xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 63dc02bd)
1 /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/module.h>
45 #include <linux/sched.h>
46 #include <linux/percpu.h>
47 #include <linux/bootmem.h>
48 #include <linux/err.h>
49 #include <linux/nmi.h>
50 #include <linux/tboot.h>
51 #include <linux/stackprotector.h>
52 #include <linux/gfp.h>
53 #include <linux/cpuidle.h>
54 
55 #include <asm/acpi.h>
56 #include <asm/desc.h>
57 #include <asm/nmi.h>
58 #include <asm/irq.h>
59 #include <asm/idle.h>
60 #include <asm/trampoline.h>
61 #include <asm/cpu.h>
62 #include <asm/numa.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/mtrr.h>
66 #include <asm/mwait.h>
67 #include <asm/apic.h>
68 #include <asm/io_apic.h>
69 #include <asm/setup.h>
70 #include <asm/uv/uv.h>
71 #include <linux/mc146818rtc.h>
72 
73 #include <asm/smpboot_hooks.h>
74 #include <asm/i8259.h>
75 
76 /* State of each CPU */
77 DEFINE_PER_CPU(int, cpu_state) = { 0 };
78 
79 /* Store all idle threads, this can be reused instead of creating
80 * a new thread. Also avoids complicated thread destroy functionality
81 * for idle threads.
82 */
83 #ifdef CONFIG_HOTPLUG_CPU
84 /*
85  * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
86  * removed after init for !CONFIG_HOTPLUG_CPU.
87  */
88 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
89 #define get_idle_for_cpu(x)      (per_cpu(idle_thread_array, x))
90 #define set_idle_for_cpu(x, p)   (per_cpu(idle_thread_array, x) = (p))
91 
92 /*
93  * We need this for trampoline_base protection from concurrent accesses when
94  * off- and onlining cores wildly.
95  */
96 static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex);
97 
98 void cpu_hotplug_driver_lock(void)
99 {
100         mutex_lock(&x86_cpu_hotplug_driver_mutex);
101 }
102 
103 void cpu_hotplug_driver_unlock(void)
104 {
105         mutex_unlock(&x86_cpu_hotplug_driver_mutex);
106 }
107 
108 ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; }
109 ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; }
110 #else
111 static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
112 #define get_idle_for_cpu(x)      (idle_thread_array[(x)])
113 #define set_idle_for_cpu(x, p)   (idle_thread_array[(x)] = (p))
114 #endif
115 
116 /* Number of siblings per CPU package */
117 int smp_num_siblings = 1;
118 EXPORT_SYMBOL(smp_num_siblings);
119 
120 /* Last level cache ID of each logical CPU */
121 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID;
122 
123 /* representing HT siblings of each logical CPU */
124 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
125 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
126 
127 /* representing HT and core siblings of each logical CPU */
128 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
129 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
130 
131 DEFINE_PER_CPU(cpumask_var_t, cpu_llc_shared_map);
132 
133 /* Per CPU bogomips and other parameters */
134 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
135 EXPORT_PER_CPU_SYMBOL(cpu_info);
136 
137 atomic_t init_deasserted;
138 
139 /*
140  * Report back to the Boot Processor.
141  * Running on AP.
142  */
143 static void __cpuinit smp_callin(void)
144 {
145 	int cpuid, phys_id;
146 	unsigned long timeout;
147 
148 	/*
149 	 * If waken up by an INIT in an 82489DX configuration
150 	 * we may get here before an INIT-deassert IPI reaches
151 	 * our local APIC.  We have to wait for the IPI or we'll
152 	 * lock up on an APIC access.
153 	 */
154 	if (apic->wait_for_init_deassert)
155 		apic->wait_for_init_deassert(&init_deasserted);
156 
157 	/*
158 	 * (This works even if the APIC is not enabled.)
159 	 */
160 	phys_id = read_apic_id();
161 	cpuid = smp_processor_id();
162 	if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
163 		panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
164 					phys_id, cpuid);
165 	}
166 	pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
167 
168 	/*
169 	 * STARTUP IPIs are fragile beasts as they might sometimes
170 	 * trigger some glue motherboard logic. Complete APIC bus
171 	 * silence for 1 second, this overestimates the time the
172 	 * boot CPU is spending to send the up to 2 STARTUP IPIs
173 	 * by a factor of two. This should be enough.
174 	 */
175 
176 	/*
177 	 * Waiting 2s total for startup (udelay is not yet working)
178 	 */
179 	timeout = jiffies + 2*HZ;
180 	while (time_before(jiffies, timeout)) {
181 		/*
182 		 * Has the boot CPU finished it's STARTUP sequence?
183 		 */
184 		if (cpumask_test_cpu(cpuid, cpu_callout_mask))
185 			break;
186 		cpu_relax();
187 	}
188 
189 	if (!time_before(jiffies, timeout)) {
190 		panic("%s: CPU%d started up but did not get a callout!\n",
191 		      __func__, cpuid);
192 	}
193 
194 	/*
195 	 * the boot CPU has finished the init stage and is spinning
196 	 * on callin_map until we finish. We are free to set up this
197 	 * CPU, first the APIC. (this is probably redundant on most
198 	 * boards)
199 	 */
200 
201 	pr_debug("CALLIN, before setup_local_APIC().\n");
202 	if (apic->smp_callin_clear_local_apic)
203 		apic->smp_callin_clear_local_apic();
204 	setup_local_APIC();
205 	end_local_APIC_setup();
206 
207 	/*
208 	 * Need to setup vector mappings before we enable interrupts.
