xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 52fb57e7)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/i387.h>
72 #include <asm/fpu-internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/realmode.h>
78 #include <asm/misc.h>
79 
80 /* Number of siblings per CPU package */
81 int smp_num_siblings = 1;
82 EXPORT_SYMBOL(smp_num_siblings);
83 
84 /* Last level cache ID of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
86 
87 /* representing HT siblings of each logical CPU */
88 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
89 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
90 
91 /* representing HT and core siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
94 
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
96 
97 /* Per CPU bogomips and other parameters */
98 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
99 EXPORT_PER_CPU_SYMBOL(cpu_info);
100 
101 atomic_t init_deasserted;
102 
103 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
104 {
105 	unsigned long flags;
106 
107 	spin_lock_irqsave(&rtc_lock, flags);
108 	CMOS_WRITE(0xa, 0xf);
109 	spin_unlock_irqrestore(&rtc_lock, flags);
110 	local_flush_tlb();
111 	pr_debug("1.\n");
112 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
113 							start_eip >> 4;
114 	pr_debug("2.\n");
115 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
116 							start_eip & 0xf;
117 	pr_debug("3.\n");
118 }
119 
120 static inline void smpboot_restore_warm_reset_vector(void)
121 {
122 	unsigned long flags;
123 
124 	/*
125 	 * Install writable page 0 entry to set BIOS data area.
126 	 */
127 	local_flush_tlb();
128 
129 	/*
130 	 * Paranoid:  Set warm reset code and vector here back
131 	 * to default values.
132 	 */
133 	spin_lock_irqsave(&rtc_lock, flags);
134 	CMOS_WRITE(0, 0xf);
135 	spin_unlock_irqrestore(&rtc_lock, flags);
136 
137 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
138 }
139 
140 /*
141  * Report back to the Boot Processor during boot time or to the caller processor
142  * during CPU online.
143  */
144 static void smp_callin(void)
145 {
146 	int cpuid, phys_id;
147 
148 	/*
149 	 * If waken up by an INIT in an 82489DX configuration
150 	 * we may get here before an INIT-deassert IPI reaches
151 	 * our local APIC.  We have to wait for the IPI or we'll
152 	 * lock up on an APIC access.
153 	 *
154 	 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
155 	 */
156 	cpuid = smp_processor_id();
157 	if (apic->wait_for_init_deassert && cpuid)
158 		while (!atomic_read(&init_deasserted))
159 			cpu_relax();
160 
161 	/*
162 	 * (This works even if the APIC is not enabled.)
163 	 */
164 	phys_id = read_apic_id();
165 
166 	/*
167 	 * the boot CPU has finished the init stage and is spinning
168 	 * on callin_map until we finish. We are free to set up this
169 	 * CPU, first the APIC. (this is probably redundant on most
170 	 * boards)
171 	 */
172 	apic_ap_setup();
173 
174 	/*
175 	 * Need to setup vector mappings before we enable interrupts.
176 	 */
177 	setup_vector_irq(smp_processor_id());
178 
179 	/*
180 	 * Save our processor parameters. Note: this information
181 	 * is needed for clock calibration.
182 	 */
183 	smp_store_cpu_info(cpuid);
184 
185 	/*
186 	 * Get our bogomips.
187 	 * Update loops_per_jiffy in cpu_data. Previous call to
188 	 * smp_store_cpu_info() stored a value that is close but not as
189 	 * accurate as the value just calculated.
190 	 */
191 	calibrate_delay();
192 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
193 	pr_debug("Stack at about %p\n", &cpuid);
194 
195 	/*
196 	 * This must be done before setting cpu_online_mask
197 	 * or calling notify_cpu_starting.
198 	 */
199 	set_cpu_sibling_map(raw_smp_processor_id());
200 	wmb();
201 
202 	notify_cpu_starting(cpuid);
203 
204 	/*
205 	 * Allow the master to continue.
206 	 */
207 	cpumask_set_cpu(cpuid, cpu_callin_mask);
208 }
209 
210 static int cpu0_logical_apicid;
211 static int enable_start_cpu0;
212 /*
213  * Activate a secondary processor.
214  */
215 static void notrace start_secondary(void *unused)
216 {
217 	/*
218 	 * Don't put *anything* before cpu_init(), SMP booting is too
219 	 * fragile that we want to limit the things done here to the
220 	 * most necessary things.
221 	 */
222 	cpu_init();
223 	x86_cpuinit.early_percpu_clock_init();
224 	preempt_disable();
225 	smp_callin();
226 
227 	enable_start_cpu0 = 0;
228 
229 #ifdef CONFIG_X86_32
230 	/* switch away from the initial page table */
231 	load_cr3(swapper_pg_dir);
232 	__flush_tlb_all();
233 #endif
234 
235 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
236 	barrier();
237 	/*
238 	 * Check TSC synchronization with the BP:
239 	 */
240 	check_tsc_sync_target();
241 
242 	/*
243 	 * Enable the espfix hack for this CPU
244 	 */
245 #ifdef CONFIG_X86_ESPFIX64
246 	init_espfix_ap();
247 #endif
248 
249 	/*
250 	 * We need to hold vector_lock so there the set of online cpus
251 	 * does not change while we are assigning vectors to cpus.  Holding
252 	 * this lock ensures we don't half assign or remove an irq from a cpu.
