1 /* 2 * x86 SMP booting functions 3 * 4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> 5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> 6 * Copyright 2001 Andi Kleen, SuSE Labs. 7 * 8 * Much of the core SMP work is based on previous work by Thomas Radke, to 9 * whom a great many thanks are extended. 10 * 11 * Thanks to Intel for making available several different Pentium, 12 * Pentium Pro and Pentium-II/Xeon MP machines. 13 * Original development of Linux SMP code supported by Caldera. 14 * 15 * This code is released under the GNU General Public License version 2 or 16 * later. 17 * 18 * Fixes 19 * Felix Koop : NR_CPUS used properly 20 * Jose Renau : Handle single CPU case. 21 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 22 * Greg Wright : Fix for kernel stacks panic. 23 * Erich Boleyn : MP v1.4 and additional changes. 24 * Matthias Sattler : Changes for 2.1 kernel map. 25 * Michel Lespinasse : Changes for 2.1 kernel map. 26 * Michael Chastain : Change trampoline.S to gnu as. 27 * Alan Cox : Dumb bug: 'B' step PPro's are fine 28 * Ingo Molnar : Added APIC timers, based on code 29 * from Jose Renau 30 * Ingo Molnar : various cleanups and rewrites 31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 33 * Andi Kleen : Changed for SMP boot into long mode. 34 * Martin J. Bligh : Added support for multi-quad systems 35 * Dave Jones : Report invalid combinations of Athlon CPUs. 36 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 37 * Andi Kleen : Converted to new state machine. 38 * Ashok Raj : CPU hotplug support 39 * Glauber Costa : i386 and x86_64 integration 40 */ 41 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/module.h> 45 #include <linux/sched.h> 46 #include <linux/percpu.h> 47 #include <linux/bootmem.h> 48 #include <linux/err.h> 49 #include <linux/nmi.h> 50 51 #include <asm/acpi.h> 52 #include <asm/desc.h> 53 #include <asm/nmi.h> 54 #include <asm/irq.h> 55 #include <asm/smp.h> 56 #include <asm/trampoline.h> 57 #include <asm/cpu.h> 58 #include <asm/numa.h> 59 #include <asm/pgtable.h> 60 #include <asm/tlbflush.h> 61 #include <asm/mtrr.h> 62 #include <asm/vmi.h> 63 #include <asm/genapic.h> 64 #include <linux/mc146818rtc.h> 65 66 #include <mach_apic.h> 67 #include <mach_wakecpu.h> 68 #include <smpboot_hooks.h> 69 70 #ifdef CONFIG_X86_32 71 u8 apicid_2_node[MAX_APICID]; 72 static int low_mappings; 73 #endif 74 75 /* State of each CPU */ 76 DEFINE_PER_CPU(int, cpu_state) = { 0 }; 77 78 /* Store all idle threads, this can be reused instead of creating 79 * a new thread. Also avoids complicated thread destroy functionality 80 * for idle threads. 81 */ 82 #ifdef CONFIG_HOTPLUG_CPU 83 /* 84 * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is 85 * removed after init for !CONFIG_HOTPLUG_CPU. 86 */ 87 static DEFINE_PER_CPU(struct task_struct *, idle_thread_array); 88 #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x)) 89 #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p)) 90 #else 91 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ; 92 #define get_idle_for_cpu(x) (idle_thread_array[(x)]) 93 #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p)) 94 #endif 95 96 /* Number of siblings per CPU package */ 97 int smp_num_siblings = 1; 98 EXPORT_SYMBOL(smp_num_siblings); 99 100 /* Last level cache ID of each logical CPU */ 101 DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID; 102 103 /* bitmap of online cpus */ 104 cpumask_t cpu_online_map __read_mostly; 105 EXPORT_SYMBOL(cpu_online_map); 106 107 cpumask_t cpu_callin_map; 108 cpumask_t cpu_callout_map; 109 cpumask_t cpu_possible_map; 110 EXPORT_SYMBOL(cpu_possible_map); 111 112 /* representing HT siblings of each logical CPU */ 113 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map); 114 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 115 116 /* representing HT and core siblings of each logical CPU */ 117 DEFINE_PER_CPU(cpumask_t, cpu_core_map); 118 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 119 120 /* Per CPU bogomips and other parameters */ 121 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info); 122 EXPORT_PER_CPU_SYMBOL(cpu_info); 123 124 static atomic_t init_deasserted; 125 126 static int boot_cpu_logical_apicid; 127 128 /* representing cpus for which sibling maps can be computed */ 129 static cpumask_t cpu_sibling_setup_map; 130 131 /* Set if we find a B stepping CPU */ 132 int __cpuinitdata smp_b_stepping; 133 134 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32) 135 136 /* which logical CPUs are on which nodes */ 137 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly = 138 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE }; 139 EXPORT_SYMBOL(node_to_cpumask_map); 140 /* which node each logical CPU is on */ 141 int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 }; 142 EXPORT_SYMBOL(cpu_to_node_map); 143 144 /* set up a mapping between cpu and node. */ 145 static void map_cpu_to_node(int cpu, int node) 146 { 147 printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node); 148 cpu_set(cpu, node_to_cpumask_map[node]); 149 cpu_to_node_map[cpu] = node; 150 } 151 152 /* undo a mapping between cpu and node. */ 153 static void unmap_cpu_to_node(int cpu) 154 { 155 int node; 156 157 printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu); 158 for (node = 0; node < MAX_NUMNODES; node++) 159 cpu_clear(cpu, node_to_cpumask_map[node]); 160 cpu_to_node_map[cpu] = 0; 161 } 162 #else /* !