xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58 
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
93 
94 /* Per CPU bogomips and other parameters */
95 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
96 EXPORT_PER_CPU_SYMBOL(cpu_info);
97 
98 /* Logical package management. We might want to allocate that dynamically */
99 unsigned int __max_logical_packages __read_mostly;
100 EXPORT_SYMBOL(__max_logical_packages);
101 static unsigned int logical_packages __read_mostly;
102 
103 /* Maximum number of SMT threads on any online core */
104 int __read_mostly __max_smt_threads = 1;
105 
106 /* Flag to indicate if a complete sched domain rebuild is required */
107 bool x86_topology_update;
108 
109 int arch_update_cpu_topology(void)
110 {
111 	int retval = x86_topology_update;
112 
113 	x86_topology_update = false;
114 	return retval;
115 }
116 
117 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
118 {
119 	unsigned long flags;
120 
121 	spin_lock_irqsave(&rtc_lock, flags);
122 	CMOS_WRITE(0xa, 0xf);
123 	spin_unlock_irqrestore(&rtc_lock, flags);
124 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
125 							start_eip >> 4;
126 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
127 							start_eip & 0xf;
128 }
129 
130 static inline void smpboot_restore_warm_reset_vector(void)
131 {
132 	unsigned long flags;
133 
134 	/*
135 	 * Paranoid:  Set warm reset code and vector here back
136 	 * to default values.
137 	 */
138 	spin_lock_irqsave(&rtc_lock, flags);
139 	CMOS_WRITE(0, 0xf);
140 	spin_unlock_irqrestore(&rtc_lock, flags);
141 
142 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
143 }
144 
145 /*
146  * Report back to the Boot Processor during boot time or to the caller processor
147  * during CPU online.
148  */
149 static void smp_callin(void)
150 {
151 	int cpuid;
152 
153 	/*
154 	 * If waken up by an INIT in an 82489DX configuration
155 	 * cpu_callout_mask guarantees we don't get here before
156 	 * an INIT_deassert IPI reaches our local APIC, so it is
157 	 * now safe to touch our local APIC.
158 	 */
159 	cpuid = smp_processor_id();
160 
161 	/*
162 	 * the boot CPU has finished the init stage and is spinning
163 	 * on callin_map until we finish. We are free to set up this
164 	 * CPU, first the APIC. (this is probably redundant on most
165 	 * boards)
166 	 */
167 	apic_ap_setup();
168 
169 	/*
170 	 * Save our processor parameters. Note: this information
171 	 * is needed for clock calibration.
172 	 */
173 	smp_store_cpu_info(cpuid);
174 
175 	/*
176 	 * The topology information must be up to date before
177 	 * calibrate_delay() and notify_cpu_starting().
178 	 */
179 	set_cpu_sibling_map(raw_smp_processor_id());
180 
181 	/*
182 	 * Get our bogomips.
183 	 * Update loops_per_jiffy in cpu_data. Previous call to
184 	 * smp_store_cpu_info() stored a value that is close but not as
185 	 * accurate as the value just calculated.
186 	 */
187 	calibrate_delay();
188 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
189 	pr_debug("Stack at about %p\n", &cpuid);
190 
191 	wmb();
192 
193 	notify_cpu_starting(cpuid);
194 
195 	/*
196 	 * Allow the master to continue.
197 	 */
198 	cpumask_set_cpu(cpuid, cpu_callin_mask);
199 }
200 
201 static int cpu0_logical_apicid;
202 static int enable_start_cpu0;
203 /*
204  * Activate a secondary processor.
205  */
206 static void notrace start_secondary(void *unused)
207 {
208 	/*
209 	 * Don't put *anything* except direct CPU state initialization
210 	 * before cpu_init(), SMP booting is too fragile that we want to
211 	 * limit the things done here to the most necessary things.
212 	 */
213 	if (boot_cpu_has(X86_FEATURE_PCID))
214 		__write_cr4(__read_cr4() | X86_CR4_PCIDE);
215 
216 #ifdef CONFIG_X86_32
217 	/* switch away from the initial page table */
218 	load_cr3(swapper_pg_dir);
219 	/*
220 	 * Initialize the CR4 shadow before doing anything that could
221 	 * try to read it.
222 	 */
223 	cr4_init_shadow();
224 	__flush_tlb_all();
225 #endif
226 	load_current_idt();
227 	cpu_init();
228 	x86_cpuinit.early_percpu_clock_init();
229 	preempt_disable();
230 	smp_callin();
231 
232 	enable_start_cpu0 = 0;
233 
234 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
235 	barrier();
236 	/*
237 	 * Check TSC synchronization with the boot CPU:
238 	 */
239 	check_tsc_sync_target();
240 
241 	speculative_store_bypass_ht_init();
242 
243 	/*
244 	 * Lock vector_lock, set CPU online and bring the vector
245 	 * allocator online. Online must be set with vector_lock held
246 	 * to prevent a concurrent irq setup/teardown from seeing a
247 	 * half valid vector space.
