1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * x86 SMP booting functions 4 * 5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 7 * Copyright 2001 Andi Kleen, SuSE Labs. 8 * 9 * Much of the core SMP work is based on previous work by Thomas Radke, to 10 * whom a great many thanks are extended. 11 * 12 * Thanks to Intel for making available several different Pentium, 13 * Pentium Pro and Pentium-II/Xeon MP machines. 14 * Original development of Linux SMP code supported by Caldera. 15 * 16 * Fixes 17 * Felix Koop : NR_CPUS used properly 18 * Jose Renau : Handle single CPU case. 19 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 20 * Greg Wright : Fix for kernel stacks panic. 21 * Erich Boleyn : MP v1.4 and additional changes. 22 * Matthias Sattler : Changes for 2.1 kernel map. 23 * Michel Lespinasse : Changes for 2.1 kernel map. 24 * Michael Chastain : Change trampoline.S to gnu as. 25 * Alan Cox : Dumb bug: 'B' step PPro's are fine 26 * Ingo Molnar : Added APIC timers, based on code 27 * from Jose Renau 28 * Ingo Molnar : various cleanups and rewrites 29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 31 * Andi Kleen : Changed for SMP boot into long mode. 32 * Martin J. Bligh : Added support for multi-quad systems 33 * Dave Jones : Report invalid combinations of Athlon CPUs. 34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 35 * Andi Kleen : Converted to new state machine. 36 * Ashok Raj : CPU hotplug support 37 * Glauber Costa : i386 and x86_64 integration 38 */ 39 40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 41 42 #include <linux/init.h> 43 #include <linux/smp.h> 44 #include <linux/export.h> 45 #include <linux/sched.h> 46 #include <linux/sched/topology.h> 47 #include <linux/sched/hotplug.h> 48 #include <linux/sched/task_stack.h> 49 #include <linux/percpu.h> 50 #include <linux/memblock.h> 51 #include <linux/err.h> 52 #include <linux/nmi.h> 53 #include <linux/tboot.h> 54 #include <linux/gfp.h> 55 #include <linux/cpuidle.h> 56 #include <linux/numa.h> 57 #include <linux/pgtable.h> 58 #include <linux/overflow.h> 59 60 #include <asm/acpi.h> 61 #include <asm/desc.h> 62 #include <asm/nmi.h> 63 #include <asm/irq.h> 64 #include <asm/realmode.h> 65 #include <asm/cpu.h> 66 #include <asm/numa.h> 67 #include <asm/tlbflush.h> 68 #include <asm/mtrr.h> 69 #include <asm/mwait.h> 70 #include <asm/apic.h> 71 #include <asm/io_apic.h> 72 #include <asm/fpu/internal.h> 73 #include <asm/setup.h> 74 #include <asm/uv/uv.h> 75 #include <linux/mc146818rtc.h> 76 #include <asm/i8259.h> 77 #include <asm/misc.h> 78 #include <asm/qspinlock.h> 79 #include <asm/intel-family.h> 80 #include <asm/cpu_device_id.h> 81 #include <asm/spec-ctrl.h> 82 #include <asm/hw_irq.h> 83 #include <asm/stackprotector.h> 84 85 #ifdef CONFIG_ACPI_CPPC_LIB 86 #include <acpi/cppc_acpi.h> 87 #endif 88 89 /* representing HT siblings of each logical CPU */ 90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 91 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 92 93 /* representing HT and core siblings of each logical CPU */ 94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 95 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 96 97 /* representing HT, core, and die siblings of each logical CPU */ 98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); 99 EXPORT_PER_CPU_SYMBOL(cpu_die_map); 100 101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); 102 103 /* Per CPU bogomips and other parameters */ 104 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 105 EXPORT_PER_CPU_SYMBOL(cpu_info); 106 107 /* Logical package management. We might want to allocate that dynamically */ 108 unsigned int __max_logical_packages __read_mostly; 109 EXPORT_SYMBOL(__max_logical_packages); 