253 	 */
254 	lock_vector_lock();
255 	set_cpu_online(smp_processor_id(), true);
256 	unlock_vector_lock();
257 	cpu_set_state_online(smp_processor_id());
258 	x86_platform.nmi_init();
259 
260 	/* enable local interrupts */
261 	local_irq_enable();
262 
263 	/* to prevent fake stack check failure in clock setup */
264 	boot_init_stack_canary();
265 
266 	x86_cpuinit.setup_percpu_clockev();
267 
268 	wmb();
269 	cpu_startup_entry(CPUHP_ONLINE);
270 }
271 
272 void __init smp_store_boot_cpu_info(void)
273 {
274 	int id = 0; /* CPU 0 */
275 	struct cpuinfo_x86 *c = &cpu_data(id);
276 
277 	*c = boot_cpu_data;
278 	c->cpu_index = id;
279 }
280 
281 /*
282  * The bootstrap kernel entry code has set these up. Save them for
283  * a given CPU
284  */
285 void smp_store_cpu_info(int id)
286 {
287 	struct cpuinfo_x86 *c = &cpu_data(id);
288 
289 	*c = boot_cpu_data;
290 	c->cpu_index = id;
291 	/*
292 	 * During boot time, CPU0 has this setup already. Save the info when
293 	 * bringing up AP or offlined CPU0.
294 	 */
295 	identify_secondary_cpu(c);
296 }
297 
298 static bool
299 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
300 {
301 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
302 
303 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
304 }
305 
306 static bool
307 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
308 {
309 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
310 
311 	return !WARN_ONCE(!topology_same_node(c, o),
312 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
313 		"[node: %d != %d]. Ignoring dependency.\n",
314 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
315 }
316 
317 #define link_mask(_m, c1, c2)						\
318 do {									\
319 	cpumask_set_cpu((c1), cpu_##_m##_mask(c2));			\
320 	cpumask_set_cpu((c2), cpu_##_m##_mask(c1));			\
321 } while (0)
322 
323 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
324 {
325 	if (cpu_has_topoext) {
326 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
327 
328 		if (c->phys_proc_id == o->phys_proc_id &&
329 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
330 		    c->compute_unit_id == o->compute_unit_id)
331 			return topology_sane(c, o, "smt");
332 
333 	} else if (c->phys_proc_id == o->phys_proc_id &&
334 		   c->cpu_core_id == o->cpu_core_id) {
335 		return topology_sane(c, o, "smt");
336 	}
337 
338 	return false;
339 }
340 
341 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
342 {
343 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
344 
345 	if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
346 	    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
347 		return topology_sane(c, o, "llc");
348 
349 	return false;
350 }
351 
352 /*
353  * Unlike the other levels, we do not enforce keeping a
354  * multicore group inside a NUMA node.  If this happens, we will
355  * discard the MC level of the topology later.
356  */
357 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
358 {
359 	if (c->phys_proc_id == o->phys_proc_id)
360 		return true;
361 	return false;
362 }
363 
364 static struct sched_domain_topology_level numa_inside_package_topology[] = {
365 #ifdef CONFIG_SCHED_SMT
366 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
367 #endif
368 #ifdef CONFIG_SCHED_MC
369 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
370 #endif
371 	{ NULL, },
372 };
373 /*
374  * set_sched_topology() sets the topology internal to a CPU.  The
375  * NUMA topologies are layered on top of it to build the full
376  * system topology.
377  *
378  * If NUMA nodes are observed to occur within a CPU package, this
379  * function should be called.  It forces the sched domain code to
380  * only use the SMT level for the CPU portion of the topology.
381  * This essentially falls back to relying on NUMA information
382  * from the SRAT table to describe the entire system topology
383  * (except for hyperthreads).
384  */
385 static void primarily_use_numa_for_topology(void)
386 {
387 	set_sched_topology(numa_inside_package_topology);
388 }
389 
390 void set_cpu_sibling_map(int cpu)
391 {
392 	bool has_smt = smp_num_siblings > 1;
393 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
394 	struct cpuinfo_x86 *c = &cpu_data(cpu);
395 	struct cpuinfo_x86 *o;
396 	int i;
397 
398 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
399 
400 	if (!has_mp) {
401 		cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
402 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
403 		cpumask_set_cpu(cpu, cpu_core_mask(cpu));
404 		c->booted_cores = 1;
405 		return;
406 	}
407 
408 	for_each_cpu(i, cpu_sibling_setup_mask) {
409 		o = &cpu_data(i);
410 
411 		if ((i == cpu) || (has_smt && match_smt(c, o)))
412 			link_mask(sibling, cpu, i);
413 
414 		if ((i == cpu) || (has_mp && match_llc(c, o)))
415 			link_mask(llc_shared, cpu, i);
416 
417 	}
418 
419 	/*
420 	 * This needs a separate iteration over the cpus because we rely on all
421 	 * cpu_sibling_mask links to be set-up.
422 	 */
423 	for_each_cpu(i, cpu_sibling_setup_mask) {
424 		o = &cpu_data(i);
425 
426 		if ((i == cpu) || (has_mp && match_die(c, o))) {
427 			link_mask(core, cpu, i);
428 
429 			/*
430 			 *  Does this new cpu bringup a new core?