248 	 */
249 	lock_vector_lock();
250 	set_cpu_online(smp_processor_id(), true);
251 	lapic_online();
252 	unlock_vector_lock();
253 	cpu_set_state_online(smp_processor_id());
254 	x86_platform.nmi_init();
255 
256 	/* enable local interrupts */
257 	local_irq_enable();
258 
259 	/* to prevent fake stack check failure in clock setup */
260 	boot_init_stack_canary();
261 
262 	x86_cpuinit.setup_percpu_clockev();
263 
264 	wmb();
265 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
266 }
267 
268 /**
269  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
270  * @cpu:	CPU to check
271  */
272 bool topology_is_primary_thread(unsigned int cpu)
273 {
274 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
275 }
276 
277 /**
278  * topology_smt_supported - Check whether SMT is supported by the CPUs
279  */
280 bool topology_smt_supported(void)
281 {
282 	return smp_num_siblings > 1;
283 }
284 
285 /**
286  * topology_phys_to_logical_pkg - Map a physical package id to a logical
287  *
288  * Returns logical package id or -1 if not found
289  */
290 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
291 {
292 	int cpu;
293 
294 	for_each_possible_cpu(cpu) {
295 		struct cpuinfo_x86 *c = &cpu_data(cpu);
296 
297 		if (c->initialized && c->phys_proc_id == phys_pkg)
298 			return c->logical_proc_id;
299 	}
300 	return -1;
301 }
302 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
303 
304 /**
305  * topology_update_package_map - Update the physical to logical package map
306  * @pkg:	The physical package id as retrieved via CPUID
307  * @cpu:	The cpu for which this is updated
308  */
309 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
310 {
311 	int new;
312 
313 	/* Already available somewhere? */
314 	new = topology_phys_to_logical_pkg(pkg);
315 	if (new >= 0)
316 		goto found;
317 
318 	new = logical_packages++;
319 	if (new != pkg) {
320 		pr_info("CPU %u Converting physical %u to logical package %u\n",
321 			cpu, pkg, new);
322 	}
323 found:
324 	cpu_data(cpu).logical_proc_id = new;
325 	return 0;
326 }
327 
328 void __init smp_store_boot_cpu_info(void)
329 {
330 	int id = 0; /* CPU 0 */
331 	struct cpuinfo_x86 *c = &cpu_data(id);
332 
333 	*c = boot_cpu_data;
334 	c->cpu_index = id;
335 	topology_update_package_map(c->phys_proc_id, id);
336 	c->initialized = true;
337 }
338 
339 /*
340  * The bootstrap kernel entry code has set these up. Save them for
341  * a given CPU
342  */
343 void smp_store_cpu_info(int id)
344 {
345 	struct cpuinfo_x86 *c = &cpu_data(id);
346 
347 	/* Copy boot_cpu_data only on the first bringup */
348 	if (!c->initialized)
349 		*c = boot_cpu_data;
350 	c->cpu_index = id;
351 	/*
352 	 * During boot time, CPU0 has this setup already. Save the info when
353 	 * bringing up AP or offlined CPU0.
354 	 */
355 	identify_secondary_cpu(c);
356 	c->initialized = true;
357 }
358 
359 static bool
360 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
361 {
362 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
363 
364 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
365 }
366 
367 static bool
368 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
369 {
370 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
371 
372 	return !WARN_ONCE(!topology_same_node(c, o),
373 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
374 		"[node: %d != %d]. Ignoring dependency.\n",
375 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
376 }
377 
378 #define link_mask(mfunc, c1, c2)					\
379 do {									\
380 	cpumask_set_cpu((c1), mfunc(c2));				\
381 	cpumask_set_cpu((c2), mfunc(c1));				\
382 } while (0)
383 
384 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
385 {
386 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
387 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
388 
389 		if (c->phys_proc_id == o->phys_proc_id &&
390 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
391 			if (c->cpu_core_id == o->cpu_core_id)
392 				return topology_sane(c, o, "smt");
393 
394 			if ((c->cu_id != 0xff) &&
395 			    (o->cu_id != 0xff) &&
396 			    (c->cu_id == o->cu_id))
397 				return topology_sane(c, o, "smt");
398 		}
399 
400 	} else if (c->phys_proc_id == o->phys_proc_id &&
401 		   c->cpu_core_id == o->cpu_core_id) {
402 		return topology_sane(c, o, "smt");
403 	}
404 
405 	return false;
406 }
407 
408 /*
409  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
410  *
411  * These are Intel CPUs that enumerate an LLC that is shared by
412  * multiple NUMA nodes. The LLC on these systems is shared for
413  * off-package data access but private to the NUMA node (half
414  * of the package) for on-package access.
415  *
416  * CPUID (the source of the information about the LLC) can only
417  * enumerate the cache as being shared *or* unshared, but not
418  * this particular configuration. The CPU in this case enumerates
419  * the cache to be shared across the entire package (spanning both
420  * NUMA nodes).
421  */
422 
423 static const struct x86_cpu_id snc_cpu[] = {
424 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
425 	{}
426 };
427 
428 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
429 {
430 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
431 
432 	/* Do not match if we do not have a valid APICID for cpu: */
433 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
434 		return false;
435 
436 	/* Do not match if LLC id does not match: */
437 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
438 		return false;
439 
440 	/*
441 	 * Allow the SNC topology without warning. Return of false
442 	 * means 'c' does not share the LLC of 'o'. This will be
443 	 * reflected to userspace.
444 	 */
445 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
446 		return false;
447 
448 	return topology_sane(c, o, "llc");
449 }
450 
451 /*
452  * Unlike the other levels, we do not enforce keeping a
453  * multicore group inside a NUMA node.  If this happens, we will
454  * discard the MC level of the topology later.
455  */
456 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
457 {
458 	if (c->phys_proc_id == o->phys_proc_id)
459 		return true;
460 	return false;
461 }
462 
463 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
464 static inline int x86_sched_itmt_flags(void)
465 {
466 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
467 }
468 
469 #ifdef CONFIG_SCHED_MC
470 static int x86_core_flags(void)
471 {
472 	return cpu_core_flags() | x86_sched_itmt_flags();
473 }
474 #endif
475 #ifdef CONFIG_SCHED_SMT
476 static int x86_smt_flags(void)
477 {
478 	return cpu_smt_flags() | x86_sched_itmt_flags();
479 }
480 #endif
481 #endif
482 
483 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
484 #ifdef CONFIG_SCHED_SMT
485 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
486 #endif
487 #ifdef CONFIG_SCHED_MC
488 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
489 #endif
490 	{ NULL, },
491 };
492 
493 static struct sched_domain_topology_level x86_topology[] = {
494 #ifdef CONFIG_SCHED_SMT
495 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
496 #endif
497 #ifdef CONFIG_SCHED_MC
498 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
499 #endif
500 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
501 	{ NULL, },
502 };
503 
504 /*
505  * Set if a package/die has multiple NUMA nodes inside.
