664 		if (init_udelay == 0)
665 			udelay(10);
666 		else
667 			udelay(300);
668 
669 		pr_debug("Startup point 1\n");
670 
671 		pr_debug("Waiting for send to finish...\n");
672 		send_status = safe_apic_wait_icr_idle();
673 
674 		/*
675 		 * Give the other CPU some time to accept the IPI.
676 		 */
677 		if (init_udelay == 0)
678 			udelay(10);
679 		else
680 			udelay(200);
681 
682 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
683 			apic_write(APIC_ESR, 0);
684 		accept_status = (apic_read(APIC_ESR) & 0xEF);
685 		if (send_status || accept_status)
686 			break;
687 	}
688 	pr_debug("After Startup\n");
689 
690 	if (send_status)
691 		pr_err("APIC never delivered???\n");
692 	if (accept_status)
693 		pr_err("APIC delivery error (%lx)\n", accept_status);
694 
695 	return (send_status | accept_status);
696 }
697 
698 void smp_announce(void)
699 {
700 	int num_nodes = num_online_nodes();
701 
702 	printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
703 	       num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
704 }
705 
706 /* reduce the number of lines printed when booting a large cpu count system */
707 static void announce_cpu(int cpu, int apicid)
708 {
709 	static int current_node = -1;
710 	int node = early_cpu_to_node(cpu);
711 	static int width, node_width;
712 
713 	if (!width)
714 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
715 
716 	if (!node_width)
717 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
718 
719 	if (cpu == 1)
720 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
721 
722 	if (system_state == SYSTEM_BOOTING) {
723 		if (node != current_node) {
724 			if (current_node > (-1))
725 				pr_cont("\n");
726 			current_node = node;
727 
728 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
729 			       node_width - num_digits(node), " ", node);
730 		}
731 
732 		/* Add padding for the BSP */
733 		if (cpu == 1)
734 			pr_cont("%*s", width + 1, " ");
735 
736 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
737 
738 	} else
739 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
740 			node, cpu, apicid);
741 }
742 
743 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
744 {
745 	int cpu;
746 
747 	cpu = smp_processor_id();
748 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
749 		return NMI_HANDLED;
750 
751 	return NMI_DONE;
752 }
753 
754 /*
755  * Wake up AP by INIT, INIT, STARTUP sequence.
756  *
757  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
758  * boot-strap code which is not a desired behavior for waking up BSP. To
759  * void the boot-strap code, wake up CPU0 by NMI instead.
760  *
761  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
762  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
763  * We'll change this code in the future to wake up hard offlined CPU0 if
764  * real platform and request are available.
765  */
766 static int
767 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
768 	       int *cpu0_nmi_registered)
769 {
770 	int id;
771 	int boot_error;
772 
773 	preempt_disable();
774 
775 	/*
776 	 * Wake up AP by INIT, INIT, STARTUP sequence.
777 	 */
778 	if (cpu) {
779 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
780 		goto out;
781 	}
782 
783 	/*
784 	 * Wake up BSP by nmi.
785 	 *
786 	 * Register a NMI handler to help wake up CPU0.
787 	 */
788 	boot_error = register_nmi_handler(NMI_LOCAL,
789 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
790 
791 	if (!boot_error) {
792 		enable_start_cpu0 = 1;
793 		*cpu0_nmi_registered = 1;
794 		if (apic->dest_logical == APIC_DEST_LOGICAL)
795 			id = cpu0_logical_apicid;
796 		else
797 			id = apicid;
798 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
799 	}
800 
801 out:
802 	preempt_enable();
803 
804 	return boot_error;
805 }
806 
807 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
808 {
809 	/* Just in case we booted with a single CPU. */
810 	alternatives_enable_smp();
811 
812 	per_cpu(current_task, cpu) = idle;
813 
814 #ifdef CONFIG_X86_32
815 	/* Stack for startup_32 can be just as for start_secondary onwards */
816 	irq_ctx_init(cpu);
817 	per_cpu(cpu_current_top_of_stack, cpu) =
818 		(unsigned long)task_stack_page(idle) + THREAD_SIZE;
819 #else
820 	clear_tsk_thread_flag(idle, TIF_FORK);
821 	initial_gs = per_cpu_offset(cpu);
822 #endif
823 }
824 
825 /*
826  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
827  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
828  * Returns zero if CPU booted OK, else error code from
829  * ->wakeup_secondary_cpu.