110 static unsigned int logical_packages __read_mostly; 111 static unsigned int logical_die __read_mostly; 112 113 /* Maximum number of SMT threads on any online core */ 114 int __read_mostly __max_smt_threads = 1; 115 116 /* Flag to indicate if a complete sched domain rebuild is required */ 117 bool x86_topology_update; 118 119 int arch_update_cpu_topology(void) 120 { 121 int retval = x86_topology_update; 122 123 x86_topology_update = false; 124 return retval; 125 } 126 127 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 128 { 129 unsigned long flags; 130 131 spin_lock_irqsave(&rtc_lock, flags); 132 CMOS_WRITE(0xa, 0xf); 133 spin_unlock_irqrestore(&rtc_lock, flags); 134 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = 135 start_eip >> 4; 136 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 137 start_eip & 0xf; 138 } 139 140 static inline void smpboot_restore_warm_reset_vector(void) 141 { 142 unsigned long flags; 143 144 /* 145 * Paranoid: Set warm reset code and vector here back 146 * to default values. 147 */ 148 spin_lock_irqsave(&rtc_lock, flags); 149 CMOS_WRITE(0, 0xf); 150 spin_unlock_irqrestore(&rtc_lock, flags); 151 152 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 153 } 154 155 static void init_freq_invariance(bool secondary, bool cppc_ready); 156 157 /* 158 * Report back to the Boot Processor during boot time or to the caller processor 159 * during CPU online. 160 */ 161 static void smp_callin(void) 162 { 163 int cpuid; 164 165 /* 166 * If waken up by an INIT in an 82489DX configuration 167 * cpu_callout_mask guarantees we don't get here before 168 * an INIT_deassert IPI reaches our local APIC, so it is 169 * now safe to touch our local APIC. 170 */ 171 cpuid = smp_processor_id(); 172 173 /* 174 * the boot CPU has finished the init stage and is spinning 175 * on callin_map until we finish. We are free to set up this 176 * CPU, first the APIC. (this is probably redundant on most 177 * boards) 178 */ 179 apic_ap_setup(); 180 181 /* 182 * Save our processor parameters. Note: this information 183 * is needed for clock calibration. 184 */ 185 smp_store_cpu_info(cpuid); 186 187 /* 188 * The topology information must be up to date before 189 * calibrate_delay() and notify_cpu_starting(). 190 */ 191 set_cpu_sibling_map(raw_smp_processor_id()); 192 193 init_freq_invariance(true, false); 194 195 /* 196 * Get our bogomips. 197 * Update loops_per_jiffy in cpu_data. Previous call to 198 * smp_store_cpu_info() stored a value that is close but not as 199 * accurate as the value just calculated. 200 */ 201 calibrate_delay(); 202 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; 203 pr_debug("Stack at about %p\n", &cpuid); 204 205 wmb(); 206 207 notify_cpu_starting(cpuid); 208 209 /* 210 * Allow the master to continue. 211 */ 212 cpumask_set_cpu(cpuid, cpu_callin_mask); 213 } 214 215 static int cpu0_logical_apicid; 216 static int enable_start_cpu0; 217 /* 218 * Activate a secondary processor. 219 */ 220 static void notrace start_secondary(void *unused) 221 { 222 /* 223 * Don't put *anything* except direct CPU state initialization 224 * before cpu_init(), SMP booting is too fragile that we want to 225 * limit the things done here to the most necessary things. 226 */ 227 cr4_init(); 228 229 #ifdef CONFIG_X86_32 230 /* switch away from the initial page table */ 231 load_cr3(swapper_pg_dir); 232 __flush_tlb_all(); 233 #endif 234 cpu_init_exception_handling(); 235 cpu_init(); 236 rcu_cpu_starting(raw_smp_processor_id()); 237 x86_cpuinit.early_percpu_clock_init(); 238 preempt_disable(); 239 smp_callin(); 240 241 enable_start_cpu0 = 0; 242 243 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 244 barrier(); 245 /* 246 * Check TSC synchronization with the boot CPU: 247 */ 248 check_tsc_sync_target(); 249 250 speculative_store_bypass_ht_init(); 251 252 /* 253 * Lock vector_lock, set CPU online and bring the vector 254 * allocator online. Online must be set with vector_lock held 255 * to prevent a concurrent irq setup/teardown from seeing a 256 * half valid vector space. 