209 	 */
210 	setup_vector_irq(smp_processor_id());
211 
212 	/*
213 	 * Save our processor parameters. Note: this information
214 	 * is needed for clock calibration.
215 	 */
216 	smp_store_cpu_info(cpuid);
217 
218 	/*
219 	 * Get our bogomips.
220 	 * Update loops_per_jiffy in cpu_data. Previous call to
221 	 * smp_store_cpu_info() stored a value that is close but not as
222 	 * accurate as the value just calculated.
223 	 */
224 	calibrate_delay();
225 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
226 	pr_debug("Stack at about %p\n", &cpuid);
227 
228 	/*
229 	 * This must be done before setting cpu_online_mask
230 	 * or calling notify_cpu_starting.
231 	 */
232 	set_cpu_sibling_map(raw_smp_processor_id());
233 	wmb();
234 
235 	notify_cpu_starting(cpuid);
236 
237 	/*
238 	 * Allow the master to continue.
239 	 */
240 	cpumask_set_cpu(cpuid, cpu_callin_mask);
241 }
242 
243 /*
244  * Activate a secondary processor.
245  */
246 notrace static void __cpuinit start_secondary(void *unused)
247 {
248 	/*
249 	 * Don't put *anything* before cpu_init(), SMP booting is too
250 	 * fragile that we want to limit the things done here to the
251 	 * most necessary things.
252 	 */
253 	cpu_init();
254 	x86_cpuinit.early_percpu_clock_init();
255 	preempt_disable();
256 	smp_callin();
257 
258 #ifdef CONFIG_X86_32
259 	/* switch away from the initial page table */
260 	load_cr3(swapper_pg_dir);
261 	__flush_tlb_all();
262 #endif
263 
264 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
265 	barrier();
266 	/*
267 	 * Check TSC synchronization with the BP:
268 	 */
269 	check_tsc_sync_target();
270 
271 	/*
272 	 * We need to hold call_lock, so there is no inconsistency
273 	 * between the time smp_call_function() determines number of
274 	 * IPI recipients, and the time when the determination is made
275 	 * for which cpus receive the IPI. Holding this
276 	 * lock helps us to not include this cpu in a currently in progress
277 	 * smp_call_function().
278 	 *
279 	 * We need to hold vector_lock so there the set of online cpus
280 	 * does not change while we are assigning vectors to cpus.  Holding
281 	 * this lock ensures we don't half assign or remove an irq from a cpu.
282 	 */
283 	ipi_call_lock();
284 	lock_vector_lock();
285 	set_cpu_online(smp_processor_id(), true);
286 	unlock_vector_lock();
287 	ipi_call_unlock();
288 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
289 	x86_platform.nmi_init();
290 
291 	/* enable local interrupts */
292 	local_irq_enable();
293 
294 	/* to prevent fake stack check failure in clock setup */
295 	boot_init_stack_canary();
296 
297 	x86_cpuinit.setup_percpu_clockev();
298 
299 	wmb();
300 	cpu_idle();
301 }
302 
303 /*
304  * The bootstrap kernel entry code has set these up. Save them for
305  * a given CPU
306  */
307 
308 void __cpuinit smp_store_cpu_info(int id)
309 {
310 	struct cpuinfo_x86 *c = &cpu_data(id);
311 
312 	*c = boot_cpu_data;
313 	c->cpu_index = id;
314 	if (id != 0)
315 		identify_secondary_cpu(c);
316 }
317 
318 static void __cpuinit link_thread_siblings(int cpu1, int cpu2)
319 {
320 	cpumask_set_cpu(cpu1, cpu_sibling_mask(cpu2));
321 	cpumask_set_cpu(cpu2, cpu_sibling_mask(cpu1));
322 	cpumask_set_cpu(cpu1, cpu_core_mask(cpu2));
323 	cpumask_set_cpu(cpu2, cpu_core_mask(cpu1));
324 	cpumask_set_cpu(cpu1, cpu_llc_shared_mask(cpu2));
325 	cpumask_set_cpu(cpu2, cpu_llc_shared_mask(cpu1));
326 }
327 
328 
329 void __cpuinit set_cpu_sibling_map(int cpu)
330 {
331 	int i;
332 	struct cpuinfo_x86 *c = &cpu_data(cpu);
333 
334 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
335 
336 	if (smp_num_siblings > 1) {
337 		for_each_cpu(i, cpu_sibling_setup_mask) {
338 			struct cpuinfo_x86 *o = &cpu_data(i);
339 
340 			if (cpu_has(c, X86_FEATURE_TOPOEXT)) {
341 				if (c->phys_proc_id == o->phys_proc_id &&
342 				    per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i) &&
343 				    c->compute_unit_id == o->compute_unit_id)
344 					link_thread_siblings(cpu, i);
345 			} else if (c->phys_proc_id == o->phys_proc_id &&
346 				   c->cpu_core_id == o->cpu_core_id) {
347 				link_thread_siblings(cpu, i);
348 			}
349 		}
350 	} else {
351 		cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
352 	}
353 
354 	cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
355 
356 	if (__this_cpu_read(cpu_info.x86_max_cores) == 1) {
357 		cpumask_copy(cpu_core_mask(cpu), cpu_sibling_mask(cpu));
358 		c->booted_cores = 1;
359 		return;
360 	}
361 
362 	for_each_cpu(i, cpu_sibling_setup_mask) {
363 		if (per_cpu(cpu_llc_id, cpu) != BAD_APICID &&
364 		    per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) {
365 			cpumask_set_cpu(i, cpu_llc_shared_mask(cpu));
366 			cpumask_set_cpu(cpu, cpu_llc_shared_mask(i));
367 		}
368 		if (c->phys_proc_id == cpu_data(i).phys_proc_id) {
369 			cpumask_set_cpu(i, cpu_core_mask(cpu));
370 			cpumask_set_cpu(cpu, cpu_core_mask(i));
371 			/*
372 			 *  Does this new cpu bringup a new core?