431 			 */
432 			if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
433 				/*
434 				 * for each core in package, increment
435 				 * the booted_cores for this new cpu
436 				 */
437 				if (cpumask_first(cpu_sibling_mask(i)) == i)
438 					c->booted_cores++;
439 				/*
440 				 * increment the core count for all
441 				 * the other cpus in this package
442 				 */
443 				if (i != cpu)
444 					cpu_data(i).booted_cores++;
445 			} else if (i != cpu && !c->booted_cores)
446 				c->booted_cores = cpu_data(i).booted_cores;
447 		}
448 		if (match_die(c, o) && !topology_same_node(c, o))
449 			primarily_use_numa_for_topology();
450 	}
451 }
452 
453 /* maps the cpu to the sched domain representing multi-core */
454 const struct cpumask *cpu_coregroup_mask(int cpu)
455 {
456 	return cpu_llc_shared_mask(cpu);
457 }
458 
459 static void impress_friends(void)
460 {
461 	int cpu;
462 	unsigned long bogosum = 0;
463 	/*
464 	 * Allow the user to impress friends.
465 	 */
466 	pr_debug("Before bogomips\n");
467 	for_each_possible_cpu(cpu)
468 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
469 			bogosum += cpu_data(cpu).loops_per_jiffy;
470 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
471 		num_online_cpus(),
472 		bogosum/(500000/HZ),
473 		(bogosum/(5000/HZ))%100);
474 
475 	pr_debug("Before bogocount - setting activated=1\n");
476 }
477 
478 void __inquire_remote_apic(int apicid)
479 {
480 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
481 	const char * const names[] = { "ID", "VERSION", "SPIV" };
482 	int timeout;
483 	u32 status;
484 
485 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
486 
487 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
488 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
489 
490 		/*
491 		 * Wait for idle.
492 		 */
493 		status = safe_apic_wait_icr_idle();
494 		if (status)
495 			pr_cont("a previous APIC delivery may have failed\n");
496 
497 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
498 
499 		timeout = 0;
500 		do {
501 			udelay(100);
502 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
503 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
504 
505 		switch (status) {
506 		case APIC_ICR_RR_VALID:
507 			status = apic_read(APIC_RRR);
508 			pr_cont("%08x\n", status);
509 			break;
510 		default:
511 			pr_cont("failed\n");
512 		}
513 	}
514 }
515 
516 /*
517  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
518  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
519  * won't ... remember to clear down the APIC, etc later.
520  */
521 int
522 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
523 {
524 	unsigned long send_status, accept_status = 0;
525 	int maxlvt;
526 
527 	/* Target chip */
528 	/* Boot on the stack */
529 	/* Kick the second */
530 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
531 
532 	pr_debug("Waiting for send to finish...\n");
533 	send_status = safe_apic_wait_icr_idle();
534 
535 	/*
536 	 * Give the other CPU some time to accept the IPI.
537 	 */
538 	udelay(200);
539 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
540 		maxlvt = lapic_get_maxlvt();
541 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
542 			apic_write(APIC_ESR, 0);
543 		accept_status = (apic_read(APIC_ESR) & 0xEF);
544 	}
545 	pr_debug("NMI sent\n");
546 
547 	if (send_status)
548 		pr_err("APIC never delivered???\n");
549 	if (accept_status)
550 		pr_err("APIC delivery error (%lx)\n", accept_status);
551 
552 	return (send_status | accept_status);
553 }
554 
555 static int
556 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
557 {
558 	unsigned long send_status, accept_status = 0;
559 	int maxlvt, num_starts, j;
560 
561 	maxlvt = lapic_get_maxlvt();
562 
563 	/*
564 	 * Be paranoid about clearing APIC errors.
565 	 */
566 	if (APIC_INTEGRATED(apic_version[phys_apicid])) {
567 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
568 			apic_write(APIC_ESR, 0);
569 		apic_read(APIC_ESR);
570 	}
571 
572 	pr_debug("Asserting INIT\n");
573 
574 	/*
575 	 * Turn INIT on target chip
576 	 */
577 	/*
578 	 * Send IPI
579 	 */
580 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
581 		       phys_apicid);
582 
583 	pr_debug("Waiting for send to finish...\n");
584 	send_status = safe_apic_wait_icr_idle();
585 
586 	mdelay(10);
587 
588 	pr_debug("Deasserting INIT\n");
589 
590 	/* Target chip */
591 	/* Send IPI */
592 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
593 
594 	pr_debug("Waiting for send to finish...\n");
595 	send_status = safe_apic_wait_icr_idle();
596 
597 	mb();
598 	atomic_set(&init_deasserted, 1);
599 
600 	/*
601 	 * Should we send STARTUP IPIs ?
602 	 *
603 	 * Determine this based on the APIC version.
604 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
605 	 */
606 	if (APIC_INTEGRATED(apic_version[phys_apicid]))
607 		num_starts = 2;
608 	else
609 		num_starts = 0;
610 
611 	/*
612 	 * Paravirt / VMI wants a startup IPI hook here to set up the
613 	 * target processor state.
614 	 */
615 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
616 			 stack_start);
617 
618 	/*
619 	 * Run STARTUP IPI loop.