(CONFIG_NUMA && CONFIG_X86_32) */ 163 #define map_cpu_to_node(cpu, node) ({}) 164 #define unmap_cpu_to_node(cpu) ({}) 165 #endif 166 167 #ifdef CONFIG_X86_32 168 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = 169 { [0 ... NR_CPUS-1] = BAD_APICID }; 170 171 static void map_cpu_to_logical_apicid(void) 172 { 173 int cpu = smp_processor_id(); 174 int apicid = logical_smp_processor_id(); 175 int node = apicid_to_node(apicid); 176 177 if (!node_online(node)) 178 node = first_online_node; 179 180 cpu_2_logical_apicid[cpu] = apicid; 181 map_cpu_to_node(cpu, node); 182 } 183 184 void numa_remove_cpu(int cpu) 185 { 186 cpu_2_logical_apicid[cpu] = BAD_APICID; 187 unmap_cpu_to_node(cpu); 188 } 189 #else 190 #define map_cpu_to_logical_apicid() do {} while (0) 191 #endif 192 193 /* 194 * Report back to the Boot Processor. 195 * Running on AP. 196 */ 197 static void __cpuinit smp_callin(void) 198 { 199 int cpuid, phys_id; 200 unsigned long timeout; 201 202 /* 203 * If waken up by an INIT in an 82489DX configuration 204 * we may get here before an INIT-deassert IPI reaches 205 * our local APIC. We have to wait for the IPI or we'll 206 * lock up on an APIC access. 207 */ 208 wait_for_init_deassert(&init_deasserted); 209 210 /* 211 * (This works even if the APIC is not enabled.) 212 */ 213 phys_id = GET_APIC_ID(read_apic_id()); 214 cpuid = smp_processor_id(); 215 if (cpu_isset(cpuid, cpu_callin_map)) { 216 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__, 217 phys_id, cpuid); 218 } 219 pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); 220 221 /* 222 * STARTUP IPIs are fragile beasts as they might sometimes 223 * trigger some glue motherboard logic. Complete APIC bus 224 * silence for 1 second, this overestimates the time the 225 * boot CPU is spending to send the up to 2 STARTUP IPIs 226 * by a factor of two. This should be enough. 227 */ 228 229 /* 230 * Waiting 2s total for startup (udelay is not yet working) 231 */ 232 timeout = jiffies + 2*HZ; 233 while (time_before(jiffies, timeout)) { 234 /* 235 * Has the boot CPU finished it's STARTUP sequence? 236 */ 237 if (cpu_isset(cpuid, cpu_callout_map)) 238 break; 239 cpu_relax(); 240 } 241 242 if (!time_before(jiffies, timeout)) { 243 panic("%s: CPU%d started up but did not get a callout!\n", 244 __func__, cpuid); 245 } 246 247 /* 248 * the boot CPU has finished the init stage and is spinning 249 * on callin_map until we finish. We are free to set up this 250 * CPU, first the APIC. (this is probably redundant on most 251 * boards) 252 */ 253 254 pr_debug("CALLIN, before setup_local_APIC().\n"); 255 smp_callin_clear_local_apic(); 256 setup_local_APIC(); 257 end_local_APIC_setup(); 258 map_cpu_to_logical_apicid(); 259 260 /* 261 * Get our bogomips. 262 * 263 * Need to enable IRQs because it can take longer and then 264 * the NMI watchdog might kill us. 265 */ 266 local_irq_enable(); 267 calibrate_delay(); 268 local_irq_disable(); 269 pr_debug("Stack at about %p\n", &cpuid); 270 271 /* 272 * Save our processor parameters 273 */ 274 smp_store_cpu_info(cpuid); 275 276 /* 277 * Allow the master to continue. 278 */ 279 cpu_set(cpuid, cpu_callin_map); 280 } 281 282 /* 283 * Activate a secondary processor. 284 */ 285 static void __cpuinit start_secondary(void *unused) 286 { 287 /* 288 * Don't put *anything* before cpu_init(), SMP booting is too 289 * fragile that we want to limit the things done here to the 290 * most necessary things. 291 */ 292 #ifdef CONFIG_VMI 293 vmi_bringup(); 294 #endif 295 cpu_init(); 296 preempt_disable(); 297 smp_callin(); 298 299 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 300 barrier(); 301 /* 302 * Check TSC synchronization with the BP: 303 */ 304 check_tsc_sync_target(); 305 306 if (nmi_watchdog == NMI_IO_APIC) { 307 disable_8259A_irq(0); 308 enable_NMI_through_LVT0(); 309 enable_8259A_irq(0); 310 } 311 312 #ifdef CONFIG_X86_32 313 while (low_mappings) 314 cpu_relax(); 315 __flush_tlb_all(); 316 #endif 317 318 /* This must be done before setting cpu_online_map */ 319 set_cpu_sibling_map(raw_smp_processor_id()); 320 wmb(); 321 322 /* 323 * We need to hold call_lock, so there is no inconsistency 324 * between the time smp_call_function() determines number of 325 * IPI recipients, and the time when the determination is made 326 * for which cpus receive the IPI. Holding this 327 * lock helps us to not include this cpu in a currently in progress 328 * smp_call_function(). 