373 			 */
374 			if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
375 				/*
376 				 * for each core in package, increment
377 				 * the booted_cores for this new cpu
378 				 */
379 				if (cpumask_first(cpu_sibling_mask(i)) == i)
380 					c->booted_cores++;
381 				/*
382 				 * increment the core count for all
383 				 * the other cpus in this package
384 				 */
385 				if (i != cpu)
386 					cpu_data(i).booted_cores++;
387 			} else if (i != cpu && !c->booted_cores)
388 				c->booted_cores = cpu_data(i).booted_cores;
389 		}
390 	}
391 }
392 
393 /* maps the cpu to the sched domain representing multi-core */
394 const struct cpumask *cpu_coregroup_mask(int cpu)
395 {
396 	struct cpuinfo_x86 *c = &cpu_data(cpu);
397 	/*
398 	 * For perf, we return last level cache shared map.
399 	 * And for power savings, we return cpu_core_map
400 	 */
401 	if ((sched_mc_power_savings || sched_smt_power_savings) &&
402 	    !(cpu_has(c, X86_FEATURE_AMD_DCM)))
403 		return cpu_core_mask(cpu);
404 	else
405 		return cpu_llc_shared_mask(cpu);
406 }
407 
408 static void impress_friends(void)
409 {
410 	int cpu;
411 	unsigned long bogosum = 0;
412 	/*
413 	 * Allow the user to impress friends.
414 	 */
415 	pr_debug("Before bogomips.\n");
416 	for_each_possible_cpu(cpu)
417 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
418 			bogosum += cpu_data(cpu).loops_per_jiffy;
419 	printk(KERN_INFO
420 		"Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
421 		num_online_cpus(),
422 		bogosum/(500000/HZ),
423 		(bogosum/(5000/HZ))%100);
424 
425 	pr_debug("Before bogocount - setting activated=1.\n");
426 }
427 
428 void __inquire_remote_apic(int apicid)
429 {
430 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
431 	const char * const names[] = { "ID", "VERSION", "SPIV" };
432 	int timeout;
433 	u32 status;
434 
435 	printk(KERN_INFO "Inquiring remote APIC 0x%x...\n", apicid);
436 
437 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
438 		printk(KERN_INFO "... APIC 0x%x %s: ", apicid, names[i]);
439 
440 		/*
441 		 * Wait for idle.
442 		 */
443 		status = safe_apic_wait_icr_idle();
444 		if (status)
445 			printk(KERN_CONT
446 			       "a previous APIC delivery may have failed\n");
447 
448 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
449 
450 		timeout = 0;
451 		do {
452 			udelay(100);
453 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
454 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
455 
456 		switch (status) {
457 		case APIC_ICR_RR_VALID:
458 			status = apic_read(APIC_RRR);
459 			printk(KERN_CONT "%08x\n", status);
460 			break;
461 		default:
462 			printk(KERN_CONT "failed\n");
463 		}
464 	}
465 }
466 
467 /*
468  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
469  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
470  * won't ... remember to clear down the APIC, etc later.
471  */
472 int __cpuinit
473 wakeup_secondary_cpu_via_nmi(int logical_apicid, unsigned long start_eip)
474 {
475 	unsigned long send_status, accept_status = 0;
476 	int maxlvt;
477 
478 	/* Target chip */
479 	/* Boot on the stack */
480 	/* Kick the second */
481 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, logical_apicid);
482 
483 	pr_debug("Waiting for send to finish...\n");
484 	send_status = safe_apic_wait_icr_idle();
485 
486 	/*
487 	 * Give the other CPU some time to accept the IPI.
488 	 */
489 	udelay(200);
490 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
491 		maxlvt = lapic_get_maxlvt();
492 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
493 			apic_write(APIC_ESR, 0);
494 		accept_status = (apic_read(APIC_ESR) & 0xEF);
495 	}
496 	pr_debug("NMI sent.\n");
497 
498 	if (send_status)
499 		printk(KERN_ERR "APIC never delivered???\n");
500 	if (accept_status)
501 		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
502 
503 	return (send_status | accept_status);
504 }
505 
506 static int __cpuinit
507 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
508 {
509 	unsigned long send_status, accept_status = 0;
510 	int maxlvt, num_starts, j;
511 
512 	maxlvt = lapic_get_maxlvt();
513 
514 	/*
515 	 * Be paranoid about clearing APIC errors.
516 	 */
517 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
518 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
519 			apic_write(APIC_ESR, 0);
520 		apic_read(APIC_ESR);
521 	}
522 
523 	pr_debug("Asserting INIT.\n");
524 
525 	/*
526 	 * Turn INIT on target chip
527 	 */
528 	/*
529 	 * Send IPI
530 	 */
531 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
532 		       phys_apicid);
533 
534 	pr_debug("Waiting for send to finish...\n");
535 	send_status = safe_apic_wait_icr_idle();
536 
537 	mdelay(10);
538 
539 	pr_debug("Deasserting INIT.\n");
540 
541 	/* Target chip */
542 	/* Send IPI */
543 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
544 
545 	pr_debug("Waiting for send to finish...\n");
546 	send_status = safe_apic_wait_icr_idle();
547 
548 	mb();
549 	atomic_set(&init_deasserted, 1);
550 
551 	/*
552 	 * Should we send STARTUP IPIs ?