620 	 */
621 	pr_debug("#startup loops: %d\n", num_starts);
622 
623 	for (j = 1; j <= num_starts; j++) {
624 		pr_debug("Sending STARTUP #%d\n", j);
625 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
626 			apic_write(APIC_ESR, 0);
627 		apic_read(APIC_ESR);
628 		pr_debug("After apic_write\n");
629 
630 		/*
631 		 * STARTUP IPI
632 		 */
633 
634 		/* Target chip */
635 		/* Boot on the stack */
636 		/* Kick the second */
637 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
638 			       phys_apicid);
639 
640 		/*
641 		 * Give the other CPU some time to accept the IPI.
642 		 */
643 		udelay(300);
644 
645 		pr_debug("Startup point 1\n");
646 
647 		pr_debug("Waiting for send to finish...\n");
648 		send_status = safe_apic_wait_icr_idle();
649 
650 		/*
651 		 * Give the other CPU some time to accept the IPI.
652 		 */
653 		udelay(200);
654 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
655 			apic_write(APIC_ESR, 0);
656 		accept_status = (apic_read(APIC_ESR) & 0xEF);
657 		if (send_status || accept_status)
658 			break;
659 	}
660 	pr_debug("After Startup\n");
661 
662 	if (send_status)
663 		pr_err("APIC never delivered???\n");
664 	if (accept_status)
665 		pr_err("APIC delivery error (%lx)\n", accept_status);
666 
667 	return (send_status | accept_status);
668 }
669 
670 void smp_announce(void)
671 {
672 	int num_nodes = num_online_nodes();
673 
674 	printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
675 	       num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
676 }
677 
678 /* reduce the number of lines printed when booting a large cpu count system */
679 static void announce_cpu(int cpu, int apicid)
680 {
681 	static int current_node = -1;
682 	int node = early_cpu_to_node(cpu);
683 	static int width, node_width;
684 
685 	if (!width)
686 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
687 
688 	if (!node_width)
689 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
690 
691 	if (cpu == 1)
692 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
693 
694 	if (system_state == SYSTEM_BOOTING) {
695 		if (node != current_node) {
696 			if (current_node > (-1))
697 				pr_cont("\n");
698 			current_node = node;
699 
700 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
701 			       node_width - num_digits(node), " ", node);
702 		}
703 
704 		/* Add padding for the BSP */
705 		if (cpu == 1)
706 			pr_cont("%*s", width + 1, " ");
707 
708 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
709 
710 	} else
711 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
712 			node, cpu, apicid);
713 }
714 
715 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
716 {
717 	int cpu;
718 
719 	cpu = smp_processor_id();
720 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
721 		return NMI_HANDLED;
722 
723 	return NMI_DONE;
724 }
725 
726 /*
727  * Wake up AP by INIT, INIT, STARTUP sequence.
728  *
729  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
730  * boot-strap code which is not a desired behavior for waking up BSP. To
731  * void the boot-strap code, wake up CPU0 by NMI instead.
732  *
733  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
734  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
735  * We'll change this code in the future to wake up hard offlined CPU0 if
736  * real platform and request are available.
737  */
738 static int
739 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
740 	       int *cpu0_nmi_registered)
741 {
742 	int id;
743 	int boot_error;
744 
745 	preempt_disable();
746 
747 	/*
748 	 * Wake up AP by INIT, INIT, STARTUP sequence.
749 	 */
750 	if (cpu) {
751 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
752 		goto out;
753 	}
754 
755 	/*
756 	 * Wake up BSP by nmi.
757 	 *
758 	 * Register a NMI handler to help wake up CPU0.
759 	 */
760 	boot_error = register_nmi_handler(NMI_LOCAL,
761 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
762 
763 	if (!boot_error) {
764 		enable_start_cpu0 = 1;
765 		*cpu0_nmi_registered = 1;
766 		if (apic->dest_logical == APIC_DEST_LOGICAL)
767 			id = cpu0_logical_apicid;
768 		else
769 			id = apicid;
770 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
771 	}
772 
773 out:
774 	preempt_enable();
775 
776 	return boot_error;
777 }
778 
779 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
780 {
781 	/* Just in case we booted with a single CPU. */
782 	alternatives_enable_smp();
783 
784 	per_cpu(current_task, cpu) = idle;
785 
786 #ifdef CONFIG_X86_32
787 	/* Stack for startup_32 can be just as for start_secondary onwards */
788 	irq_ctx_init(cpu);
789 	per_cpu(cpu_current_top_of_stack, cpu) =
790 		(unsigned long)task_stack_page(idle) + THREAD_SIZE;
791 #else
792 	clear_tsk_thread_flag(idle, TIF_FORK);
793 	initial_gs = per_cpu_offset(cpu);
794 #endif
795 	per_cpu(kernel_stack, cpu) =
796 		(unsigned long)task_stack_page(idle) + THREAD_SIZE;
797 }
798 
799 /*
800  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
801  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
802  * Returns zero if CPU booted OK, else error code from
803  * ->wakeup_secondary_cpu.