329 */ 330 ipi_call_lock_irq(); 331 #ifdef CONFIG_X86_IO_APIC 332 setup_vector_irq(smp_processor_id()); 333 #endif 334 cpu_set(smp_processor_id(), cpu_online_map); 335 ipi_call_unlock_irq(); 336 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; 337 338 setup_secondary_clock(); 339 340 wmb(); 341 cpu_idle(); 342 } 343 344 static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c) 345 { 346 /* 347 * Mask B, Pentium, but not Pentium MMX 348 */ 349 if (c->x86_vendor == X86_VENDOR_INTEL && 350 c->x86 == 5 && 351 c->x86_mask >= 1 && c->x86_mask <= 4 && 352 c->x86_model <= 3) 353 /* 354 * Remember we have B step Pentia with bugs 355 */ 356 smp_b_stepping = 1; 357 358 /* 359 * Certain Athlons might work (for various values of 'work') in SMP 360 * but they are not certified as MP capable. 361 */ 362 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { 363 364 if (num_possible_cpus() == 1) 365 goto valid_k7; 366 367 /* Athlon 660/661 is valid. */ 368 if ((c->x86_model == 6) && ((c->x86_mask == 0) || 369 (c->x86_mask == 1))) 370 goto valid_k7; 371 372 /* Duron 670 is valid */ 373 if ((c->x86_model == 7) && (c->x86_mask == 0)) 374 goto valid_k7; 375 376 /* 377 * Athlon 662, Duron 671, and Athlon >model 7 have capability 378 * bit. It's worth noting that the A5 stepping (662) of some 379 * Athlon XP's have the MP bit set. 380 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for 381 * more. 382 */ 383 if (((c->x86_model == 6) && (c->x86_mask >= 2)) || 384 ((c->x86_model == 7) && (c->x86_mask >= 1)) || 385 (c->x86_model > 7)) 386 if (cpu_has_mp) 387 goto valid_k7; 388 389 /* If we get here, not a certified SMP capable AMD system. */ 390 add_taint(TAINT_UNSAFE_SMP); 391 } 392 393 valid_k7: 394 ; 395 } 396 397 static void __cpuinit smp_checks(void) 398 { 399 if (smp_b_stepping) 400 printk(KERN_WARNING "WARNING: SMP operation may be unreliable" 401 "with B stepping processors.\n"); 402 403 /* 404 * Don't taint if we are running SMP kernel on a single non-MP 405 * approved Athlon 406 */ 407 if (tainted & TAINT_UNSAFE_SMP) { 408 if (num_online_cpus()) 409 printk(KERN_INFO "WARNING: This combination of AMD" 410 "processors is not suitable for SMP.\n"); 411 else 412 tainted &= ~TAINT_UNSAFE_SMP; 413 } 414 } 415 416 /* 417 * The bootstrap kernel entry code has set these up. Save them for 418 * a given CPU 419 */ 420 421 void __cpuinit smp_store_cpu_info(int id) 422 { 423 struct cpuinfo_x86 *c = &cpu_data(id); 424 425 *c = boot_cpu_data; 426 c->cpu_index = id; 427 if (id != 0) 428 identify_secondary_cpu(c); 429 smp_apply_quirks(c); 430 } 431 432 433 void __cpuinit set_cpu_sibling_map(int cpu) 434 { 435 int i; 436 struct cpuinfo_x86 *c = &cpu_data(cpu); 437 438 cpu_set(cpu, cpu_sibling_setup_map); 439 440 if (smp_num_siblings > 1) { 441 for_each_cpu_mask_nr(i, cpu_sibling_setup_map) { 442 if (c->phys_proc_id == cpu_data(i).phys_proc_id && 443 c->cpu_core_id == cpu_data(i).cpu_core_id) { 444 cpu_set(i, per_cpu(cpu_sibling_map, cpu)); 445 cpu_set(cpu, per_cpu(cpu_sibling_map, i)); 446 cpu_set(i, per_cpu(cpu_core_map, cpu)); 447 cpu_set(cpu, per_cpu(cpu_core_map, i)); 448 cpu_set(i, c->llc_shared_map); 449 cpu_set(cpu, cpu_data(i).llc_shared_map); 450 } 451 } 452 } else { 453 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu)); 454 } 455 456 cpu_set(cpu, c->llc_shared_map); 457 458 if (current_cpu_data.x86_max_cores == 1) { 459 per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu); 460 c->booted_cores = 1; 461 return; 462 } 463 464 for_each_cpu_mask_nr(i, cpu_sibling_setup_map) { 465 if (per_cpu(cpu_llc_id, cpu) != BAD_APICID && 466 per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) { 467 cpu_set(i, c->llc_shared_map); 468 cpu_set(cpu, cpu_data(i).llc_shared_map); 469 } 470 if (c->phys_proc_id == cpu_data(i).phys_proc_id) { 471 cpu_set(i, per_cpu(cpu_core_map, cpu)); 472 cpu_set(cpu, per_cpu(cpu_core_map, i)); 473 /* 474 * Does this new cpu bringup a new core? 475 */ 476 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) { 477 /* 478 * for each core in package, increment 479 * the booted_cores for this new cpu 480 */ 481 if (first_cpu(per_cpu(cpu_sibling_map, i)) == i) 482 c->booted_cores++; 483 /* 484 * increment the core count for all 485 * the other cpus in this package 486 */ 487 if (i != cpu) 488 cpu_data(i).booted_cores++; 489 } else if (i != cpu && !c->booted_cores) 490 c->booted_cores = cpu_data(i).booted_cores; 491 } 492 } 493 } 494 495 /* maps the cpu to the sched domain representing multi-core */ 496 cpumask_t cpu_coregroup_map(int cpu) 497 { 498 struct cpuinfo_x86 *c = &cpu_data(cpu); 499 /* 500 * For perf, we return last level cache shared map. 501 * And for power savings, we return cpu_core_map 502 */ 503 if (sched_mc_power_savings || sched_smt_power_savings) 504 return per_cpu(cpu_core_map, cpu); 505 else 506 return c->llc_shared_map; 507 } 508 509 static void impress_friends(void) 510 { 511 int cpu; 512 unsigned long bogosum = 0; 513 /* 514 * Allow the user to impress friends. 