506  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
507  * Sub-NUMA Clustering have this.
508  */
509 static bool x86_has_numa_in_package;
510 
511 void set_cpu_sibling_map(int cpu)
512 {
513 	bool has_smt = smp_num_siblings > 1;
514 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
515 	struct cpuinfo_x86 *c = &cpu_data(cpu);
516 	struct cpuinfo_x86 *o;
517 	int i, threads;
518 
519 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
520 
521 	if (!has_mp) {
522 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
523 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
524 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
525 		c->booted_cores = 1;
526 		return;
527 	}
528 
529 	for_each_cpu(i, cpu_sibling_setup_mask) {
530 		o = &cpu_data(i);
531 
532 		if ((i == cpu) || (has_smt && match_smt(c, o)))
533 			link_mask(topology_sibling_cpumask, cpu, i);
534 
535 		if ((i == cpu) || (has_mp && match_llc(c, o)))
536 			link_mask(cpu_llc_shared_mask, cpu, i);
537 
538 	}
539 
540 	/*
541 	 * This needs a separate iteration over the cpus because we rely on all
542 	 * topology_sibling_cpumask links to be set-up.
543 	 */
544 	for_each_cpu(i, cpu_sibling_setup_mask) {
545 		o = &cpu_data(i);
546 
547 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
548 			link_mask(topology_core_cpumask, cpu, i);
549 
550 			/*
551 			 *  Does this new cpu bringup a new core?
552 			 */
553 			if (cpumask_weight(
554 			    topology_sibling_cpumask(cpu)) == 1) {
555 				/*
556 				 * for each core in package, increment
557 				 * the booted_cores for this new cpu
558 				 */
559 				if (cpumask_first(
560 				    topology_sibling_cpumask(i)) == i)
561 					c->booted_cores++;
562 				/*
563 				 * increment the core count for all
564 				 * the other cpus in this package
565 				 */
566 				if (i != cpu)
567 					cpu_data(i).booted_cores++;
568 			} else if (i != cpu && !c->booted_cores)
569 				c->booted_cores = cpu_data(i).booted_cores;
570 		}
571 		if (match_pkg(c, o) && !topology_same_node(c, o))
572 			x86_has_numa_in_package = true;
573 	}
574 
575 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
576 	if (threads > __max_smt_threads)
577 		__max_smt_threads = threads;
578 }
579 
580 /* maps the cpu to the sched domain representing multi-core */
581 const struct cpumask *cpu_coregroup_mask(int cpu)
582 {
583 	return cpu_llc_shared_mask(cpu);
584 }
585 
586 static void impress_friends(void)
587 {
588 	int cpu;
589 	unsigned long bogosum = 0;
590 	/*
591 	 * Allow the user to impress friends.
592 	 */
593 	pr_debug("Before bogomips\n");
594 	for_each_possible_cpu(cpu)
595 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
596 			bogosum += cpu_data(cpu).loops_per_jiffy;
597 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
598 		num_online_cpus(),
599 		bogosum/(500000/HZ),
600 		(bogosum/(5000/HZ))%100);
601 
602 	pr_debug("Before bogocount - setting activated=1\n");
603 }
604 
605 void __inquire_remote_apic(int apicid)
606 {
607 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
608 	const char * const names[] = { "ID", "VERSION", "SPIV" };
609 	int timeout;
610 	u32 status;
611 
612 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
613 
614 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
615 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
616 
617 		/*
618 		 * Wait for idle.
619 		 */
620 		status = safe_apic_wait_icr_idle();
621 		if (status)
622 			pr_cont("a previous APIC delivery may have failed\n");
623 
624 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
625 
626 		timeout = 0;
627 		do {
628 			udelay(100);
629 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
630 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
631 
632 		switch (status) {
633 		case APIC_ICR_RR_VALID:
634 			status = apic_read(APIC_RRR);
635 			pr_cont("%08x\n", status);
636 			break;
637 		default:
638 			pr_cont("failed\n");
639 		}
640 	}
641 }
642 
643 /*
644  * The Multiprocessor Specification 1.4 (1997) example code suggests
645  * that there should be a 10ms delay between the BSP asserting INIT
646  * and de-asserting INIT, when starting a remote processor.
647  * But that slows boot and resume on modern processors, which include
648  * many cores and don't require that delay.
649  *
650  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
651  * Modern processor families are quirked to remove the delay entirely.
652  */
653 #define UDELAY_10MS_DEFAULT 10000
654 
655 static unsigned int init_udelay = UINT_MAX;
656 
657 static int __init cpu_init_udelay(char *str)
658 {
659 	get_option(&str, &init_udelay);
660 
661 	return 0;
662 }
663 early_param("cpu_init_udelay", cpu_init_udelay);
664 
665 static void __init smp_quirk_init_udelay(void)
666 {
667 	/* if cmdline changed it from default, leave it alone */
668 	if (init_udelay != UINT_MAX)
669 		return;
670 
671 	/* if modern processor, use no delay */
672 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
673 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
674 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
675 		init_udelay = 0;
676 		return;
677 	}
678 	/* else, use legacy delay */
679 	init_udelay = UDELAY_10MS_DEFAULT;
680 }
681 
682 /*
683  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
684  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
685  * won't ... remember to clear down the APIC, etc later.