804  */
805 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
806 {
807 	volatile u32 *trampoline_status =
808 		(volatile u32 *) __va(real_mode_header->trampoline_status);
809 	/* start_ip had better be page-aligned! */
810 	unsigned long start_ip = real_mode_header->trampoline_start;
811 
812 	unsigned long boot_error = 0;
813 	int cpu0_nmi_registered = 0;
814 	unsigned long timeout;
815 
816 	idle->thread.sp = (unsigned long) (((struct pt_regs *)
817 			  (THREAD_SIZE +  task_stack_page(idle))) - 1);
818 
819 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
820 	initial_code = (unsigned long)start_secondary;
821 	stack_start  = idle->thread.sp;
822 
823 	/* So we see what's up */
824 	announce_cpu(cpu, apicid);
825 
826 	/*
827 	 * This grunge runs the startup process for
828 	 * the targeted processor.
829 	 */
830 
831 	atomic_set(&init_deasserted, 0);
832 
833 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
834 
835 		pr_debug("Setting warm reset code and vector.\n");
836 
837 		smpboot_setup_warm_reset_vector(start_ip);
838 		/*
839 		 * Be paranoid about clearing APIC errors.
840 		*/
841 		if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
842 			apic_write(APIC_ESR, 0);
843 			apic_read(APIC_ESR);
844 		}
845 	}
846 
847 	/*
848 	 * AP might wait on cpu_callout_mask in cpu_init() with
849 	 * cpu_initialized_mask set if previous attempt to online
850 	 * it timed-out. Clear cpu_initialized_mask so that after
851 	 * INIT/SIPI it could start with a clean state.
852 	 */
853 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
854 	smp_mb();
855 
856 	/*
857 	 * Wake up a CPU in difference cases:
858 	 * - Use the method in the APIC driver if it's defined
859 	 * Otherwise,
860 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
861 	 */
862 	if (apic->wakeup_secondary_cpu)
863 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
864 	else
865 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
866 						     &cpu0_nmi_registered);
867 
868 	if (!boot_error) {
869 		/*
870 		 * Wait 10s total for a response from AP
871 		 */
872 		boot_error = -1;
873 		timeout = jiffies + 10*HZ;
874 		while (time_before(jiffies, timeout)) {
875 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
876 				/*
877 				 * Tell AP to proceed with initialization
878 				 */
879 				cpumask_set_cpu(cpu, cpu_callout_mask);
880 				boot_error = 0;
881 				break;
882 			}
883 			udelay(100);
884 			schedule();
885 		}
886 	}
887 
888 	if (!boot_error) {
889 		/*
890 		 * Wait till AP completes initial initialization
891 		 */
892 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
893 			/*
894 			 * Allow other tasks to run while we wait for the
895 			 * AP to come online. This also gives a chance
896 			 * for the MTRR work(triggered by the AP coming online)
897 			 * to be completed in the stop machine context.
898 			 */
899 			udelay(100);
900 			schedule();
901 		}
902 	}
903 
904 	/* mark "stuck" area as not stuck */
905 	*trampoline_status = 0;
906 
907 	if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
908 		/*
909 		 * Cleanup possible dangling ends...
910 		 */
911 		smpboot_restore_warm_reset_vector();
912 	}
913 	/*
914 	 * Clean up the nmi handler. Do this after the callin and callout sync
915 	 * to avoid impact of possible long unregister time.
916 	 */
917 	if (cpu0_nmi_registered)
918 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
919 
920 	return boot_error;
921 }
922 
923 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
924 {
925 	int apicid = apic->cpu_present_to_apicid(cpu);
926 	unsigned long flags;
927 	int err;
928 
929 	WARN_ON(irqs_disabled());
930 
931 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
932 
933 	if (apicid == BAD_APICID ||
934 	    !physid_isset(apicid, phys_cpu_present_map) ||
935 	    !apic->apic_id_valid(apicid)) {
936 		pr_err("%s: bad cpu %d\n", __func__, cpu);
937 		return -EINVAL;
938 	}
939 
940 	/*
941 	 * Already booted CPU?
942 	 */
943 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
944 		pr_debug("do_boot_cpu %d Already started\n", cpu);
945 		return -ENOSYS;
946 	}
947 
948 	/*
949 	 * Save current MTRR state in case it was changed since early boot
950 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
951 	 */
952 	mtrr_save_state();
953 
954 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
955 	err = cpu_check_up_prepare(cpu);
956 	if (err && err != -EBUSY)
957 		return err;
958 
959 	/* the FPU context is blank, nobody can own it */
960 	__cpu_disable_lazy_restore(cpu);
961 
962 	common_cpu_up(cpu, tidle);
963 
964 	err = do_boot_cpu(apicid, cpu, tidle);
965 	if (err) {
966 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
967 		return -EIO;
968 	}
969 
970 	/*
971 	 * Check TSC synchronization with the AP (keep irqs disabled
972 	 * while doing so):
973 	 */
974 	local_irq_save(flags);
975 	check_tsc_sync_source(cpu);
976 	local_irq_restore(flags);
977 
978 	while (!cpu_online(cpu)) {
979 		cpu_relax();
980 		touch_nmi_watchdog();
981 	}
982 
983 	return 0;
984 }
985 
986 /**
987  * arch_disable_smp_support() - disables SMP support for x86 at runtime
988  */
989 void arch_disable_smp_support(void)
990 {
991 	disable_ioapic_support();
992 }
993 
994 /*
995  * Fall back to non SMP mode after errors.
996  *
997  * RED-PEN audit/test this more. I bet there is more state messed up here.