515 */ 516 pr_debug("Before bogomips.\n"); 517 for_each_possible_cpu(cpu) 518 if (cpu_isset(cpu, cpu_callout_map)) 519 bogosum += cpu_data(cpu).loops_per_jiffy; 520 printk(KERN_INFO 521 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", 522 num_online_cpus(), 523 bogosum/(500000/HZ), 524 (bogosum/(5000/HZ))%100); 525 526 pr_debug("Before bogocount - setting activated=1.\n"); 527 } 528 529 static inline void __inquire_remote_apic(int apicid) 530 { 531 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 532 char *names[] = { "ID", "VERSION", "SPIV" }; 533 int timeout; 534 u32 status; 535 536 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid); 537 538 for (i = 0; i < ARRAY_SIZE(regs); i++) { 539 printk(KERN_INFO "... APIC #%d %s: ", apicid, names[i]); 540 541 /* 542 * Wait for idle. 543 */ 544 status = safe_apic_wait_icr_idle(); 545 if (status) 546 printk(KERN_CONT 547 "a previous APIC delivery may have failed\n"); 548 549 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); 550 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]); 551 552 timeout = 0; 553 do { 554 udelay(100); 555 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 556 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 557 558 switch (status) { 559 case APIC_ICR_RR_VALID: 560 status = apic_read(APIC_RRR); 561 printk(KERN_CONT "%08x\n", status); 562 break; 563 default: 564 printk(KERN_CONT "failed\n"); 565 } 566 } 567 } 568 569 #ifdef WAKE_SECONDARY_VIA_NMI 570 /* 571 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 572 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 573 * won't ... remember to clear down the APIC, etc later. 574 */ 575 static int __devinit 576 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip) 577 { 578 unsigned long send_status, accept_status = 0; 579 int maxlvt; 580 581 /* Target chip */ 582 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid)); 583 584 /* Boot on the stack */ 585 /* Kick the second */ 586 apic_write(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL); 587 588 pr_debug("Waiting for send to finish...\n"); 589 send_status = safe_apic_wait_icr_idle(); 590 591 /* 592 * Give the other CPU some time to accept the IPI. 593 */ 594 udelay(200); 595 maxlvt = lapic_get_maxlvt(); 596 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 597 apic_write(APIC_ESR, 0); 598 accept_status = (apic_read(APIC_ESR) & 0xEF); 599 pr_debug("NMI sent.\n"); 600 601 if (send_status) 602 printk(KERN_ERR "APIC never delivered???\n"); 603 if (accept_status) 604 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); 605 606 return (send_status | accept_status); 607 } 608 #endif /* WAKE_SECONDARY_VIA_NMI */ 609 610 #ifdef WAKE_SECONDARY_VIA_INIT 611 static int __devinit 612 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip) 613 { 614 unsigned long send_status, accept_status = 0; 615 int maxlvt, num_starts, j; 616 617 if (get_uv_system_type() == UV_NON_UNIQUE_APIC) { 618 send_status = uv_wakeup_secondary(phys_apicid, start_eip); 619 atomic_set(&init_deasserted, 1); 620 return send_status; 621 } 622 623 maxlvt = lapic_get_maxlvt(); 624 625 /* 626 * Be paranoid about clearing APIC errors. 627 */ 628 if (APIC_INTEGRATED(apic_version[phys_apicid])) { 629 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 630 apic_write(APIC_ESR, 0); 631 apic_read(APIC_ESR); 632 } 633 634 pr_debug("Asserting INIT.\n"); 635 636 /* 637 * Turn INIT on target chip 638 */ 639 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); 640 641 /* 642 * Send IPI 643 */ 644 apic_write(APIC_ICR, 645 APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT); 646 647 pr_debug("Waiting for send to finish...\n"); 648 send_status = safe_apic_wait_icr_idle(); 649 650 mdelay(10); 651 652 pr_debug("Deasserting INIT.\n"); 653 654 /* Target chip */ 655 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); 656 657 /* Send IPI */ 658 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); 659 660 pr_debug("Waiting for send to finish...\n"); 661 send_status = safe_apic_wait_icr_idle(); 662 663 mb(); 664 atomic_set(&init_deasserted, 1); 665 666 /* 667 * Should we send STARTUP IPIs ? 668 * 669 * Determine this based on the APIC version. 