257 */ 258 lock_vector_lock(); 259 set_cpu_online(smp_processor_id(), true); 260 lapic_online(); 261 unlock_vector_lock(); 262 cpu_set_state_online(smp_processor_id()); 263 x86_platform.nmi_init(); 264 265 /* enable local interrupts */ 266 local_irq_enable(); 267 268 x86_cpuinit.setup_percpu_clockev(); 269 270 wmb(); 271 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 272 } 273 274 /** 275 * topology_is_primary_thread - Check whether CPU is the primary SMT thread 276 * @cpu: CPU to check 277 */ 278 bool topology_is_primary_thread(unsigned int cpu) 279 { 280 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu)); 281 } 282 283 /** 284 * topology_smt_supported - Check whether SMT is supported by the CPUs 285 */ 286 bool topology_smt_supported(void) 287 { 288 return smp_num_siblings > 1; 289 } 290 291 /** 292 * topology_phys_to_logical_pkg - Map a physical package id to a logical 293 * 294 * Returns logical package id or -1 if not found 295 */ 296 int topology_phys_to_logical_pkg(unsigned int phys_pkg) 297 { 298 int cpu; 299 300 for_each_possible_cpu(cpu) { 301 struct cpuinfo_x86 *c = &cpu_data(cpu); 302 303 if (c->initialized && c->phys_proc_id == phys_pkg) 304 return c->logical_proc_id; 305 } 306 return -1; 307 } 308 EXPORT_SYMBOL(topology_phys_to_logical_pkg); 309 /** 310 * topology_phys_to_logical_die - Map a physical die id to logical 311 * 312 * Returns logical die id or -1 if not found 313 */ 314 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu) 315 { 316 int cpu; 317 int proc_id = cpu_data(cur_cpu).phys_proc_id; 318 319 for_each_possible_cpu(cpu) { 320 struct cpuinfo_x86 *c = &cpu_data(cpu); 321 322 if (c->initialized && c->cpu_die_id == die_id && 323 c->phys_proc_id == proc_id) 324 return c->logical_die_id; 325 } 326 return -1; 327 } 328 EXPORT_SYMBOL(topology_phys_to_logical_die); 329 330 /** 331 * topology_update_package_map - Update the physical to logical package map 332 * @pkg: The physical package id as retrieved via CPUID 333 * @cpu: The cpu for which this is updated 334 */ 335 int topology_update_package_map(unsigned int pkg, unsigned int cpu) 336 { 337 int new; 338 339 /* Already available somewhere? */ 340 new = topology_phys_to_logical_pkg(pkg); 341 if (new >= 0) 342 goto found; 343 344 new = logical_packages++; 345 if (new != pkg) { 346 pr_info("CPU %u Converting physical %u to logical package %u\n", 347 cpu, pkg, new); 348 } 349 found: 350 cpu_data(cpu).logical_proc_id = new; 351 return 0; 352 } 353 /** 354 * topology_update_die_map - Update the physical to logical die map 355 * @die: The die id as retrieved via CPUID 356 * @cpu: The cpu for which this is updated 357 */ 358 int topology_update_die_map(unsigned int die, unsigned int cpu) 359 { 360 int new; 361 362 /* Already available somewhere? */ 363 new = topology_phys_to_logical_die(die, cpu); 364 if (new >= 0) 365 goto found; 366 367 new = logical_die++; 368 if (new != die) { 369 pr_info("CPU %u Converting physical %u to logical die %u\n", 370 cpu, die, new); 371 } 372 found: 373 cpu_data(cpu).logical_die_id = new; 374 return 0; 375 } 376 377 void __init smp_store_boot_cpu_info(void) 378 { 379 int id = 0; /* CPU 0 */ 380 struct cpuinfo_x86 *c = &cpu_data(id); 381 382 *c = boot_cpu_data; 383 c->cpu_index = id; 384 topology_update_package_map(c->phys_proc_id, id); 385 topology_update_die_map(c->cpu_die_id, id); 386 c->initialized = true; 387 } 388 389 /* 390 * The bootstrap kernel entry code has set these up. Save them for 391 * a given CPU 392 */ 393 void smp_store_cpu_info(int id) 394 { 395 struct cpuinfo_x86 *c = &cpu_data(id); 396 397 /* Copy boot_cpu_data only on the first bringup */ 398 if (!c->initialized) 399 *c = boot_cpu_data; 400 c->cpu_index = id; 401 /* 402 * During boot time, CPU0 has this setup already. Save the info when 403 * bringing up AP or offlined CPU0. 