830  */
831 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
832 {
833 	volatile u32 *trampoline_status =
834 		(volatile u32 *) __va(real_mode_header->trampoline_status);
835 	/* start_ip had better be page-aligned! */
836 	unsigned long start_ip = real_mode_header->trampoline_start;
837 
838 	unsigned long boot_error = 0;
839 	int cpu0_nmi_registered = 0;
840 	unsigned long timeout;
841 
842 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
843 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
844 
845 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
846 	initial_code = (unsigned long)start_secondary;
847 	stack_start  = idle->thread.sp;
848 
849 	/*
850 	 * Enable the espfix hack for this CPU
851 	*/
852 #ifdef CONFIG_X86_ESPFIX64
853 	init_espfix_ap(cpu);
854 #endif
855 
856 	/* So we see what's up */
857 	announce_cpu(cpu, apicid);
858 
859 	/*
860 	 * This grunge runs the startup process for
861 	 * the targeted processor.
862 	 */
863 
864 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
865 
866 		pr_debug("Setting warm reset code and vector.\n");
867 
868 		smpboot_setup_warm_reset_vector(start_ip);
869 		/*
870 		 * Be paranoid about clearing APIC errors.
871 		*/
872 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
873 			apic_write(APIC_ESR, 0);
874 			apic_read(APIC_ESR);
875 		}
876 	}
877 
878 	/*
879 	 * AP might wait on cpu_callout_mask in cpu_init() with
880 	 * cpu_initialized_mask set if previous attempt to online
881 	 * it timed-out. Clear cpu_initialized_mask so that after
882 	 * INIT/SIPI it could start with a clean state.
883 	 */
884 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
885 	smp_mb();
886 
887 	/*
888 	 * Wake up a CPU in difference cases:
889 	 * - Use the method in the APIC driver if it's defined
890 	 * Otherwise,
891 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
892 	 */
893 	if (apic->wakeup_secondary_cpu)
894 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
895 	else
896 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
897 						     &cpu0_nmi_registered);
898 
899 	if (!boot_error) {
900 		/*
901 		 * Wait 10s total for first sign of life from AP
902 		 */
903 		boot_error = -1;
904 		timeout = jiffies + 10*HZ;
905 		while (time_before(jiffies, timeout)) {
906 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
907 				/*
908 				 * Tell AP to proceed with initialization
909 				 */
910 				cpumask_set_cpu(cpu, cpu_callout_mask);
911 				boot_error = 0;
912 				break;
913 			}
914 			schedule();
915 		}
916 	}
917 
918 	if (!boot_error) {
919 		/*
920 		 * Wait till AP completes initial initialization
921 		 */
922 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
923 			/*
924 			 * Allow other tasks to run while we wait for the
925 			 * AP to come online. This also gives a chance
926 			 * for the MTRR work(triggered by the AP coming online)
927 			 * to be completed in the stop machine context.
928 			 */
929 			schedule();
930 		}
931 	}
932 
933 	/* mark "stuck" area as not stuck */
934 	*trampoline_status = 0;
935 
936 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
937 		/*
938 		 * Cleanup possible dangling ends...
939 		 */
940 		smpboot_restore_warm_reset_vector();
941 	}
942 	/*
943 	 * Clean up the nmi handler. Do this after the callin and callout sync
944 	 * to avoid impact of possible long unregister time.
945 	 */
946 	if (cpu0_nmi_registered)
947 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
948 
949 	return boot_error;
950 }
951 
952 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
953 {
954 	int apicid = apic->cpu_present_to_apicid(cpu);
955 	unsigned long flags;
956 	int err;
957 
958 	WARN_ON(irqs_disabled());
959 
960 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
961 
962 	if (apicid == BAD_APICID ||
963 	    !physid_isset(apicid, phys_cpu_present_map) ||
964 	    !apic->apic_id_valid(apicid)) {
965 		pr_err("%s: bad cpu %d\n", __func__, cpu);
966 		return -EINVAL;
967 	}
968 
969 	/*
970 	 * Already booted CPU?