553 	 *
554 	 * Determine this based on the APIC version.
555 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
556 	 */
557 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
558 		num_starts = 2;
559 	else
560 		num_starts = 0;
561 
562 	/*
563 	 * Paravirt / VMI wants a startup IPI hook here to set up the
564 	 * target processor state.
565 	 */
566 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
567 			 stack_start);
568 
569 	/*
570 	 * Run STARTUP IPI loop.
571 	 */
572 	pr_debug("#startup loops: %d.\n", num_starts);
573 
574 	for (j = 1; j <= num_starts; j++) {
575 		pr_debug("Sending STARTUP #%d.\n", j);
576 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
577 			apic_write(APIC_ESR, 0);
578 		apic_read(APIC_ESR);
579 		pr_debug("After apic_write.\n");
580 
581 		/*
582 		 * STARTUP IPI
583 		 */
584 
585 		/* Target chip */
586 		/* Boot on the stack */
587 		/* Kick the second */
588 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
589 			       phys_apicid);
590 
591 		/*
592 		 * Give the other CPU some time to accept the IPI.
593 		 */
594 		udelay(300);
595 
596 		pr_debug("Startup point 1.\n");
597 
598 		pr_debug("Waiting for send to finish...\n");
599 		send_status = safe_apic_wait_icr_idle();
600 
601 		/*
602 		 * Give the other CPU some time to accept the IPI.
603 		 */
604 		udelay(200);
605 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
606 			apic_write(APIC_ESR, 0);
607 		accept_status = (apic_read(APIC_ESR) & 0xEF);
608 		if (send_status || accept_status)
609 			break;
610 	}
611 	pr_debug("After Startup.\n");
612 
613 	if (send_status)
614 		printk(KERN_ERR "APIC never delivered???\n");
615 	if (accept_status)
616 		printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
617 
618 	return (send_status | accept_status);
619 }
620 
621 struct create_idle {
622 	struct work_struct work;
623 	struct task_struct *idle;
624 	struct completion done;
625 	int cpu;
626 };
627 
628 static void __cpuinit do_fork_idle(struct work_struct *work)
629 {
630 	struct create_idle *c_idle =
631 		container_of(work, struct create_idle, work);
632 
633 	c_idle->idle = fork_idle(c_idle->cpu);
634 	complete(&c_idle->done);
635 }
636 
637 /* reduce the number of lines printed when booting a large cpu count system */
638 static void __cpuinit announce_cpu(int cpu, int apicid)
639 {
640 	static int current_node = -1;
641 	int node = early_cpu_to_node(cpu);
642 
643 	if (system_state == SYSTEM_BOOTING) {
644 		if (node != current_node) {
645 			if (current_node > (-1))
646 				pr_cont(" Ok.\n");
647 			current_node = node;
648 			pr_info("Booting Node %3d, Processors ", node);
649 		}
650 		pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " Ok.\n" : "");
651 		return;
652 	} else
653 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
654 			node, cpu, apicid);
655 }
656 
657 /*
658  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
659  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
660  * Returns zero if CPU booted OK, else error code from
661  * ->wakeup_secondary_cpu.
662  */
663 static int __cpuinit do_boot_cpu(int apicid, int cpu)
664 {
665 	unsigned long boot_error = 0;
666 	unsigned long start_ip;
667 	int timeout;
668 	struct create_idle c_idle = {
669 		.cpu	= cpu,
670 		.done	= COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
671 	};
672 
673 	INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
674 
675 	alternatives_smp_switch(1);
676 
677 	c_idle.idle = get_idle_for_cpu(cpu);
678 
679 	/*
680 	 * We can't use kernel_thread since we must avoid to
681 	 * reschedule the child.
682 	 */
683 	if (c_idle.idle) {
684 		c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *)
685 			(THREAD_SIZE +  task_stack_page(c_idle.idle))) - 1);
686 		init_idle(c_idle.idle, cpu);
687 		goto do_rest;
688 	}
689 
690 	schedule_work(&c_idle.work);
691 	wait_for_completion(&c_idle.done);
692 
693 	if (IS_ERR(c_idle.idle)) {
694 		printk("failed fork for CPU %d\n", cpu);
695 		destroy_work_on_stack(&c_idle.work);
696 		return PTR_ERR(c_idle.idle);
697 	}
698 
699 	set_idle_for_cpu(cpu, c_idle.idle);
700 do_rest:
701 	per_cpu(current_task, cpu) = c_idle.idle;
702 #ifdef CONFIG_X86_32
703 	/* Stack for startup_32 can be just as for start_secondary onwards */
704 	irq_ctx_init(cpu);
705 #else
706 	clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
707 	initial_gs = per_cpu_offset(cpu);
708 	per_cpu(kernel_stack, cpu) =
709 		(unsigned long)task_stack_page(c_idle.idle) -
710 		KERNEL_STACK_OFFSET + THREAD_SIZE;
711 #endif
712 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
713 	initial_code = (unsigned long)start_secondary;
714 	stack_start  = c_idle.idle->thread.sp;
715 
716 	/* start_ip had better be page-aligned! */
717 	start_ip = trampoline_address();
718 
719 	/* So we see what's up */
720 	announce_cpu(cpu, apicid);
721 
722 	/*
723 	 * This grunge runs the startup process for
724 	 * the targeted processor.