686  */
687 int
688 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
689 {
690 	unsigned long send_status, accept_status = 0;
691 	int maxlvt;
692 
693 	/* Target chip */
694 	/* Boot on the stack */
695 	/* Kick the second */
696 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
697 
698 	pr_debug("Waiting for send to finish...\n");
699 	send_status = safe_apic_wait_icr_idle();
700 
701 	/*
702 	 * Give the other CPU some time to accept the IPI.
703 	 */
704 	udelay(200);
705 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
706 		maxlvt = lapic_get_maxlvt();
707 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
708 			apic_write(APIC_ESR, 0);
709 		accept_status = (apic_read(APIC_ESR) & 0xEF);
710 	}
711 	pr_debug("NMI sent\n");
712 
713 	if (send_status)
714 		pr_err("APIC never delivered???\n");
715 	if (accept_status)
716 		pr_err("APIC delivery error (%lx)\n", accept_status);
717 
718 	return (send_status | accept_status);
719 }
720 
721 static int
722 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
723 {
724 	unsigned long send_status = 0, accept_status = 0;
725 	int maxlvt, num_starts, j;
726 
727 	maxlvt = lapic_get_maxlvt();
728 
729 	/*
730 	 * Be paranoid about clearing APIC errors.
731 	 */
732 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
733 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
734 			apic_write(APIC_ESR, 0);
735 		apic_read(APIC_ESR);
736 	}
737 
738 	pr_debug("Asserting INIT\n");
739 
740 	/*
741 	 * Turn INIT on target chip
742 	 */
743 	/*
744 	 * Send IPI
745 	 */
746 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
747 		       phys_apicid);
748 
749 	pr_debug("Waiting for send to finish...\n");
750 	send_status = safe_apic_wait_icr_idle();
751 
752 	udelay(init_udelay);
753 
754 	pr_debug("Deasserting INIT\n");
755 
756 	/* Target chip */
757 	/* Send IPI */
758 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
759 
760 	pr_debug("Waiting for send to finish...\n");
761 	send_status = safe_apic_wait_icr_idle();
762 
763 	mb();
764 
765 	/*
766 	 * Should we send STARTUP IPIs ?
767 	 *
768 	 * Determine this based on the APIC version.
769 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
770 	 */
771 	if (APIC_INTEGRATED(boot_cpu_apic_version))
772 		num_starts = 2;
773 	else
774 		num_starts = 0;
775 
776 	/*
777 	 * Run STARTUP IPI loop.
778 	 */
779 	pr_debug("#startup loops: %d\n", num_starts);
780 
781 	for (j = 1; j <= num_starts; j++) {
782 		pr_debug("Sending STARTUP #%d\n", j);
783 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
784 			apic_write(APIC_ESR, 0);
785 		apic_read(APIC_ESR);
786 		pr_debug("After apic_write\n");
787 
788 		/*
789 		 * STARTUP IPI
790 		 */
791 
792 		/* Target chip */
793 		/* Boot on the stack */
794 		/* Kick the second */
795 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
796 			       phys_apicid);
797 
798 		/*
799 		 * Give the other CPU some time to accept the IPI.
800 		 */
801 		if (init_udelay == 0)
802 			udelay(10);
803 		else
804 			udelay(300);
805 
806 		pr_debug("Startup point 1\n");
807 
808 		pr_debug("Waiting for send to finish...\n");
809 		send_status = safe_apic_wait_icr_idle();
810 
811 		/*
812 		 * Give the other CPU some time to accept the IPI.
813 		 */
814 		if (init_udelay == 0)
815 			udelay(10);
816 		else
817 			udelay(200);
818 
819 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
820 			apic_write(APIC_ESR, 0);
821 		accept_status = (apic_read(APIC_ESR) & 0xEF);
822 		if (send_status || accept_status)
823 			break;
824 	}
825 	pr_debug("After Startup\n");
826 
827 	if (send_status)
828 		pr_err("APIC never delivered???\n");
829 	if (accept_status)
830 		pr_err("APIC delivery error (%lx)\n", accept_status);
831 
832 	return (send_status | accept_status);
833 }
834 
835 /* reduce the number of lines printed when booting a large cpu count system */
836 static void announce_cpu(int cpu, int apicid)
837 {
838 	static int current_node = NUMA_NO_NODE;
839 	int node = early_cpu_to_node(cpu);
840 	static int width, node_width;
841 
842 	if (!width)
843 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
844 
845 	if (!node_width)
846 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
847 
848 	if (cpu == 1)
849 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
850 
851 	if (system_state < SYSTEM_RUNNING) {
852 		if (node != current_node) {
853 			if (current_node > (-1))
854 				pr_cont("\n");
855 			current_node = node;
856 
857 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
858 			       node_width - num_digits(node), " ", node);
859 		}
860 
861 		/* Add padding for the BSP */
862 		if (cpu == 1)
863 			pr_cont("%*s", width + 1, " ");
864 
865 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
866 
867 	} else
868 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
869 			node, cpu, apicid);
870 }
871 
872 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
873 {
874 	int cpu;
875 
876 	cpu = smp_processor_id();
877 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
878 		return NMI_HANDLED;
879 
880 	return NMI_DONE;
881 }
882 
883 /*
884  * Wake up AP by INIT, INIT, STARTUP sequence.
885  *
886  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
887  * boot-strap code which is not a desired behavior for waking up BSP. To
888  * void the boot-strap code, wake up CPU0 by NMI instead.
889  *
890  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
891  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
892  * We'll change this code in the future to wake up hard offlined CPU0 if
893  * real platform and request are available.
894  */
895 static int
896 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
897 	       int *cpu0_nmi_registered)
898 {
899 	int id;
900 	int boot_error;
901 
902 	preempt_disable();
903 
904 	/*
905 	 * Wake up AP by INIT, INIT, STARTUP sequence.