998  */
999 static __init void disable_smp(void)
1000 {
1001 	pr_info("SMP disabled\n");
1002 
1003 	disable_ioapic_support();
1004 
1005 	init_cpu_present(cpumask_of(0));
1006 	init_cpu_possible(cpumask_of(0));
1007 
1008 	if (smp_found_config)
1009 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1010 	else
1011 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1012 	cpumask_set_cpu(0, cpu_sibling_mask(0));
1013 	cpumask_set_cpu(0, cpu_core_mask(0));
1014 }
1015 
1016 enum {
1017 	SMP_OK,
1018 	SMP_NO_CONFIG,
1019 	SMP_NO_APIC,
1020 	SMP_FORCE_UP,
1021 };
1022 
1023 /*
1024  * Various sanity checks.
1025  */
1026 static int __init smp_sanity_check(unsigned max_cpus)
1027 {
1028 	preempt_disable();
1029 
1030 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1031 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1032 		unsigned int cpu;
1033 		unsigned nr;
1034 
1035 		pr_warn("More than 8 CPUs detected - skipping them\n"
1036 			"Use CONFIG_X86_BIGSMP\n");
1037 
1038 		nr = 0;
1039 		for_each_present_cpu(cpu) {
1040 			if (nr >= 8)
1041 				set_cpu_present(cpu, false);
1042 			nr++;
1043 		}
1044 
1045 		nr = 0;
1046 		for_each_possible_cpu(cpu) {
1047 			if (nr >= 8)
1048 				set_cpu_possible(cpu, false);
1049 			nr++;
1050 		}
1051 
1052 		nr_cpu_ids = 8;
1053 	}
1054 #endif
1055 
1056 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1057 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1058 			hard_smp_processor_id());
1059 
1060 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1061 	}
1062 
1063 	/*
1064 	 * If we couldn't find an SMP configuration at boot time,
1065 	 * get out of here now!
1066 	 */
1067 	if (!smp_found_config && !acpi_lapic) {
1068 		preempt_enable();
1069 		pr_notice("SMP motherboard not detected\n");
1070 		return SMP_NO_CONFIG;
1071 	}
1072 
1073 	/*
1074 	 * Should not be necessary because the MP table should list the boot
1075 	 * CPU too, but we do it for the sake of robustness anyway.
1076 	 */
1077 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1078 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1079 			  boot_cpu_physical_apicid);
1080 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1081 	}
1082 	preempt_enable();
1083 
1084 	/*
1085 	 * If we couldn't find a local APIC, then get out of here now!
1086 	 */
1087 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1088 	    !cpu_has_apic) {
1089 		if (!disable_apic) {
1090 			pr_err("BIOS bug, local APIC #%d not detected!...\n",
1091 				boot_cpu_physical_apicid);
1092 			pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1093 		}
1094 		return SMP_NO_APIC;
1095 	}
1096 
1097 	/*
1098 	 * If SMP should be disabled, then really disable it!
1099 	 */
1100 	if (!max_cpus) {
1101 		pr_info("SMP mode deactivated\n");
1102 		return SMP_FORCE_UP;
1103 	}
1104 
1105 	return SMP_OK;
1106 }
1107 
1108 static void __init smp_cpu_index_default(void)
1109 {
1110 	int i;
1111 	struct cpuinfo_x86 *c;
1112 
1113 	for_each_possible_cpu(i) {
1114 		c = &cpu_data(i);
1115 		/* mark all to hotplug */
1116 		c->cpu_index = nr_cpu_ids;
1117 	}
1118 }
1119 
1120 /*
1121  * Prepare for SMP bootup.  The MP table or ACPI has been read
1122  * earlier.  Just do some sanity checking here and enable APIC mode.
1123  */
1124 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1125 {
1126 	unsigned int i;
1127 
1128 	smp_cpu_index_default();
1129 
1130 	/*
1131 	 * Setup boot CPU information
1132 	 */
1133 	smp_store_boot_cpu_info(); /* Final full version of the data */
1134 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1135 	mb();
1136 
1137 	current_thread_info()->cpu = 0;  /* needed? */
1138 	for_each_possible_cpu(i) {
1139 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1140 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1141 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1142 	}
1143 	set_cpu_sibling_map(0);
1144 
1145 	switch (smp_sanity_check(max_cpus)) {
1146 	case SMP_NO_CONFIG:
1147 		disable_smp();
1148 		if (APIC_init_uniprocessor())
1149 			pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1150 		return;
1151 	case SMP_NO_APIC:
1152 		disable_smp();
1153 		return;
1154 	case SMP_FORCE_UP:
1155 		disable_smp();
1156 		apic_bsp_setup(false);
1157 		return;
1158 	case SMP_OK:
1159 		break;
1160 	}
1161 
1162 	default_setup_apic_routing();
1163 
1164 	if (read_apic_id() != boot_cpu_physical_apicid) {
1165 		panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1166 		     read_apic_id(), boot_cpu_physical_apicid);
1167 		/* Or can we switch back to PIC here? */
1168 	}
1169 
1170 	cpu0_logical_apicid = apic_bsp_setup(false);
1171 
1172 	pr_info("CPU%d: ", 0);
1173 	print_cpu_info(&cpu_data(0));
1174 
1175 	if (is_uv_system())
1176 		uv_system_init();
1177 
1178 	set_mtrr_aps_delayed_init();
1179 }
1180 
1181 void arch_enable_nonboot_cpus_begin(void)
1182 {
1183 	set_mtrr_aps_delayed_init();
1184 }
1185 
1186 void arch_enable_nonboot_cpus_end(void)
1187 {
1188 	mtrr_aps_init();
1189 }
1190 
1191 /*
1192  * Early setup to make printk work.