670 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 671 */ 672 if (APIC_INTEGRATED(apic_version[phys_apicid])) 673 num_starts = 2; 674 else 675 num_starts = 0; 676 677 /* 678 * Paravirt / VMI wants a startup IPI hook here to set up the 679 * target processor state. 680 */ 681 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, 682 (unsigned long)stack_start.sp); 683 684 /* 685 * Run STARTUP IPI loop. 686 */ 687 pr_debug("#startup loops: %d.\n", num_starts); 688 689 for (j = 1; j <= num_starts; j++) { 690 pr_debug("Sending STARTUP #%d.\n", j); 691 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 692 apic_write(APIC_ESR, 0); 693 apic_read(APIC_ESR); 694 pr_debug("After apic_write.\n"); 695 696 /* 697 * STARTUP IPI 698 */ 699 700 /* Target chip */ 701 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); 702 703 /* Boot on the stack */ 704 /* Kick the second */ 705 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_eip >> 12)); 706 707 /* 708 * Give the other CPU some time to accept the IPI. 709 */ 710 udelay(300); 711 712 pr_debug("Startup point 1.\n"); 713 714 pr_debug("Waiting for send to finish...\n"); 715 send_status = safe_apic_wait_icr_idle(); 716 717 /* 718 * Give the other CPU some time to accept the IPI. 719 */ 720 udelay(200); 721 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 722 apic_write(APIC_ESR, 0); 723 accept_status = (apic_read(APIC_ESR) & 0xEF); 724 if (send_status || accept_status) 725 break; 726 } 727 pr_debug("After Startup.\n"); 728 729 if (send_status) 730 printk(KERN_ERR "APIC never delivered???\n"); 731 if (accept_status) 732 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); 733 734 return (send_status | accept_status); 735 } 736 #endif /* WAKE_SECONDARY_VIA_INIT */ 737 738 struct create_idle { 739 struct work_struct work; 740 struct task_struct *idle; 741 struct completion done; 742 int cpu; 743 }; 744 745 static void __cpuinit do_fork_idle(struct work_struct *work) 746 { 747 struct create_idle *c_idle = 748 container_of(work, struct create_idle, work); 749 750 c_idle->idle = fork_idle(c_idle->cpu); 751 complete(&c_idle->done); 752 } 753 754 #ifdef CONFIG_X86_64 755 /* 756 * Allocate node local memory for the AP pda. 757 * 758 * Must be called after the _cpu_pda pointer table is initialized. 759 */ 760 int __cpuinit get_local_pda(int cpu) 761 { 762 struct x8664_pda *oldpda, *newpda; 763 unsigned long size = sizeof(struct x8664_pda); 764 int node = cpu_to_node(cpu); 765 766 if (cpu_pda(cpu) && !cpu_pda(cpu)->in_bootmem) 767 return 0; 768 769 oldpda = cpu_pda(cpu); 770 newpda = kmalloc_node(size, GFP_ATOMIC, node); 771 if (!newpda) { 772 printk(KERN_ERR "Could not allocate node local PDA " 773 "for CPU %d on node %d\n", cpu, node); 774 775 if (oldpda) 776 return 0; /* have a usable pda */ 777 else 778 return -1; 779 } 780 781 if (oldpda) { 782 memcpy(newpda, oldpda, size); 783 if (!after_bootmem) 784 free_bootmem((unsigned long)oldpda, size); 785 } 786 787 newpda->in_bootmem = 0; 788 cpu_pda(cpu) = newpda; 789 return 0; 790 } 791 #endif /* CONFIG_X86_64 */ 792 793 static int __cpuinit do_boot_cpu(int apicid, int cpu) 794 /* 795 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 796 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 797 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu. 798 */ 799 { 800 unsigned long boot_error = 0; 801 int timeout; 802 unsigned long start_ip; 803 unsigned short nmi_high = 0, nmi_low = 0; 804 struct create_idle c_idle = { 805 .cpu = cpu, 806 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), 807 }; 808 INIT_WORK(&c_idle.work, do_fork_idle); 809 810 #ifdef CONFIG_X86_64 811 /* Allocate node local memory for AP pdas */ 812 if (cpu > 0) { 813 boot_error = get_local_pda(cpu); 814 if (boot_error) 815 goto restore_state; 816 /* if can't get pda memory, can't start cpu */ 817 } 818 #endif 819 820 alternatives_smp_switch(1); 821 822 c_idle.idle = get_idle_for_cpu(cpu); 823 824 /* 825 * We can't use kernel_thread since we must avoid to 826 * reschedule the child. 827 */ 828 if (c_idle.idle) { 829 c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *) 830 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1); 831 init_idle(c_idle.idle, cpu); 832 goto do_rest; 833 } 834 835 if (!keventd_up() || current_is_keventd()) 836 c_idle.work.func(&c_idle.work); 837 else { 838 schedule_work(&c_idle.work); 839 wait_for_completion(&c_idle.done); 840 } 841 842 if (IS_ERR(c_idle.idle)) { 843 printk("failed fork for CPU %d\n", cpu); 844 return PTR_ERR(c_idle.idle); 845 } 846 847 set_idle_for_cpu(cpu, c_idle.idle); 848 do_rest: 849 #ifdef CONFIG_X86_32 850 per_cpu(current_task, cpu) = c_idle.idle; 851 init_gdt(cpu); 852 /* Stack for startup_32 can be just as for start_secondary onwards */ 853 irq_ctx_init(cpu); 854 #else 855 cpu_pda(cpu)->pcurrent = c_idle.idle; 856 clear_tsk_thread_flag(c_idle.idle, TIF_FORK); 857 #endif 858 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); 859 initial_code = (unsigned long)start_secondary; 860 stack_start.sp = (void *) c_idle.idle->thread.sp; 861 862 /* start_ip had better be page-aligned! */ 863 start_ip = setup_trampoline(); 864 865 /* So we see what's up */ 866 printk(KERN_INFO "Booting processor %d/%d ip %lx\n", 867 cpu, apicid, start_ip); 868 869 /* 870 * This grunge runs the startup process for 871 * the targeted processor. 