971 	 */
972 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
973 		pr_debug("do_boot_cpu %d Already started\n", cpu);
974 		return -ENOSYS;
975 	}
976 
977 	/*
978 	 * Save current MTRR state in case it was changed since early boot
979 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
980 	 */
981 	mtrr_save_state();
982 
983 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
984 	err = cpu_check_up_prepare(cpu);
985 	if (err && err != -EBUSY)
986 		return err;
987 
988 	/* the FPU context is blank, nobody can own it */
989 	__cpu_disable_lazy_restore(cpu);
990 
991 	common_cpu_up(cpu, tidle);
992 
993 	/*
994 	 * We have to walk the irq descriptors to setup the vector
995 	 * space for the cpu which comes online.  Prevent irq
996 	 * alloc/free across the bringup.
997 	 */
998 	irq_lock_sparse();
999 
1000 	err = do_boot_cpu(apicid, cpu, tidle);
1001 
1002 	if (err) {
1003 		irq_unlock_sparse();
1004 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1005 		return -EIO;
1006 	}
1007 
1008 	/*
1009 	 * Check TSC synchronization with the AP (keep irqs disabled
1010 	 * while doing so):
1011 	 */
1012 	local_irq_save(flags);
1013 	check_tsc_sync_source(cpu);
1014 	local_irq_restore(flags);
1015 
1016 	while (!cpu_online(cpu)) {
1017 		cpu_relax();
1018 		touch_nmi_watchdog();
1019 	}
1020 
1021 	irq_unlock_sparse();
1022 
1023 	return 0;
1024 }
1025 
1026 /**
1027  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1028  */
1029 void arch_disable_smp_support(void)
1030 {
1031 	disable_ioapic_support();
1032 }
1033 
1034 /*
1035  * Fall back to non SMP mode after errors.
1036  *
1037  * RED-PEN audit/test this more. I bet there is more state messed up here.
1038  */
1039 static __init void disable_smp(void)
1040 {
1041 	pr_info("SMP disabled\n");
1042 
1043 	disable_ioapic_support();
1044 
1045 	init_cpu_present(cpumask_of(0));
1046 	init_cpu_possible(cpumask_of(0));
1047 
1048 	if (smp_found_config)
1049 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1050 	else
1051 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1052 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1053 	cpumask_set_cpu(0, topology_core_cpumask(0));
1054 }
1055 
1056 enum {
1057 	SMP_OK,
1058 	SMP_NO_CONFIG,
1059 	SMP_NO_APIC,
1060 	SMP_FORCE_UP,
1061 };
1062 
1063 /*
1064  * Various sanity checks.
1065  */
1066 static int __init smp_sanity_check(unsigned max_cpus)
1067 {
1068 	preempt_disable();
1069 
1070 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1071 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1072 		unsigned int cpu;
1073 		unsigned nr;
1074 
1075 		pr_warn("More than 8 CPUs detected - skipping them\n"
1076 			"Use CONFIG_X86_BIGSMP\n");
1077 
1078 		nr = 0;
1079 		for_each_present_cpu(cpu) {
1080 			if (nr >= 8)
1081 				set_cpu_present(cpu, false);
1082 			nr++;
1083 		}
1084 
1085 		nr = 0;
1086 		for_each_possible_cpu(cpu) {
1087 			if (nr >= 8)
1088 				set_cpu_possible(cpu, false);
1089 			nr++;
1090 		}
1091 
1092 		nr_cpu_ids = 8;
1093 	}
1094 #endif
1095 
1096 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1097 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1098 			hard_smp_processor_id());
1099 
1100 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1101 	}
1102 
1103 	/*
1104 	 * If we couldn't find an SMP configuration at boot time,
1105 	 * get out of here now!
1106 	 */
1107 	if (!smp_found_config && !acpi_lapic) {
1108 		preempt_enable();
1109 		pr_notice("SMP motherboard not detected\n");
1110 		return SMP_NO_CONFIG;
1111 	}
1112 
1113 	/*
1114 	 * Should not be necessary because the MP table should list the boot
1115 	 * CPU too, but we do it for the sake of robustness anyway.
1116 	 */
1117 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1118 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1119 			  boot_cpu_physical_apicid);
1120 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1121 	}
1122 	preempt_enable();
1123 
1124 	/*
1125 	 * If we couldn't find a local APIC, then get out of here now!
1126 	 */
1127 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1128 	    !cpu_has_apic) {
1129 		if (!disable_apic) {
1130 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1131 				boot_cpu_physical_apicid);
1132 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1133 		}
1134 		return SMP_NO_APIC;
1135 	}
1136 
1137 	/*
1138 	 * If SMP should be disabled, then really disable it!