1193  */
1194 void __init native_smp_prepare_boot_cpu(void)
1195 {
1196 	int me = smp_processor_id();
1197 	switch_to_new_gdt(me);
1198 	/* already set me in cpu_online_mask in boot_cpu_init() */
1199 	cpumask_set_cpu(me, cpu_callout_mask);
1200 	cpu_set_state_online(me);
1201 }
1202 
1203 void __init native_smp_cpus_done(unsigned int max_cpus)
1204 {
1205 	pr_debug("Boot done\n");
1206 
1207 	nmi_selftest();
1208 	impress_friends();
1209 	setup_ioapic_dest();
1210 	mtrr_aps_init();
1211 }
1212 
1213 static int __initdata setup_possible_cpus = -1;
1214 static int __init _setup_possible_cpus(char *str)
1215 {
1216 	get_option(&str, &setup_possible_cpus);
1217 	return 0;
1218 }
1219 early_param("possible_cpus", _setup_possible_cpus);
1220 
1221 
1222 /*
1223  * cpu_possible_mask should be static, it cannot change as cpu's
1224  * are onlined, or offlined. The reason is per-cpu data-structures
1225  * are allocated by some modules at init time, and dont expect to
1226  * do this dynamically on cpu arrival/departure.
1227  * cpu_present_mask on the other hand can change dynamically.
1228  * In case when cpu_hotplug is not compiled, then we resort to current
1229  * behaviour, which is cpu_possible == cpu_present.
1230  * - Ashok Raj
1231  *
1232  * Three ways to find out the number of additional hotplug CPUs:
1233  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1234  * - The user can overwrite it with possible_cpus=NUM
1235  * - Otherwise don't reserve additional CPUs.
1236  * We do this because additional CPUs waste a lot of memory.
1237  * -AK
1238  */
1239 __init void prefill_possible_map(void)
1240 {
1241 	int i, possible;
1242 
1243 	/* no processor from mptable or madt */
1244 	if (!num_processors)
1245 		num_processors = 1;
1246 
1247 	i = setup_max_cpus ?: 1;
1248 	if (setup_possible_cpus == -1) {
1249 		possible = num_processors;
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 		if (setup_max_cpus)
1252 			possible += disabled_cpus;
1253 #else
1254 		if (possible > i)
1255 			possible = i;
1256 #endif
1257 	} else
1258 		possible = setup_possible_cpus;
1259 
1260 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1261 
1262 	/* nr_cpu_ids could be reduced via nr_cpus= */
1263 	if (possible > nr_cpu_ids) {
1264 		pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1265 			possible, nr_cpu_ids);
1266 		possible = nr_cpu_ids;
1267 	}
1268 
1269 #ifdef CONFIG_HOTPLUG_CPU
1270 	if (!setup_max_cpus)
1271 #endif
1272 	if (possible > i) {
1273 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1274 			possible, setup_max_cpus);
1275 		possible = i;
1276 	}
1277 
1278 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1279 		possible, max_t(int, possible - num_processors, 0));
1280 
1281 	for (i = 0; i < possible; i++)
1282 		set_cpu_possible(i, true);
1283 	for (; i < NR_CPUS; i++)
1284 		set_cpu_possible(i, false);
1285 
1286 	nr_cpu_ids = possible;
1287 }
1288 
1289 #ifdef CONFIG_HOTPLUG_CPU
1290 
1291 static void remove_siblinginfo(int cpu)
1292 {
1293 	int sibling;
1294 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1295 
1296 	for_each_cpu(sibling, cpu_core_mask(cpu)) {
1297 		cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1298 		/*/
1299 		 * last thread sibling in this cpu core going down
1300 		 */
1301 		if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1302 			cpu_data(sibling).booted_cores--;
1303 	}
1304 
1305 	for_each_cpu(sibling, cpu_sibling_mask(cpu))
1306 		cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1307 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1308 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1309 	cpumask_clear(cpu_llc_shared_mask(cpu));
1310 	cpumask_clear(cpu_sibling_mask(cpu));
1311 	cpumask_clear(cpu_core_mask(cpu));
1312 	c->phys_proc_id = 0;
1313 	c->cpu_core_id = 0;
1314 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1315 }
1316 
1317 static void __ref remove_cpu_from_maps(int cpu)
1318 {
1319 	set_cpu_online(cpu, false);
1320 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1321 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1322 	/* was set by cpu_init() */
1323 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1324 	numa_remove_cpu(cpu);
1325 }
1326 
1327 void cpu_disable_common(void)
1328 {
1329 	int cpu = smp_processor_id();
1330 
1331 	remove_siblinginfo(cpu);
1332 
1333 	/* It's now safe to remove this processor from the online map */