872 */ 873 874 atomic_set(&init_deasserted, 0); 875 876 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 877 878 pr_debug("Setting warm reset code and vector.\n"); 879 880 store_NMI_vector(&nmi_high, &nmi_low); 881 882 smpboot_setup_warm_reset_vector(start_ip); 883 /* 884 * Be paranoid about clearing APIC errors. 885 */ 886 apic_write(APIC_ESR, 0); 887 apic_read(APIC_ESR); 888 } 889 890 /* 891 * Starting actual IPI sequence... 892 */ 893 boot_error = wakeup_secondary_cpu(apicid, start_ip); 894 895 if (!boot_error) { 896 /* 897 * allow APs to start initializing. 898 */ 899 pr_debug("Before Callout %d.\n", cpu); 900 cpu_set(cpu, cpu_callout_map); 901 pr_debug("After Callout %d.\n", cpu); 902 903 /* 904 * Wait 5s total for a response 905 */ 906 for (timeout = 0; timeout < 50000; timeout++) { 907 if (cpu_isset(cpu, cpu_callin_map)) 908 break; /* It has booted */ 909 udelay(100); 910 } 911 912 if (cpu_isset(cpu, cpu_callin_map)) { 913 /* number CPUs logically, starting from 1 (BSP is 0) */ 914 pr_debug("OK.\n"); 915 printk(KERN_INFO "CPU%d: ", cpu); 916 print_cpu_info(&cpu_data(cpu)); 917 pr_debug("CPU has booted.\n"); 918 } else { 919 boot_error = 1; 920 if (*((volatile unsigned char *)trampoline_base) 921 == 0xA5) 922 /* trampoline started but...? */ 923 printk(KERN_ERR "Stuck ??\n"); 924 else 925 /* trampoline code not run */ 926 printk(KERN_ERR "Not responding.\n"); 927 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) 928 inquire_remote_apic(apicid); 929 } 930 } 931 #ifdef CONFIG_X86_64 932 restore_state: 933 #endif 934 if (boot_error) { 935 /* Try to put things back the way they were before ... */ 936 numa_remove_cpu(cpu); /* was set by numa_add_cpu */ 937 cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */ 938 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */ 939 cpu_clear(cpu, cpu_present_map); 940 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID; 941 } 942 943 /* mark "stuck" area as not stuck */ 944 *((volatile unsigned long *)trampoline_base) = 0; 945 946 /* 947 * Cleanup possible dangling ends... 948 */ 949 smpboot_restore_warm_reset_vector(); 950 951 return boot_error; 952 } 953 954 int __cpuinit native_cpu_up(unsigned int cpu) 955 { 956 int apicid = cpu_present_to_apicid(cpu); 957 unsigned long flags; 958 int err; 959 960 WARN_ON(irqs_disabled()); 961 962 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 963 964 if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid || 965 !physid_isset(apicid, phys_cpu_present_map)) { 966 printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu); 967 return -EINVAL; 968 } 969 970 /* 971 * Already booted CPU? 972 */ 973 if (cpu_isset(cpu, cpu_callin_map)) { 974 pr_debug("do_boot_cpu %d Already started\n", cpu); 975 return -ENOSYS; 976 } 977 978 /* 979 * Save current MTRR state in case it was changed since early boot 980 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 981 */ 982 mtrr_save_state(); 983 984 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 985 986 #ifdef CONFIG_X86_32 987 /* init low mem mapping */ 988 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY, 989 min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY)); 990 flush_tlb_all(); 991 low_mappings = 1; 992 993 err = do_boot_cpu(apicid, cpu); 994 995 zap_low_mappings(); 996 low_mappings = 0; 997 #else 998 err = do_boot_cpu(apicid, cpu); 999 #endif 1000 if (err) { 1001 pr_debug("do_boot_cpu failed %d\n", err); 1002 return -EIO; 1003 } 1004 1005 /* 1006 * Check TSC synchronization with the AP (keep irqs disabled 1007 * while doing so): 1008 */ 1009 local_irq_save(flags); 1010 check_tsc_sync_source(cpu); 1011 local_irq_restore(flags); 1012 1013 while (!cpu_online(cpu)) { 1014 cpu_relax(); 1015 touch_nmi_watchdog(); 1016 } 1017 1018 return 0; 1019 } 1020 1021 /* 1022 * Fall back to non SMP mode after errors. 1023 * 1024 * RED-PEN audit/test this more. I bet there is more state messed up here. 1025 */ 1026 static __init void disable_smp(void) 1027 { 1028 cpu_present_map = cpumask_of_cpu(0); 1029 cpu_possible_map = cpumask_of_cpu(0); 1030 smpboot_clear_io_apic_irqs(); 1031 1032 if (smp_found_config) 1033 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1034 else 1035 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1036 map_cpu_to_logical_apicid(); 1037 cpu_set(0, per_cpu(cpu_sibling_map, 0)); 1038 cpu_set(0, per_cpu(cpu_core_map, 0)); 1039 } 1040 1041 /* 1042 * Various sanity checks. 