725 	 */
726 
727 	atomic_set(&init_deasserted, 0);
728 
729 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
730 
731 		pr_debug("Setting warm reset code and vector.\n");
732 
733 		smpboot_setup_warm_reset_vector(start_ip);
734 		/*
735 		 * Be paranoid about clearing APIC errors.
736 		*/
737 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
738 			apic_write(APIC_ESR, 0);
739 			apic_read(APIC_ESR);
740 		}
741 	}
742 
743 	/*
744 	 * Kick the secondary CPU. Use the method in the APIC driver
745 	 * if it's defined - or use an INIT boot APIC message otherwise:
746 	 */
747 	if (apic->wakeup_secondary_cpu)
748 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
749 	else
750 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
751 
752 	if (!boot_error) {
753 		/*
754 		 * allow APs to start initializing.
755 		 */
756 		pr_debug("Before Callout %d.\n", cpu);
757 		cpumask_set_cpu(cpu, cpu_callout_mask);
758 		pr_debug("After Callout %d.\n", cpu);
759 
760 		/*
761 		 * Wait 5s total for a response
762 		 */
763 		for (timeout = 0; timeout < 50000; timeout++) {
764 			if (cpumask_test_cpu(cpu, cpu_callin_mask))
765 				break;	/* It has booted */
766 			udelay(100);
767 			/*
768 			 * Allow other tasks to run while we wait for the
769 			 * AP to come online. This also gives a chance
770 			 * for the MTRR work(triggered by the AP coming online)
771 			 * to be completed in the stop machine context.
772 			 */
773 			schedule();
774 		}
775 
776 		if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
777 			print_cpu_msr(&cpu_data(cpu));
778 			pr_debug("CPU%d: has booted.\n", cpu);
779 		} else {
780 			boot_error = 1;
781 			if (*(volatile u32 *)TRAMPOLINE_SYM(trampoline_status)
782 			    == 0xA5A5A5A5)
783 				/* trampoline started but...? */
784 				pr_err("CPU%d: Stuck ??\n", cpu);
785 			else
786 				/* trampoline code not run */
787 				pr_err("CPU%d: Not responding.\n", cpu);
788 			if (apic->inquire_remote_apic)
789 				apic->inquire_remote_apic(apicid);
790 		}
791 	}
792 
793 	if (boot_error) {
794 		/* Try to put things back the way they were before ... */
795 		numa_remove_cpu(cpu); /* was set by numa_add_cpu */
796 
797 		/* was set by do_boot_cpu() */
798 		cpumask_clear_cpu(cpu, cpu_callout_mask);
799 
800 		/* was set by cpu_init() */
801 		cpumask_clear_cpu(cpu, cpu_initialized_mask);
802 
803 		set_cpu_present(cpu, false);
804 		per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
805 	}
806 
807 	/* mark "stuck" area as not stuck */
808 	*(volatile u32 *)TRAMPOLINE_SYM(trampoline_status) = 0;
809 
810 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
811 		/*
812 		 * Cleanup possible dangling ends...
813 		 */
814 		smpboot_restore_warm_reset_vector();
815 	}
816 
817 	destroy_work_on_stack(&c_idle.work);
818 	return boot_error;
819 }
820 
821 int __cpuinit native_cpu_up(unsigned int cpu)
822 {
823 	int apicid = apic->cpu_present_to_apicid(cpu);
824 	unsigned long flags;
825 	int err;
826 
827 	WARN_ON(irqs_disabled());
828 
829 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
830 
831 	if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid ||
832 	    !physid_isset(apicid, phys_cpu_present_map) ||
833 	    !apic->apic_id_valid(apicid)) {
834 		printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu);
835 		return -EINVAL;
836 	}
837 
838 	/*
839 	 * Already booted CPU?
840 	 */
841 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
842 		pr_debug("do_boot_cpu %d Already started\n", cpu);
843 		return -ENOSYS;
844 	}
845 
846 	/*
847 	 * Save current MTRR state in case it was changed since early boot
848 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
849 	 */
850 	mtrr_save_state();
851 
852 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
853 
854 	err = do_boot_cpu(apicid, cpu);
855 	if (err) {
856 		pr_debug("do_boot_cpu failed %d\n", err);
857 		return -EIO;
858 	}
859 
860 	/*
861 	 * Check TSC synchronization with the AP (keep irqs disabled
862 	 * while doing so):
863 	 */
864 	local_irq_save(flags);
865 	check_tsc_sync_source(cpu);
866 	local_irq_restore(flags);
867 
868 	while (!cpu_online(cpu)) {
869 		cpu_relax();
870 		touch_nmi_watchdog();
871 	}
872 
873 	return 0;
874 }
875 
876 /**
877  * arch_disable_smp_support() - disables SMP support for x86 at runtime
878  */
879 void arch_disable_smp_support(void)
880 {
881 	disable_ioapic_support();
882 }
883 
884 /*
885  * Fall back to non SMP mode after errors.
886  *
887  * RED-PEN audit/test this more. I bet there is more state messed up here.
888  */
889 static __init void disable_smp(void)
890 {
891 	init_cpu_present(cpumask_of(0));
892 	init_cpu_possible(cpumask_of(0));
893 	smpboot_clear_io_apic_irqs();
894 
895 	if (smp_found_config)
896 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
897 	else
898 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
899 	cpumask_set_cpu(0, cpu_sibling_mask(0));
900 	cpumask_set_cpu(0, cpu_core_mask(0));
901 }
902 
903 /*
904  * Various sanity checks.