1139 	 */
1140 	if (!max_cpus) {
1141 		pr_info("SMP mode deactivated\n");
1142 		return SMP_FORCE_UP;
1143 	}
1144 
1145 	return SMP_OK;
1146 }
1147 
1148 static void __init smp_cpu_index_default(void)
1149 {
1150 	int i;
1151 	struct cpuinfo_x86 *c;
1152 
1153 	for_each_possible_cpu(i) {
1154 		c = &cpu_data(i);
1155 		/* mark all to hotplug */
1156 		c->cpu_index = nr_cpu_ids;
1157 	}
1158 }
1159 
1160 /*
1161  * Prepare for SMP bootup.  The MP table or ACPI has been read
1162  * earlier.  Just do some sanity checking here and enable APIC mode.
1163  */
1164 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1165 {
1166 	unsigned int i;
1167 
1168 	smp_cpu_index_default();
1169 
1170 	/*
1171 	 * Setup boot CPU information
1172 	 */
1173 	smp_store_boot_cpu_info(); /* Final full version of the data */
1174 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1175 	mb();
1176 
1177 	current_thread_info()->cpu = 0;  /* needed? */
1178 	for_each_possible_cpu(i) {
1179 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1180 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1181 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1182 	}
1183 	set_cpu_sibling_map(0);
1184 
1185 	switch (smp_sanity_check(max_cpus)) {
1186 	case SMP_NO_CONFIG:
1187 		disable_smp();
1188 		if (APIC_init_uniprocessor())
1189 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1190 		return;
1191 	case SMP_NO_APIC:
1192 		disable_smp();
1193 		return;
1194 	case SMP_FORCE_UP:
1195 		disable_smp();
1196 		apic_bsp_setup(false);
1197 		return;
1198 	case SMP_OK:
1199 		break;
1200 	}
1201 
1202 	default_setup_apic_routing();
1203 
1204 	if (read_apic_id() != boot_cpu_physical_apicid) {
1205 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1206 		     read_apic_id(), boot_cpu_physical_apicid);
1207 		/* Or can we switch back to PIC here? */
1208 	}
1209 
1210 	cpu0_logical_apicid = apic_bsp_setup(false);
1211 
1212 	pr_info("CPU%d: ", 0);
1213 	print_cpu_info(&cpu_data(0));
1214 
1215 	if (is_uv_system())
1216 		uv_system_init();
1217 
1218 	set_mtrr_aps_delayed_init();
1219 
1220 	smp_quirk_init_udelay();
1221 }
1222 
1223 void arch_enable_nonboot_cpus_begin(void)
1224 {
1225 	set_mtrr_aps_delayed_init();
1226 }
1227 
1228 void arch_enable_nonboot_cpus_end(void)
1229 {
1230 	mtrr_aps_init();
1231 }
1232 
1233 /*
1234  * Early setup to make printk work.
1235  */
1236 void __init native_smp_prepare_boot_cpu(void)
1237 {
1238 	int me = smp_processor_id();
1239 	switch_to_new_gdt(me);
1240 	/* already set me in cpu_online_mask in boot_cpu_init() */
1241 	cpumask_set_cpu(me, cpu_callout_mask);
1242 	cpu_set_state_online(me);
1243 }
1244 
1245 void __init native_smp_cpus_done(unsigned int max_cpus)
1246 {
1247 	pr_debug("Boot done\n");
1248 
1249 	nmi_selftest();
1250 	impress_friends();
1251 	setup_ioapic_dest();
1252 	mtrr_aps_init();
1253 }
1254 
1255 static int __initdata setup_possible_cpus = -1;
1256 static int __init _setup_possible_cpus(char *str)
1257 {
1258 	get_option(&str, &setup_possible_cpus);
1259 	return 0;
1260 }
1261 early_param("possible_cpus", _setup_possible_cpus);
1262 
1263 
1264 /*
1265  * cpu_possible_mask should be static, it cannot change as cpu's
1266  * are onlined, or offlined. The reason is per-cpu data-structures
1267  * are allocated by some modules at init time, and dont expect to
1268  * do this dynamically on cpu arrival/departure.
1269  * cpu_present_mask on the other hand can change dynamically.