1043 */ 1044 static int __init smp_sanity_check(unsigned max_cpus) 1045 { 1046 preempt_disable(); 1047 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 1048 printk(KERN_WARNING "weird, boot CPU (#%d) not listed" 1049 "by the BIOS.\n", hard_smp_processor_id()); 1050 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1051 } 1052 1053 /* 1054 * If we couldn't find an SMP configuration at boot time, 1055 * get out of here now! 1056 */ 1057 if (!smp_found_config && !acpi_lapic) { 1058 preempt_enable(); 1059 printk(KERN_NOTICE "SMP motherboard not detected.\n"); 1060 disable_smp(); 1061 if (APIC_init_uniprocessor()) 1062 printk(KERN_NOTICE "Local APIC not detected." 1063 " Using dummy APIC emulation.\n"); 1064 return -1; 1065 } 1066 1067 /* 1068 * Should not be necessary because the MP table should list the boot 1069 * CPU too, but we do it for the sake of robustness anyway. 1070 */ 1071 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) { 1072 printk(KERN_NOTICE 1073 "weird, boot CPU (#%d) not listed by the BIOS.\n", 1074 boot_cpu_physical_apicid); 1075 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1076 } 1077 preempt_enable(); 1078 1079 /* 1080 * If we couldn't find a local APIC, then get out of here now! 1081 */ 1082 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && 1083 !cpu_has_apic) { 1084 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", 1085 boot_cpu_physical_apicid); 1086 printk(KERN_ERR "... forcing use of dummy APIC emulation." 1087 "(tell your hw vendor)\n"); 1088 smpboot_clear_io_apic(); 1089 return -1; 1090 } 1091 1092 verify_local_APIC(); 1093 1094 /* 1095 * If SMP should be disabled, then really disable it! 1096 */ 1097 if (!max_cpus) { 1098 printk(KERN_INFO "SMP mode deactivated.\n"); 1099 smpboot_clear_io_apic(); 1100 1101 localise_nmi_watchdog(); 1102 1103 connect_bsp_APIC(); 1104 setup_local_APIC(); 1105 end_local_APIC_setup(); 1106 return -1; 1107 } 1108 1109 return 0; 1110 } 1111 1112 static void __init smp_cpu_index_default(void) 1113 { 1114 int i; 1115 struct cpuinfo_x86 *c; 1116 1117 for_each_possible_cpu(i) { 1118 c = &cpu_data(i); 1119 /* mark all to hotplug */ 1120 c->cpu_index = NR_CPUS; 1121 } 1122 } 1123 1124 /* 1125 * Prepare for SMP bootup. The MP table or ACPI has been read 1126 * earlier. Just do some sanity checking here and enable APIC mode. 1127 */ 1128 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1129 { 1130 preempt_disable(); 1131 smp_cpu_index_default(); 1132 current_cpu_data = boot_cpu_data; 1133 cpu_callin_map = cpumask_of_cpu(0); 1134 mb(); 1135 /* 1136 * Setup boot CPU information 1137 */ 1138 smp_store_cpu_info(0); /* Final full version of the data */ 1139 boot_cpu_logical_apicid = logical_smp_processor_id(); 1140 current_thread_info()->cpu = 0; /* needed? */ 1141 set_cpu_sibling_map(0); 1142 1143 if (smp_sanity_check(max_cpus) < 0) { 1144 printk(KERN_INFO "SMP disabled\n"); 1145 disable_smp(); 1146 goto out; 1147 } 1148 1149 preempt_disable(); 1150 if (GET_APIC_ID(read_apic_id()) != boot_cpu_physical_apicid) { 1151 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1152 GET_APIC_ID(read_apic_id()), boot_cpu_physical_apicid); 1153 /* Or can we switch back to PIC here? */ 1154 } 1155 preempt_enable(); 1156 1157 connect_bsp_APIC(); 1158 1159 /* 1160 * Switch from PIC to APIC mode. 1161 */ 1162 setup_local_APIC(); 1163 1164 #ifdef CONFIG_X86_64 1165 /* 1166 * Enable IO APIC before setting up error vector 1167 */ 1168 if (!skip_ioapic_setup && nr_ioapics) 1169 enable_IO_APIC(); 1170 #endif 1171 end_local_APIC_setup(); 1172 1173 map_cpu_to_logical_apicid(); 1174 1175 setup_portio_remap(); 1176 1177 smpboot_setup_io_apic(); 1178 /* 1179 * Set up local APIC timer on boot CPU. 1180 */ 1181 1182 printk(KERN_INFO "CPU%d: ", 0); 1183 print_cpu_info(&cpu_data(0)); 1184 setup_boot_clock(); 1185 out: 1186 preempt_enable(); 1187 } 1188 /* 1189 * Early setup to make printk work. 1190 */ 1191 void __init native_smp_prepare_boot_cpu(void) 1192 { 1193 int me = smp_processor_id(); 1194 #ifdef CONFIG_X86_32 1195 init_gdt(me); 1196 #endif 1197 switch_to_new_gdt(); 1198 /* already set me in cpu_online_map in boot_cpu_init() */ 1199 cpu_set(me, cpu_callout_map); 1200 per_cpu(cpu_state, me) = CPU_ONLINE; 1201 } 1202 1203 void __init native_smp_cpus_done(unsigned int max_cpus) 1204 { 1205 pr_debug("Boot done.