905  */
906 static int __init smp_sanity_check(unsigned max_cpus)
907 {
908 	preempt_disable();
909 
910 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
911 	if (def_to_bigsmp && nr_cpu_ids > 8) {
912 		unsigned int cpu;
913 		unsigned nr;
914 
915 		printk(KERN_WARNING
916 		       "More than 8 CPUs detected - skipping them.\n"
917 		       "Use CONFIG_X86_BIGSMP.\n");
918 
919 		nr = 0;
920 		for_each_present_cpu(cpu) {
921 			if (nr >= 8)
922 				set_cpu_present(cpu, false);
923 			nr++;
924 		}
925 
926 		nr = 0;
927 		for_each_possible_cpu(cpu) {
928 			if (nr >= 8)
929 				set_cpu_possible(cpu, false);
930 			nr++;
931 		}
932 
933 		nr_cpu_ids = 8;
934 	}
935 #endif
936 
937 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
938 		printk(KERN_WARNING
939 			"weird, boot CPU (#%d) not listed by the BIOS.\n",
940 			hard_smp_processor_id());
941 
942 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
943 	}
944 
945 	/*
946 	 * If we couldn't find an SMP configuration at boot time,
947 	 * get out of here now!
948 	 */
949 	if (!smp_found_config && !acpi_lapic) {
950 		preempt_enable();
951 		printk(KERN_NOTICE "SMP motherboard not detected.\n");
952 		disable_smp();
953 		if (APIC_init_uniprocessor())
954 			printk(KERN_NOTICE "Local APIC not detected."
955 					   " Using dummy APIC emulation.\n");
956 		return -1;
957 	}
958 
959 	/*
960 	 * Should not be necessary because the MP table should list the boot
961 	 * CPU too, but we do it for the sake of robustness anyway.
962 	 */
963 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
964 		printk(KERN_NOTICE
965 			"weird, boot CPU (#%d) not listed by the BIOS.\n",
966 			boot_cpu_physical_apicid);
967 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
968 	}
969 	preempt_enable();
970 
971 	/*
972 	 * If we couldn't find a local APIC, then get out of here now!
973 	 */
974 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
975 	    !cpu_has_apic) {
976 		if (!disable_apic) {
977 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
978 				boot_cpu_physical_apicid);
979 			pr_err("... forcing use of dummy APIC emulation."
980 				"(tell your hw vendor)\n");
981 		}
982 		smpboot_clear_io_apic();
983 		disable_ioapic_support();
984 		return -1;
985 	}
986 
987 	verify_local_APIC();
988 
989 	/*
990 	 * If SMP should be disabled, then really disable it!
991 	 */
992 	if (!max_cpus) {
993 		printk(KERN_INFO "SMP mode deactivated.\n");
994 		smpboot_clear_io_apic();
995 
996 		connect_bsp_APIC();
997 		setup_local_APIC();
998 		bsp_end_local_APIC_setup();
999 		return -1;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static void __init smp_cpu_index_default(void)
1006 {
1007 	int i;
1008 	struct cpuinfo_x86 *c;
1009 
1010 	for_each_possible_cpu(i) {
1011 		c = &cpu_data(i);
1012 		/* mark all to hotplug */
1013 		c->cpu_index = nr_cpu_ids;
1014 	}
1015 }
1016 
1017 /*
1018  * Prepare for SMP bootup.  The MP table or ACPI has been read
1019  * earlier.  Just do some sanity checking here and enable APIC mode.
1020  */
1021 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1022 {
1023 	unsigned int i;
1024 
1025 	preempt_disable();
1026 	smp_cpu_index_default();
1027 
1028 	/*
1029 	 * Setup boot CPU information
1030 	 */
1031 	smp_store_cpu_info(0); /* Final full version of the data */
1032 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1033 	mb();
1034 
1035 	current_thread_info()->cpu = 0;  /* needed? */
1036 	for_each_possible_cpu(i) {
1037 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1038 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1039 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1040 	}
1041 	set_cpu_sibling_map(0);
1042 
1043 
1044 	if (smp_sanity_check(max_cpus) < 0) {
1045 		printk(KERN_INFO "SMP disabled\n");
1046 		disable_smp();
1047 		goto out;
1048 	}
1049 
1050 	default_setup_apic_routing();
1051 
1052 	preempt_disable();
1053 	if (read_apic_id() != boot_cpu_physical_apicid) {
1054 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1055 		     read_apic_id(), boot_cpu_physical_apicid);
1056 		/* Or can we switch back to PIC here? */
1057 	}
1058 	preempt_enable();
1059 
1060 	connect_bsp_APIC();
1061 
1062 	/*
1063 	 * Switch from PIC to APIC mode.
1064 	 */
1065 	setup_local_APIC();
1066 
1067 	/*
1068 	 * Enable IO APIC before setting up error vector
1069 	 */
1070 	if (!skip_ioapic_setup && nr_ioapics)
1071 		enable_IO_APIC();
1072 
1073 	bsp_end_local_APIC_setup();
1074 
1075 	if (apic->setup_portio_remap)
1076 		apic->setup_portio_remap();
1077 
1078 	smpboot_setup_io_apic();
1079 	/*
1080 	 * Set up local APIC timer on boot CPU.
1081 	 */
1082 
1083 	printk(KERN_INFO "CPU%d: ", 0);
1084 	print_cpu_info(&cpu_data(0));
1085 	x86_init.timers.setup_percpu_clockev();
1086 
1087 	if (is_uv_system())
1088 		uv_system_init();
1089 
1090 	set_mtrr_aps_delayed_init();
1091 out:
1092 	preempt_enable();
1093 }
1094 
1095 void arch_disable_nonboot_cpus_begin(void)
1096 {
1097 	/*
1098 	 * Avoid the smp alternatives switch during the disable_nonboot_cpus().