1270  * In case when cpu_hotplug is not compiled, then we resort to current
1271  * behaviour, which is cpu_possible == cpu_present.
1272  * - Ashok Raj
1273  *
1274  * Three ways to find out the number of additional hotplug CPUs:
1275  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1276  * - The user can overwrite it with possible_cpus=NUM
1277  * - Otherwise don't reserve additional CPUs.
1278  * We do this because additional CPUs waste a lot of memory.
1279  * -AK
1280  */
1281 __init void prefill_possible_map(void)
1282 {
1283 	int i, possible;
1284 
1285 	/* no processor from mptable or madt */
1286 	if (!num_processors)
1287 		num_processors = 1;
1288 
1289 	i = setup_max_cpus ?: 1;
1290 	if (setup_possible_cpus == -1) {
1291 		possible = num_processors;
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 		if (setup_max_cpus)
1294 			possible += disabled_cpus;
1295 #else
1296 		if (possible > i)
1297 			possible = i;
1298 #endif
1299 	} else
1300 		possible = setup_possible_cpus;
1301 
1302 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1303 
1304 	/* nr_cpu_ids could be reduced via nr_cpus= */
1305 	if (possible > nr_cpu_ids) {
1306 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1307 			possible, nr_cpu_ids);
1308 		possible = nr_cpu_ids;
1309 	}
1310 
1311 #ifdef CONFIG_HOTPLUG_CPU
1312 	if (!setup_max_cpus)
1313 #endif
1314 	if (possible > i) {
1315 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1316 			possible, setup_max_cpus);
1317 		possible = i;
1318 	}
1319 
1320 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1321 		possible, max_t(int, possible - num_processors, 0));
1322 
1323 	for (i = 0; i < possible; i++)
1324 		set_cpu_possible(i, true);
1325 	for (; i < NR_CPUS; i++)
1326 		set_cpu_possible(i, false);
1327 
1328 	nr_cpu_ids = possible;
1329 }
1330 
1331 #ifdef CONFIG_HOTPLUG_CPU
1332 
1333 static void remove_siblinginfo(int cpu)
1334 {
1335 	int sibling;
1336 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1337 
1338 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1339 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1340 		/*/
1341 		 * last thread sibling in this cpu core going down
1342 		 */
1343 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1344 			cpu_data(sibling).booted_cores--;
1345 	}
1346 
1347 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1348 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1349 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1350 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1351 	cpumask_clear(cpu_llc_shared_mask(cpu));
1352 	cpumask_clear(topology_sibling_cpumask(cpu));
1353 	cpumask_clear(topology_core_cpumask(cpu));
1354 	c->phys_proc_id = 0;
1355 	c->cpu_core_id = 0;
1356 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1357 }
1358 
1359 static void remove_cpu_from_maps(int cpu)
1360 {
1361 	set_cpu_online(cpu, false);
1362 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1363 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1364 	/* was set by cpu_init() */
1365 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1366 	numa_remove_cpu(cpu);
1367 }
1368 
1369 void cpu_disable_common(void)
1370 {
1371 	int cpu = smp_processor_id();
1372 
1373 	remove_siblinginfo(cpu);
1374 
1375 	/* It's now safe to remove this processor from the online map */
1376 	lock_vector_lock();
1377 	remove_cpu_from_maps(cpu);
1378 	unlock_vector_lock();
1379 	fixup_irqs();
1380 }
1381 
1382 int native_cpu_disable(void)
1383 {
1384 	int ret;
1385 
1386 	ret = check_irq_vectors_for_cpu_disable();
1387 	if (ret)
1388 		return ret;
1389 
1390 	clear_local_APIC();
1391 	cpu_disable_common();
1392 
1393 	return 0;
1394 }
1395 
1396 int common_cpu_die(unsigned int cpu)
1397 {
1398 	int ret = 0;
1399 
1400 	/* We don't do anything here: idle task is faking death itself. */
1401 
1402 	/* They ack this in play_dead() by setting CPU_DEAD */
1403 	if (cpu_wait_death(cpu, 5)) {
1404 		if (system_state == SYSTEM_RUNNING)
1405 			pr_info("CPU %u is now offline\n", cpu);
1406 	} else {
1407 		pr_err("CPU %u didn't die...\n", cpu);
1408 		ret = -1;
1409 	}
1410 
1411 	return ret;
1412 }
1413 
1414 void native_cpu_die(unsigned int cpu)
1415 {
1416 	common_cpu_die(cpu);
1417 }
1418 
1419 void play_dead_common(void)
1420 {
1421 	idle_task_exit();
1422 	reset_lazy_tlbstate();
1423 	amd_e400_remove_cpu(raw_smp_processor_id());
1424 
1425 	/* Ack it */
1426 	(void)cpu_report_death();
1427 
1428 	/*
1429 	 * With physical CPU hotplug, we should halt the cpu
1430 	 */
1431 	local_irq_disable();
1432 }
1433 
1434 static bool wakeup_cpu0(void)
1435 {
1436 	if (smp_processor_id() == 0 && enable_start_cpu0)
1437 		return true;
1438 
1439 	return false;
1440 }
1441 
1442 /*
1443  * We need to flush the caches before going to sleep, lest we have
1444  * dirty data in our caches when we come back up.