906 	 */
907 	if (cpu) {
908 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
909 		goto out;
910 	}
911 
912 	/*
913 	 * Wake up BSP by nmi.
914 	 *
915 	 * Register a NMI handler to help wake up CPU0.
916 	 */
917 	boot_error = register_nmi_handler(NMI_LOCAL,
918 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
919 
920 	if (!boot_error) {
921 		enable_start_cpu0 = 1;
922 		*cpu0_nmi_registered = 1;
923 		if (apic->dest_logical == APIC_DEST_LOGICAL)
924 			id = cpu0_logical_apicid;
925 		else
926 			id = apicid;
927 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
928 	}
929 
930 out:
931 	preempt_enable();
932 
933 	return boot_error;
934 }
935 
936 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
937 {
938 	int ret;
939 
940 	/* Just in case we booted with a single CPU. */
941 	alternatives_enable_smp();
942 
943 	per_cpu(current_task, cpu) = idle;
944 
945 	/* Initialize the interrupt stack(s) */
946 	ret = irq_init_percpu_irqstack(cpu);
947 	if (ret)
948 		return ret;
949 
950 #ifdef CONFIG_X86_32
951 	/* Stack for startup_32 can be just as for start_secondary onwards */
952 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
953 #else
954 	initial_gs = per_cpu_offset(cpu);
955 #endif
956 	return 0;
957 }
958 
959 /*
960  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
961  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
962  * Returns zero if CPU booted OK, else error code from
963  * ->wakeup_secondary_cpu.
964  */
965 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
966 		       int *cpu0_nmi_registered)
967 {
968 	volatile u32 *trampoline_status =
969 		(volatile u32 *) __va(real_mode_header->trampoline_status);
970 	/* start_ip had better be page-aligned! */
971 	unsigned long start_ip = real_mode_header->trampoline_start;
972 
973 	unsigned long boot_error = 0;
974 	unsigned long timeout;
975 
976 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
977 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
978 	initial_code = (unsigned long)start_secondary;
979 	initial_stack  = idle->thread.sp;
980 
981 	/* Enable the espfix hack for this CPU */
982 	init_espfix_ap(cpu);
983 
984 	/* So we see what's up */
985 	announce_cpu(cpu, apicid);
986 
987 	/*
988 	 * This grunge runs the startup process for
989 	 * the targeted processor.
990 	 */
991 
992 	if (x86_platform.legacy.warm_reset) {
993 
994 		pr_debug("Setting warm reset code and vector.\n");
995 
996 		smpboot_setup_warm_reset_vector(start_ip);
997 		/*
998 		 * Be paranoid about clearing APIC errors.
999 		*/
1000 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1001 			apic_write(APIC_ESR, 0);
1002 			apic_read(APIC_ESR);
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * AP might wait on cpu_callout_mask in cpu_init() with
1008 	 * cpu_initialized_mask set if previous attempt to online
1009 	 * it timed-out. Clear cpu_initialized_mask so that after
1010 	 * INIT/SIPI it could start with a clean state.
1011 	 */
1012 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1013 	smp_mb();
1014 
1015 	/*
1016 	 * Wake up a CPU in difference cases:
1017 	 * - Use the method in the APIC driver if it's defined
1018 	 * Otherwise,
1019 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1020 	 */
1021 	if (apic->wakeup_secondary_cpu)
1022 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1023 	else
1024 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1025 						     cpu0_nmi_registered);
1026 
1027 	if (!boot_error) {
1028 		/*
1029 		 * Wait 10s total for first sign of life from AP
1030 		 */
1031 		boot_error = -1;
1032 		timeout = jiffies + 10*HZ;
1033 		while (time_before(jiffies, timeout)) {
1034 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1035 				/*
1036 				 * Tell AP to proceed with initialization
1037 				 */
1038 				cpumask_set_cpu(cpu, cpu_callout_mask);
1039 				boot_error = 0;
1040 				break;
1041 			}
1042 			schedule();
1043 		}
1044 	}
1045 
1046 	if (!boot_error) {
1047 		/*
1048 		 * Wait till AP completes initial initialization
1049 		 */
1050 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1051 			/*
1052 			 * Allow other tasks to run while we wait for the
1053 			 * AP to come online. This also gives a chance
1054 			 * for the MTRR work(triggered by the AP coming online)
1055 			 * to be completed in the stop machine context.
1056 			 */
1057 			schedule();
1058 		}
1059 	}
1060 
1061 	/* mark "stuck" area as not stuck */
1062 	*trampoline_status = 0;
1063 
1064 	if (x86_platform.legacy.warm_reset) {
1065 		/*
1066 		 * Cleanup possible dangling ends...
1067 		 */
1068 		smpboot_restore_warm_reset_vector();
1069 	}
1070 
1071 	return boot_error;
1072 }
1073 
1074 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1075 {
1076 	int apicid = apic->cpu_present_to_apicid(cpu);
1077 	int cpu0_nmi_registered = 0;
1078 	unsigned long flags;
1079 	int err, ret = 0;
1080 
1081 	lockdep_assert_irqs_enabled();
1082 
1083 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1084 
1085 	if (apicid == BAD_APICID ||
1086 	    !physid_isset(apicid, phys_cpu_present_map) ||
1087 	    !apic->apic_id_valid(apicid)) {
1088 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1089 		return -EINVAL;
1090 	}
1091 
1092 	/*
1093 	 * Already booted CPU?