1099 	 * In the suspend path, we will be back in the SMP mode shortly anyways.
1100 	 */
1101 	skip_smp_alternatives = true;
1102 }
1103 
1104 void arch_disable_nonboot_cpus_end(void)
1105 {
1106 	skip_smp_alternatives = false;
1107 }
1108 
1109 void arch_enable_nonboot_cpus_begin(void)
1110 {
1111 	set_mtrr_aps_delayed_init();
1112 }
1113 
1114 void arch_enable_nonboot_cpus_end(void)
1115 {
1116 	mtrr_aps_init();
1117 }
1118 
1119 /*
1120  * Early setup to make printk work.
1121  */
1122 void __init native_smp_prepare_boot_cpu(void)
1123 {
1124 	int me = smp_processor_id();
1125 	switch_to_new_gdt(me);
1126 	/* already set me in cpu_online_mask in boot_cpu_init() */
1127 	cpumask_set_cpu(me, cpu_callout_mask);
1128 	per_cpu(cpu_state, me) = CPU_ONLINE;
1129 }
1130 
1131 void __init native_smp_cpus_done(unsigned int max_cpus)
1132 {
1133 	pr_debug("Boot done.\n");
1134 
1135 	nmi_selftest();
1136 	impress_friends();
1137 #ifdef CONFIG_X86_IO_APIC
1138 	setup_ioapic_dest();
1139 #endif
1140 	mtrr_aps_init();
1141 }
1142 
1143 static int __initdata setup_possible_cpus = -1;
1144 static int __init _setup_possible_cpus(char *str)
1145 {
1146 	get_option(&str, &setup_possible_cpus);
1147 	return 0;
1148 }
1149 early_param("possible_cpus", _setup_possible_cpus);
1150 
1151 
1152 /*
1153  * cpu_possible_mask should be static, it cannot change as cpu's
1154  * are onlined, or offlined. The reason is per-cpu data-structures
1155  * are allocated by some modules at init time, and dont expect to
1156  * do this dynamically on cpu arrival/departure.
1157  * cpu_present_mask on the other hand can change dynamically.
1158  * In case when cpu_hotplug is not compiled, then we resort to current
1159  * behaviour, which is cpu_possible == cpu_present.
1160  * - Ashok Raj
1161  *
1162  * Three ways to find out the number of additional hotplug CPUs:
1163  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1164  * - The user can overwrite it with possible_cpus=NUM
1165  * - Otherwise don't reserve additional CPUs.
1166  * We do this because additional CPUs waste a lot of memory.
1167  * -AK
1168  */
1169 __init void prefill_possible_map(void)
1170 {
1171 	int i, possible;
1172 
1173 	/* no processor from mptable or madt */
1174 	if (!num_processors)
1175 		num_processors = 1;
1176 
1177 	i = setup_max_cpus ?: 1;
1178 	if (setup_possible_cpus == -1) {
1179 		possible = num_processors;
1180 #ifdef CONFIG_HOTPLUG_CPU
1181 		if (setup_max_cpus)
1182 			possible += disabled_cpus;
1183 #else
1184 		if (possible > i)
1185 			possible = i;
1186 #endif
1187 	} else
1188 		possible = setup_possible_cpus;
1189 
1190 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1191 
1192 	/* nr_cpu_ids could be reduced via nr_cpus= */
1193 	if (possible > nr_cpu_ids) {
1194 		printk(KERN_WARNING
1195 			"%d Processors exceeds NR_CPUS limit of %d\n",
1196 			possible, nr_cpu_ids);
1197 		possible = nr_cpu_ids;
1198 	}
1199 
1200 #ifdef CONFIG_HOTPLUG_CPU
1201 	if (!setup_max_cpus)
1202 #endif
1203 	if (possible > i) {
1204 		printk(KERN_WARNING
1205 			"%d Processors exceeds max_cpus limit of %u\n",
1206 			possible, setup_max_cpus);
1207 		possible = i;
1208 	}
1209 
1210 	printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1211 		possible, max_t(int, possible - num_processors, 0));
1212 
1213 	for (i = 0; i < possible; i++)
1214 		set_cpu_possible(i, true);
1215 	for (; i < NR_CPUS; i++)
1216 		set_cpu_possible(i, false);
1217 
1218 	nr_cpu_ids = possible;
1219 }
1220 
1221 #ifdef CONFIG_HOTPLUG_CPU
1222 
1223 static void remove_siblinginfo(int cpu)
1224 {
1225 	int sibling;
1226 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1227 
1228 	for_each_cpu(sibling, cpu_core_mask(cpu)) {
1229 		cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1230 		/*/
1231 		 * last thread sibling in this cpu core going down
1232 		 */
1233 		if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1234 			cpu_data(sibling).booted_cores--;
1235 	}
1236 
1237 	for_each_cpu(sibling, cpu_sibling_mask(cpu))
1238 		cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1239 	cpumask_clear(cpu_sibling_mask(cpu));
1240 	cpumask_clear(cpu_core_mask(cpu));
1241 	c->phys_proc_id = 0;
1242 	c->cpu_core_id = 0;
1243 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1244 }
1245 
1246 static void __ref remove_cpu_from_maps(int cpu)
1247 {
1248 	set_cpu_online(cpu, false);
1249 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1250 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1251 	/* was set by cpu_init() */
1252 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1253 	numa_remove_cpu(cpu);
1254 }
1255 
1256 void cpu_disable_common(void)
1257 {
1258 	int cpu = smp_processor_id();
1259 
1260 	remove_siblinginfo(cpu);
1261 
1262 	/* It's now safe to remove this processor from the online map */
1263 	lock_vector_lock();
1264 	remove_cpu_from_maps(cpu);
1265 	unlock_vector_lock();
1266 	fixup_irqs();
1267 }
1268 
1269 int native_cpu_disable(void)
1270 {
1271 	int cpu = smp_processor_id();
1272 
1273 	/*
1274 	 * Perhaps use cpufreq to drop frequency, but that could go
1275 	 * into generic code.