\n"); 1206 1207 impress_friends(); 1208 smp_checks(); 1209 #ifdef CONFIG_X86_IO_APIC 1210 setup_ioapic_dest(); 1211 #endif 1212 check_nmi_watchdog(); 1213 } 1214 1215 #ifdef CONFIG_HOTPLUG_CPU 1216 1217 static void remove_siblinginfo(int cpu) 1218 { 1219 int sibling; 1220 struct cpuinfo_x86 *c = &cpu_data(cpu); 1221 1222 for_each_cpu_mask_nr(sibling, per_cpu(cpu_core_map, cpu)) { 1223 cpu_clear(cpu, per_cpu(cpu_core_map, sibling)); 1224 /*/ 1225 * last thread sibling in this cpu core going down 1226 */ 1227 if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) 1228 cpu_data(sibling).booted_cores--; 1229 } 1230 1231 for_each_cpu_mask_nr(sibling, per_cpu(cpu_sibling_map, cpu)) 1232 cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling)); 1233 cpus_clear(per_cpu(cpu_sibling_map, cpu)); 1234 cpus_clear(per_cpu(cpu_core_map, cpu)); 1235 c->phys_proc_id = 0; 1236 c->cpu_core_id = 0; 1237 cpu_clear(cpu, cpu_sibling_setup_map); 1238 } 1239 1240 static int additional_cpus __initdata = -1; 1241 1242 static __init int setup_additional_cpus(char *s) 1243 { 1244 return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL; 1245 } 1246 early_param("additional_cpus", setup_additional_cpus); 1247 1248 /* 1249 * cpu_possible_map should be static, it cannot change as cpu's 1250 * are onlined, or offlined. The reason is per-cpu data-structures 1251 * are allocated by some modules at init time, and dont expect to 1252 * do this dynamically on cpu arrival/departure. 1253 * cpu_present_map on the other hand can change dynamically. 1254 * In case when cpu_hotplug is not compiled, then we resort to current 1255 * behaviour, which is cpu_possible == cpu_present. 1256 * - Ashok Raj 1257 * 1258 * Three ways to find out the number of additional hotplug CPUs: 1259 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1260 * - The user can overwrite it with additional_cpus=NUM 1261 * - Otherwise don't reserve additional CPUs. 1262 * We do this because additional CPUs waste a lot of memory. 1263 * -AK 1264 */ 1265 __init void prefill_possible_map(void) 1266 { 1267 int i; 1268 int possible; 1269 1270 /* no processor from mptable or madt */ 1271 if (!num_processors) 1272 num_processors = 1; 1273 1274 #ifdef CONFIG_HOTPLUG_CPU 1275 if (additional_cpus == -1) { 1276 if (disabled_cpus > 0) 1277 additional_cpus = disabled_cpus; 1278 else 1279 additional_cpus = 0; 1280 } 1281 #else 1282 additional_cpus = 0; 1283 #endif 1284 possible = num_processors + additional_cpus; 1285 if (possible > NR_CPUS) 1286 possible = NR_CPUS; 1287 1288 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n", 1289 possible, max_t(int, possible - num_processors, 0)); 1290 1291 for (i = 0; i < possible; i++) 1292 cpu_set(i, cpu_possible_map); 1293 1294 nr_cpu_ids = possible; 1295 } 1296 1297 static void __ref remove_cpu_from_maps(int cpu) 1298 { 1299 cpu_clear(cpu, cpu_online_map); 1300 cpu_clear(cpu, cpu_callout_map); 1301 cpu_clear(cpu, cpu_callin_map); 1302 /* was set by cpu_init() */ 1303 cpu_clear(cpu, cpu_initialized); 1304 numa_remove_cpu(cpu); 1305 } 1306 1307 int __cpu_disable(void) 1308 { 1309 int cpu = smp_processor_id(); 1310 1311 /* 1312 * Perhaps use cpufreq to drop frequency, but that could go 1313 * into generic code. 1314 * 1315 * We won't take down the boot processor on i386 due to some 1316 * interrupts only being able to be serviced by the BSP. 1317 * Especially so if we're not using an IOAPIC -zwane 1318 */ 1319 if (cpu == 0) 1320 return -EBUSY; 1321 1322 if (nmi_watchdog == NMI_LOCAL_APIC) 1323 stop_apic_nmi_watchdog(NULL); 1324 clear_local_APIC(); 1325 1326 /* 1327 * HACK: 1328 * Allow any queued timer interrupts to get serviced 1329 * This is only a temporary solution until we cleanup 1330 * fixup_irqs as we do for IA64. 1331 */ 1332 local_irq_enable(); 1333 mdelay(1); 1334 1335 local_irq_disable(); 1336 remove_siblinginfo(cpu); 1337 1338 /* It's now safe to remove this processor from the online map */ 1339 remove_cpu_from_maps(cpu); 1340 fixup_irqs(cpu_online_map); 1341 return 0; 1342 } 1343 1344 void __cpu_die(unsigned int cpu) 1345 { 1346 /* We don't do anything here: idle task is faking death itself. */ 1347 unsigned int i; 1348 1349 for (i = 0; i < 10; i++) { 1350 /* They ack this in play_dead by setting CPU_DEAD */ 1351 if (per_cpu(cpu_state, cpu) == CPU_DEAD) { 1352 printk(KERN_INFO "CPU %d is now offline\n", cpu); 1353 if (1 == num_online_cpus()) 1354 alternatives_smp_switch(0); 1355 return; 1356 } 1357 msleep(100); 1358 } 1359 printk(KERN_ERR "CPU %u didn't die...\n", cpu); 1360 } 1361 #else /* ... !CONFIG_HOTPLUG_CPU */ 1362 int __cpu_disable(void) 1363 { 1364 return -ENOSYS; 1365 } 1366 1367 void __cpu_die(unsigned int cpu) 1368 { 1369 /* We said "no" in __cpu_disable */ 1370 BUG(); 1371 } 1372 #endif 1373 1374 /* 1375 * If the BIOS enumerates physical processors before logical, 1376 * maxcpus=N at enumeration-time can be used to disable HT. 1377 */ 1378 static int __init parse_maxcpus(char *arg) 1379 { 1380 extern unsigned int maxcpus; 1381 1382 if (arg) 1383 maxcpus = simple_strtoul(arg, NULL, 0); 1384 return 0; 1385 } 1386 early_param("maxcpus", parse_maxcpus); 1387