1094 	 */
1095 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1096 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1097 		return -ENOSYS;
1098 	}
1099 
1100 	/*
1101 	 * Save current MTRR state in case it was changed since early boot
1102 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1103 	 */
1104 	mtrr_save_state();
1105 
1106 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1107 	err = cpu_check_up_prepare(cpu);
1108 	if (err && err != -EBUSY)
1109 		return err;
1110 
1111 	/* the FPU context is blank, nobody can own it */
1112 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1113 
1114 	err = common_cpu_up(cpu, tidle);
1115 	if (err)
1116 		return err;
1117 
1118 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1119 	if (err) {
1120 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1121 		ret = -EIO;
1122 		goto unreg_nmi;
1123 	}
1124 
1125 	/*
1126 	 * Check TSC synchronization with the AP (keep irqs disabled
1127 	 * while doing so):
1128 	 */
1129 	local_irq_save(flags);
1130 	check_tsc_sync_source(cpu);
1131 	local_irq_restore(flags);
1132 
1133 	while (!cpu_online(cpu)) {
1134 		cpu_relax();
1135 		touch_nmi_watchdog();
1136 	}
1137 
1138 unreg_nmi:
1139 	/*
1140 	 * Clean up the nmi handler. Do this after the callin and callout sync
1141 	 * to avoid impact of possible long unregister time.
1142 	 */
1143 	if (cpu0_nmi_registered)
1144 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1145 
1146 	return ret;
1147 }
1148 
1149 /**
1150  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1151  */
1152 void arch_disable_smp_support(void)
1153 {
1154 	disable_ioapic_support();
1155 }
1156 
1157 /*
1158  * Fall back to non SMP mode after errors.
1159  *
1160  * RED-PEN audit/test this more. I bet there is more state messed up here.
1161  */
1162 static __init void disable_smp(void)
1163 {
1164 	pr_info("SMP disabled\n");
1165 
1166 	disable_ioapic_support();
1167 
1168 	init_cpu_present(cpumask_of(0));
1169 	init_cpu_possible(cpumask_of(0));
1170 
1171 	if (smp_found_config)
1172 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1173 	else
1174 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1175 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1176 	cpumask_set_cpu(0, topology_core_cpumask(0));
1177 }
1178 
1179 /*
1180  * Various sanity checks.
1181  */
1182 static void __init smp_sanity_check(void)
1183 {
1184 	preempt_disable();
1185 
1186 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1187 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1188 		unsigned int cpu;
1189 		unsigned nr;
1190 
1191 		pr_warn("More than 8 CPUs detected - skipping them\n"
1192 			"Use CONFIG_X86_BIGSMP\n");
1193 
1194 		nr = 0;
1195 		for_each_present_cpu(cpu) {
1196 			if (nr >= 8)
1197 				set_cpu_present(cpu, false);
1198 			nr++;
1199 		}
1200 
1201 		nr = 0;
1202 		for_each_possible_cpu(cpu) {
1203 			if (nr >= 8)
1204 				set_cpu_possible(cpu, false);
1205 			nr++;
1206 		}
1207 
1208 		nr_cpu_ids = 8;
1209 	}
1210 #endif
1211 
1212 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1213 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1214 			hard_smp_processor_id());
1215 
1216 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1217 	}
1218 
1219 	/*
1220 	 * Should not be necessary because the MP table should list the boot
1221 	 * CPU too, but we do it for the sake of robustness anyway.
1222 	 */
1223 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1224 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1225 			  boot_cpu_physical_apicid);
1226 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1227 	}
1228 	preempt_enable();
1229 }
1230 
1231 static void __init smp_cpu_index_default(void)
1232 {
1233 	int i;
1234 	struct cpuinfo_x86 *c;
1235 
1236 	for_each_possible_cpu(i) {
1237 		c = &cpu_data(i);
1238 		/* mark all to hotplug */
1239 		c->cpu_index = nr_cpu_ids;
1240 	}
1241 }
1242 
1243 static void __init smp_get_logical_apicid(void)
1244 {
1245 	if (x2apic_mode)
1246 		cpu0_logical_apicid = apic_read(APIC_LDR);
1247 	else
1248 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1249 }
1250 
1251 /*
1252  * Prepare for SMP bootup.
1253  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1254  *            for common interface support.
1255  */
1256 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1257 {
1258 	unsigned int i;
1259 
1260 	smp_cpu_index_default();
1261 
1262 	/*
1263 	 * Setup boot CPU information
1264 	 */
1265 	smp_store_boot_cpu_info(); /* Final full version of the data */
1266 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1267 	mb();
1268 
1269 	for_each_possible_cpu(i) {
1270 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1271 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1272 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1273 	}
1274 
1275 	/*
1276 	 * Set 'default' x86 topology, this matches default_topology() in that
1277 	 * it has NUMA nodes as a topology level. See also
1278 	 * native_smp_cpus_done().
1279 	 *
1280 	 * Must be done before set_cpus_sibling_map() is ran.
1281 	 */
1282 	set_sched_topology(x86_topology);
1283 
1284 	set_cpu_sibling_map(0);
1285 
1286 	smp_sanity_check();
1287 
1288 	switch (apic_intr_mode) {
1289 	case APIC_PIC:
1290 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1291 		disable_smp();
1292 		return;
1293 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1294 		disable_smp();
1295 		/* Setup local timer */
1296 		x86_init.timers.setup_percpu_clockev();
1297 		return;
1298 	case APIC_VIRTUAL_WIRE:
1299 	case APIC_SYMMETRIC_IO:
1300 		break;
1301 	}
1302 
1303 	/* Setup local timer */
1304 	x86_init.timers.setup_percpu_clockev();
1305 
1306 	smp_get_logical_apicid();
1307 
1308 	pr_info("CPU0: ");
1309 	print_cpu_info(&cpu_data(0));
1310 
1311 	native_pv_lock_init();
1312 
1313 	uv_system_init();
1314 
1315 	set_mtrr_aps_delayed_init();
1316 
1317 	smp_quirk_init_udelay();
1318 
1319 	speculative_store_bypass_ht_init();
1320 }
1321 
1322 void arch_enable_nonboot_cpus_begin(void)
1323 {
1324 	set_mtrr_aps_delayed_init();
1325 }
1326 
1327 void arch_enable_nonboot_cpus_end(void)
1328 {
1329 	mtrr_aps_init();
1330 }
1331 
1332 /*
1333  * Early setup to make printk work.