1276 	 *
1277 	 * We won't take down the boot processor on i386 due to some
1278 	 * interrupts only being able to be serviced by the BSP.
1279 	 * Especially so if we're not using an IOAPIC	-zwane
1280 	 */
1281 	if (cpu == 0)
1282 		return -EBUSY;
1283 
1284 	clear_local_APIC();
1285 
1286 	cpu_disable_common();
1287 	return 0;
1288 }
1289 
1290 void native_cpu_die(unsigned int cpu)
1291 {
1292 	/* We don't do anything here: idle task is faking death itself. */
1293 	unsigned int i;
1294 
1295 	for (i = 0; i < 10; i++) {
1296 		/* They ack this in play_dead by setting CPU_DEAD */
1297 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1298 			if (system_state == SYSTEM_RUNNING)
1299 				pr_info("CPU %u is now offline\n", cpu);
1300 
1301 			if (1 == num_online_cpus())
1302 				alternatives_smp_switch(0);
1303 			return;
1304 		}
1305 		msleep(100);
1306 	}
1307 	pr_err("CPU %u didn't die...\n", cpu);
1308 }
1309 
1310 void play_dead_common(void)
1311 {
1312 	idle_task_exit();
1313 	reset_lazy_tlbstate();
1314 	amd_e400_remove_cpu(raw_smp_processor_id());
1315 
1316 	mb();
1317 	/* Ack it */
1318 	__this_cpu_write(cpu_state, CPU_DEAD);
1319 
1320 	/*
1321 	 * With physical CPU hotplug, we should halt the cpu
1322 	 */
1323 	local_irq_disable();
1324 }
1325 
1326 /*
1327  * We need to flush the caches before going to sleep, lest we have
1328  * dirty data in our caches when we come back up.
1329  */
1330 static inline void mwait_play_dead(void)
1331 {
1332 	unsigned int eax, ebx, ecx, edx;
1333 	unsigned int highest_cstate = 0;
1334 	unsigned int highest_subcstate = 0;
1335 	int i;
1336 	void *mwait_ptr;
1337 	struct cpuinfo_x86 *c = __this_cpu_ptr(&cpu_info);
1338 
1339 	if (!(this_cpu_has(X86_FEATURE_MWAIT) && mwait_usable(c)))
1340 		return;
1341 	if (!this_cpu_has(X86_FEATURE_CLFLSH))
1342 		return;
1343 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1344 		return;
1345 
1346 	eax = CPUID_MWAIT_LEAF;
1347 	ecx = 0;
1348 	native_cpuid(&eax, &ebx, &ecx, &edx);
1349 
1350 	/*
1351 	 * eax will be 0 if EDX enumeration is not valid.
1352 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1353 	 */
1354 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1355 		eax = 0;
1356 	} else {
1357 		edx >>= MWAIT_SUBSTATE_SIZE;
1358 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1359 			if (edx & MWAIT_SUBSTATE_MASK) {
1360 				highest_cstate = i;
1361 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1362 			}
1363 		}
1364 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1365 			(highest_subcstate - 1);
1366 	}
1367 
1368 	/*
1369 	 * This should be a memory location in a cache line which is
1370 	 * unlikely to be touched by other processors.  The actual
1371 	 * content is immaterial as it is not actually modified in any way.
1372 	 */
1373 	mwait_ptr = &current_thread_info()->flags;
1374 
1375 	wbinvd();
1376 
1377 	while (1) {
1378 		/*
1379 		 * The CLFLUSH is a workaround for erratum AAI65 for
1380 		 * the Xeon 7400 series.  It's not clear it is actually
1381 		 * needed, but it should be harmless in either case.
1382 		 * The WBINVD is insufficient due to the spurious-wakeup
1383 		 * case where we return around the loop.
1384 		 */
1385 		clflush(mwait_ptr);
1386 		__monitor(mwait_ptr, 0, 0);
1387 		mb();
1388 		__mwait(eax, 0);
1389 	}
1390 }
1391 
1392 static inline void hlt_play_dead(void)
1393 {
1394 	if (__this_cpu_read(cpu_info.x86) >= 4)
1395 		wbinvd();
1396 
1397 	while (1) {
1398 		native_halt();
1399 	}
1400 }
1401 
1402 void native_play_dead(void)
1403 {
1404 	play_dead_common();
1405 	tboot_shutdown(TB_SHUTDOWN_WFS);
1406 
1407 	mwait_play_dead();	/* Only returns on failure */
1408 	if (cpuidle_play_dead())
1409 		hlt_play_dead();
1410 }
1411 
1412 #else /* ... !CONFIG_HOTPLUG_CPU */
1413 int native_cpu_disable(void)
1414 {
1415 	return -ENOSYS;
1416 }
1417 
1418 void native_cpu_die(unsigned int cpu)
1419 {
1420 	/* We said "no" in __cpu_disable */
1421 	BUG();
1422 }
1423 
1424 void native_play_dead(void)
1425 {
1426 	BUG();
1427 }
1428 
1429 #endif
1430