1334 	lock_vector_lock();
1335 	remove_cpu_from_maps(cpu);
1336 	unlock_vector_lock();
1337 	fixup_irqs();
1338 }
1339 
1340 int native_cpu_disable(void)
1341 {
1342 	int ret;
1343 
1344 	ret = check_irq_vectors_for_cpu_disable();
1345 	if (ret)
1346 		return ret;
1347 
1348 	clear_local_APIC();
1349 	cpu_disable_common();
1350 
1351 	return 0;
1352 }
1353 
1354 int common_cpu_die(unsigned int cpu)
1355 {
1356 	int ret = 0;
1357 
1358 	/* We don't do anything here: idle task is faking death itself. */
1359 
1360 	/* They ack this in play_dead() by setting CPU_DEAD */
1361 	if (cpu_wait_death(cpu, 5)) {
1362 		if (system_state == SYSTEM_RUNNING)
1363 			pr_info("CPU %u is now offline\n", cpu);
1364 	} else {
1365 		pr_err("CPU %u didn't die...\n", cpu);
1366 		ret = -1;
1367 	}
1368 
1369 	return ret;
1370 }
1371 
1372 void native_cpu_die(unsigned int cpu)
1373 {
1374 	common_cpu_die(cpu);
1375 }
1376 
1377 void play_dead_common(void)
1378 {
1379 	idle_task_exit();
1380 	reset_lazy_tlbstate();
1381 	amd_e400_remove_cpu(raw_smp_processor_id());
1382 
1383 	/* Ack it */
1384 	(void)cpu_report_death();
1385 
1386 	/*
1387 	 * With physical CPU hotplug, we should halt the cpu
1388 	 */
1389 	local_irq_disable();
1390 }
1391 
1392 static bool wakeup_cpu0(void)
1393 {
1394 	if (smp_processor_id() == 0 && enable_start_cpu0)
1395 		return true;
1396 
1397 	return false;
1398 }
1399 
1400 /*
1401  * We need to flush the caches before going to sleep, lest we have
1402  * dirty data in our caches when we come back up.
1403  */
1404 static inline void mwait_play_dead(void)
1405 {
1406 	unsigned int eax, ebx, ecx, edx;
1407 	unsigned int highest_cstate = 0;
1408 	unsigned int highest_subcstate = 0;
1409 	void *mwait_ptr;
1410 	int i;
1411 
1412 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1413 		return;
1414 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1415 		return;
1416 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1417 		return;
1418 
1419 	eax = CPUID_MWAIT_LEAF;
1420 	ecx = 0;
1421 	native_cpuid(&eax, &ebx, &ecx, &edx);
1422 
1423 	/*
1424 	 * eax will be 0 if EDX enumeration is not valid.
1425 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1426 	 */
1427 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1428 		eax = 0;
1429 	} else {
1430 		edx >>= MWAIT_SUBSTATE_SIZE;
1431 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1432 			if (edx & MWAIT_SUBSTATE_MASK) {
1433 				highest_cstate = i;
1434 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1435 			}
1436 		}
1437 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1438 			(highest_subcstate - 1);
1439 	}
1440 
1441 	/*
1442 	 * This should be a memory location in a cache line which is
1443 	 * unlikely to be touched by other processors.  The actual
1444 	 * content is immaterial as it is not actually modified in any way.
1445 	 */
1446 	mwait_ptr = &current_thread_info()->flags;
1447 
1448 	wbinvd();
1449 
1450 	while (1) {
1451 		/*
1452 		 * The CLFLUSH is a workaround for erratum AAI65 for
1453 		 * the Xeon 7400 series.  It's not clear it is actually
1454 		 * needed, but it should be harmless in either case.
1455 		 * The WBINVD is insufficient due to the spurious-wakeup
1456 		 * case where we return around the loop.
1457 		 */
1458 		mb();
1459 		clflush(mwait_ptr);
1460 		mb();
1461 		__monitor(mwait_ptr, 0, 0);
1462 		mb();
1463 		__mwait(eax, 0);
1464 		/*
1465 		 * If NMI wants to wake up CPU0, start CPU0.
1466 		 */
1467 		if (wakeup_cpu0())
1468 			start_cpu0();
1469 	}
1470 }
1471 
1472 static inline void hlt_play_dead(void)
1473 {
1474 	if (__this_cpu_read(cpu_info.x86) >= 4)
1475 		wbinvd();
1476 
1477 	while (1) {
1478 		native_halt();
1479 		/*
1480 		 * If NMI wants to wake up CPU0, start CPU0.
1481 		 */
1482 		if (wakeup_cpu0())
1483 			start_cpu0();
1484 	}
1485 }
1486 
1487 void native_play_dead(void)
1488 {
1489 	play_dead_common();
1490 	tboot_shutdown(TB_SHUTDOWN_WFS);
1491 
1492 	mwait_play_dead();	/* Only returns on failure */
1493 	if (cpuidle_play_dead())
1494 		hlt_play_dead();
1495 }
1496 
1497 #else /* ... !CONFIG_HOTPLUG_CPU */
1498 int native_cpu_disable(void)
1499 {
1500 	return -ENOSYS;
1501 }
1502 
1503 void native_cpu_die(unsigned int cpu)
1504 {
1505 	/* We said "no" in __cpu_disable */
1506 	BUG();
1507 }
1508 
1509 void native_play_dead(void)
1510 {
1511 	BUG();
1512 }
1513 
1514 #endif
1515