1334  */
1335 void __init native_smp_prepare_boot_cpu(void)
1336 {
1337 	int me = smp_processor_id();
1338 	switch_to_new_gdt(me);
1339 	/* already set me in cpu_online_mask in boot_cpu_init() */
1340 	cpumask_set_cpu(me, cpu_callout_mask);
1341 	cpu_set_state_online(me);
1342 }
1343 
1344 void __init calculate_max_logical_packages(void)
1345 {
1346 	int ncpus;
1347 
1348 	/*
1349 	 * Today neither Intel nor AMD support heterogenous systems so
1350 	 * extrapolate the boot cpu's data to all packages.
1351 	 */
1352 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1353 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1354 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1355 }
1356 
1357 void __init native_smp_cpus_done(unsigned int max_cpus)
1358 {
1359 	pr_debug("Boot done\n");
1360 
1361 	calculate_max_logical_packages();
1362 
1363 	if (x86_has_numa_in_package)
1364 		set_sched_topology(x86_numa_in_package_topology);
1365 
1366 	nmi_selftest();
1367 	impress_friends();
1368 	mtrr_aps_init();
1369 }
1370 
1371 static int __initdata setup_possible_cpus = -1;
1372 static int __init _setup_possible_cpus(char *str)
1373 {
1374 	get_option(&str, &setup_possible_cpus);
1375 	return 0;
1376 }
1377 early_param("possible_cpus", _setup_possible_cpus);
1378 
1379 
1380 /*
1381  * cpu_possible_mask should be static, it cannot change as cpu's
1382  * are onlined, or offlined. The reason is per-cpu data-structures
1383  * are allocated by some modules at init time, and dont expect to
1384  * do this dynamically on cpu arrival/departure.
1385  * cpu_present_mask on the other hand can change dynamically.
1386  * In case when cpu_hotplug is not compiled, then we resort to current
1387  * behaviour, which is cpu_possible == cpu_present.
1388  * - Ashok Raj
1389  *
1390  * Three ways to find out the number of additional hotplug CPUs:
1391  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1392  * - The user can overwrite it with possible_cpus=NUM
1393  * - Otherwise don't reserve additional CPUs.
1394  * We do this because additional CPUs waste a lot of memory.
1395  * -AK
1396  */
1397 __init void prefill_possible_map(void)
1398 {
1399 	int i, possible;
1400 
1401 	/* No boot processor was found in mptable or ACPI MADT */
1402 	if (!num_processors) {
1403 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1404 			int apicid = boot_cpu_physical_apicid;
1405 			int cpu = hard_smp_processor_id();
1406 
1407 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1408 
1409 			/* Make sure boot cpu is enumerated */
1410 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1411 			    apic->apic_id_valid(apicid))
1412 				generic_processor_info(apicid, boot_cpu_apic_version);
1413 		}
1414 
1415 		if (!num_processors)
1416 			num_processors = 1;
1417 	}
1418 
1419 	i = setup_max_cpus ?: 1;
1420 	if (setup_possible_cpus == -1) {
1421 		possible = num_processors;
1422 #ifdef CONFIG_HOTPLUG_CPU
1423 		if (setup_max_cpus)
1424 			possible += disabled_cpus;
1425 #else
1426 		if (possible > i)
1427 			possible = i;
1428 #endif
1429 	} else
1430 		possible = setup_possible_cpus;
1431 
1432 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1433 
1434 	/* nr_cpu_ids could be reduced via nr_cpus= */
1435 	if (possible > nr_cpu_ids) {
1436 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1437 			possible, nr_cpu_ids);
1438 		possible = nr_cpu_ids;
1439 	}
1440 
1441 #ifdef CONFIG_HOTPLUG_CPU
1442 	if (!setup_max_cpus)
1443 #endif
1444 	if (possible > i) {
1445 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1446 			possible, setup_max_cpus);
1447 		possible = i;
1448 	}
1449 
1450 	nr_cpu_ids = possible;
1451 
1452 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1453 		possible, max_t(int, possible - num_processors, 0));
1454 
1455 	reset_cpu_possible_mask();
1456 
1457 	for (i = 0; i < possible; i++)
1458 		set_cpu_possible(i, true);
1459 }
1460 
1461 #ifdef CONFIG_HOTPLUG_CPU
1462 
1463 /* Recompute SMT state for all CPUs on offline */
1464 static void recompute_smt_state(void)
1465 {
1466 	int max_threads, cpu;
1467 
1468 	max_threads = 0;
1469 	for_each_online_cpu (cpu) {
1470 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1471 
1472 		if (threads > max_threads)
1473 			max_threads = threads;
1474 	}
1475 	__max_smt_threads = max_threads;
1476 }
1477 
1478 static void remove_siblinginfo(int cpu)
1479 {
1480 	int sibling;
1481 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1482 
1483 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1484 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1485 		/*/
1486 		 * last thread sibling in this cpu core going down
1487 		 */
1488 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1489 			cpu_data(sibling).booted_cores--;
1490 	}
1491 
1492 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1493 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1494 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1495 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1496 	cpumask_clear(cpu_llc_shared_mask(cpu));
1497 	cpumask_clear(topology_sibling_cpumask(cpu));
1498 	cpumask_clear(topology_core_cpumask(cpu));