1445  */
1446 static inline void mwait_play_dead(void)
1447 {
1448 	unsigned int eax, ebx, ecx, edx;
1449 	unsigned int highest_cstate = 0;
1450 	unsigned int highest_subcstate = 0;
1451 	void *mwait_ptr;
1452 	int i;
1453 
1454 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1455 		return;
1456 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1457 		return;
1458 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1459 		return;
1460 
1461 	eax = CPUID_MWAIT_LEAF;
1462 	ecx = 0;
1463 	native_cpuid(&eax, &ebx, &ecx, &edx);
1464 
1465 	/*
1466 	 * eax will be 0 if EDX enumeration is not valid.
1467 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1468 	 */
1469 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1470 		eax = 0;
1471 	} else {
1472 		edx >>= MWAIT_SUBSTATE_SIZE;
1473 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1474 			if (edx & MWAIT_SUBSTATE_MASK) {
1475 				highest_cstate = i;
1476 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1477 			}
1478 		}
1479 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1480 			(highest_subcstate - 1);
1481 	}
1482 
1483 	/*
1484 	 * This should be a memory location in a cache line which is
1485 	 * unlikely to be touched by other processors.  The actual
1486 	 * content is immaterial as it is not actually modified in any way.
1487 	 */
1488 	mwait_ptr = &current_thread_info()->flags;
1489 
1490 	wbinvd();
1491 
1492 	while (1) {
1493 		/*
1494 		 * The CLFLUSH is a workaround for erratum AAI65 for
1495 		 * the Xeon 7400 series.  It's not clear it is actually
1496 		 * needed, but it should be harmless in either case.
1497 		 * The WBINVD is insufficient due to the spurious-wakeup
1498 		 * case where we return around the loop.
1499 		 */
1500 		mb();
1501 		clflush(mwait_ptr);
1502 		mb();
1503 		__monitor(mwait_ptr, 0, 0);
1504 		mb();
1505 		__mwait(eax, 0);
1506 		/*
1507 		 * If NMI wants to wake up CPU0, start CPU0.
1508 		 */
1509 		if (wakeup_cpu0())
1510 			start_cpu0();
1511 	}
1512 }
1513 
1514 static inline void hlt_play_dead(void)
1515 {
1516 	if (__this_cpu_read(cpu_info.x86) >= 4)
1517 		wbinvd();
1518 
1519 	while (1) {
1520 		native_halt();
1521 		/*
1522 		 * If NMI wants to wake up CPU0, start CPU0.
1523 		 */
1524 		if (wakeup_cpu0())
1525 			start_cpu0();
1526 	}
1527 }
1528 
1529 void native_play_dead(void)
1530 {
1531 	play_dead_common();
1532 	tboot_shutdown(TB_SHUTDOWN_WFS);
1533 
1534 	mwait_play_dead();	/* Only returns on failure */
1535 	if (cpuidle_play_dead())
1536 		hlt_play_dead();
1537 }
1538 
1539 #else /* ... !CONFIG_HOTPLUG_CPU */
1540 int native_cpu_disable(void)
1541 {
1542 	return -ENOSYS;
1543 }
1544 
1545 void native_cpu_die(unsigned int cpu)
1546 {
1547 	/* We said "no" in __cpu_disable */
1548 	BUG();
1549 }
1550 
1551 void native_play_dead(void)
1552 {
1553 	BUG();
1554 }
1555 
1556 #endif
1557