1499 	c->cpu_core_id = 0;
1500 	c->booted_cores = 0;
1501 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1502 	recompute_smt_state();
1503 }
1504 
1505 static void remove_cpu_from_maps(int cpu)
1506 {
1507 	set_cpu_online(cpu, false);
1508 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1509 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1510 	/* was set by cpu_init() */
1511 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1512 	numa_remove_cpu(cpu);
1513 }
1514 
1515 void cpu_disable_common(void)
1516 {
1517 	int cpu = smp_processor_id();
1518 
1519 	remove_siblinginfo(cpu);
1520 
1521 	/* It's now safe to remove this processor from the online map */
1522 	lock_vector_lock();
1523 	remove_cpu_from_maps(cpu);
1524 	unlock_vector_lock();
1525 	fixup_irqs();
1526 	lapic_offline();
1527 }
1528 
1529 int native_cpu_disable(void)
1530 {
1531 	int ret;
1532 
1533 	ret = lapic_can_unplug_cpu();
1534 	if (ret)
1535 		return ret;
1536 
1537 	clear_local_APIC();
1538 	cpu_disable_common();
1539 
1540 	return 0;
1541 }
1542 
1543 int common_cpu_die(unsigned int cpu)
1544 {
1545 	int ret = 0;
1546 
1547 	/* We don't do anything here: idle task is faking death itself. */
1548 
1549 	/* They ack this in play_dead() by setting CPU_DEAD */
1550 	if (cpu_wait_death(cpu, 5)) {
1551 		if (system_state == SYSTEM_RUNNING)
1552 			pr_info("CPU %u is now offline\n", cpu);
1553 	} else {
1554 		pr_err("CPU %u didn't die...\n", cpu);
1555 		ret = -1;
1556 	}
1557 
1558 	return ret;
1559 }
1560 
1561 void native_cpu_die(unsigned int cpu)
1562 {
1563 	common_cpu_die(cpu);
1564 }
1565 
1566 void play_dead_common(void)
1567 {
1568 	idle_task_exit();
1569 
1570 	/* Ack it */
1571 	(void)cpu_report_death();
1572 
1573 	/*
1574 	 * With physical CPU hotplug, we should halt the cpu
1575 	 */
1576 	local_irq_disable();
1577 }
1578 
1579 static bool wakeup_cpu0(void)
1580 {
1581 	if (smp_processor_id() == 0 && enable_start_cpu0)
1582 		return true;
1583 
1584 	return false;
1585 }
1586 
1587 /*
1588  * We need to flush the caches before going to sleep, lest we have
1589  * dirty data in our caches when we come back up.
1590  */
1591 static inline void mwait_play_dead(void)
1592 {
1593 	unsigned int eax, ebx, ecx, edx;
1594 	unsigned int highest_cstate = 0;
1595 	unsigned int highest_subcstate = 0;
1596 	void *mwait_ptr;
1597 	int i;
1598 
1599 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1600 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1601 		return;
1602 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1603 		return;
1604 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1605 		return;
1606 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1607 		return;
1608 
1609 	eax = CPUID_MWAIT_LEAF;
1610 	ecx = 0;
1611 	native_cpuid(&eax, &ebx, &ecx, &edx);
1612 
1613 	/*
1614 	 * eax will be 0 if EDX enumeration is not valid.
1615 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1616 	 */
1617 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1618 		eax = 0;
1619 	} else {
1620 		edx >>= MWAIT_SUBSTATE_SIZE;
1621 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1622 			if (edx & MWAIT_SUBSTATE_MASK) {
1623 				highest_cstate = i;
1624 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1625 			}
1626 		}
1627 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1628 			(highest_subcstate - 1);
1629 	}
1630 
1631 	/*
1632 	 * This should be a memory location in a cache line which is
1633 	 * unlikely to be touched by other processors.  The actual
1634 	 * content is immaterial as it is not actually modified in any way.
1635 	 */
1636 	mwait_ptr = &current_thread_info()->flags;
1637 
1638 	wbinvd();
1639 
1640 	while (1) {
1641 		/*
1642 		 * The CLFLUSH is a workaround for erratum AAI65 for
1643 		 * the Xeon 7400 series.  It's not clear it is actually
1644 		 * needed, but it should be harmless in either case.
1645 		 * The WBINVD is insufficient due to the spurious-wakeup
1646 		 * case where we return around the loop.
1647 		 */
1648 		mb();
1649 		clflush(mwait_ptr);
1650 		mb();
1651 		__monitor(mwait_ptr, 0, 0);
1652 		mb();
1653 		__mwait(eax, 0);
1654 		/*
1655 		 * If NMI wants to wake up CPU0, start CPU0.
1656 		 */
1657 		if (wakeup_cpu0())
1658 			start_cpu0();
1659 	}
1660 }
1661 
1662 void hlt_play_dead(void)
1663 {
1664 	if (__this_cpu_read(cpu_info.x86) >= 4)
1665 		wbinvd();
1666 
1667 	while (1) {
1668 		native_halt();
1669 		/*
1670 		 * If NMI wants to wake up CPU0, start CPU0.
1671 		 */
1672 		if (wakeup_cpu0())
1673 			start_cpu0();
1674 	}
1675 }
1676 
1677 void native_play_dead(void)
1678 {
1679 	play_dead_common();
1680 	tboot_shutdown(TB_SHUTDOWN_WFS);
1681 
1682 	mwait_play_dead();	/* Only returns on failure */
1683 	if (cpuidle_play_dead())
1684 		hlt_play_dead();
1685 }
1686 
1687 #else /* ... !CONFIG_HOTPLUG_CPU */
1688 int native_cpu_disable(void)
1689 {
1690 	return -ENOSYS;
1691 }
1692 
1693 void native_cpu_die(unsigned int cpu)
1694 {
1695 	/* We said "no" in __cpu_disable */
1696 	BUG();
1697 }
1698 
1699 void native_play_dead(void)
1700 {
1701 	BUG();
1702 }
1703 
1704 #endif
1705