404 */ 405 identify_secondary_cpu(c); 406 c->initialized = true; 407 } 408 409 static bool 410 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 411 { 412 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 413 414 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 415 } 416 417 static bool 418 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 419 { 420 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 421 422 return !WARN_ONCE(!topology_same_node(c, o), 423 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 424 "[node: %d != %d]. Ignoring dependency.\n", 425 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 426 } 427 428 #define link_mask(mfunc, c1, c2) \ 429 do { \ 430 cpumask_set_cpu((c1), mfunc(c2)); \ 431 cpumask_set_cpu((c2), mfunc(c1)); \ 432 } while (0) 433 434 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 435 { 436 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 437 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 438 439 if (c->phys_proc_id == o->phys_proc_id && 440 c->cpu_die_id == o->cpu_die_id && 441 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) { 442 if (c->cpu_core_id == o->cpu_core_id) 443 return topology_sane(c, o, "smt"); 444 445 if ((c->cu_id != 0xff) && 446 (o->cu_id != 0xff) && 447 (c->cu_id == o->cu_id)) 448 return topology_sane(c, o, "smt"); 449 } 450 451 } else if (c->phys_proc_id == o->phys_proc_id && 452 c->cpu_die_id == o->cpu_die_id && 453 c->cpu_core_id == o->cpu_core_id) { 454 return topology_sane(c, o, "smt"); 455 } 456 457 return false; 458 } 459 460 /* 461 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs. 462 * 463 * These are Intel CPUs that enumerate an LLC that is shared by 464 * multiple NUMA nodes. The LLC on these systems is shared for 465 * off-package data access but private to the NUMA node (half 466 * of the package) for on-package access. 467 * 468 * CPUID (the source of the information about the LLC) can only 469 * enumerate the cache as being shared *or* unshared, but not 470 * this particular configuration. The CPU in this case enumerates 471 * the cache to be shared across the entire package (spanning both 472 * NUMA nodes). 473 */ 474 475 static const struct x86_cpu_id snc_cpu[] = { 476 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, NULL), 477 {} 478 }; 479 480 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 481 { 482 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 483 484 /* Do not match if we do not have a valid APICID for cpu: */ 485 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID) 486 return false; 487 488 /* Do not match if LLC id does not match: */ 489 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2)) 490 return false; 491 492 /* 493 * Allow the SNC topology without warning. Return of false 494 * means 'c' does not share the LLC of 'o'. This will be 495 * reflected to userspace. 496 */ 497 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu)) 498 return false; 499 500 return topology_sane(c, o, "llc"); 501 } 502 503 /* 504 * Unlike the other levels, we do not enforce keeping a 505 * multicore group inside a NUMA node. If this happens, we will 506 * discard the MC level of the topology later. 507 */ 508 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 509 { 510 if (c->phys_proc_id == o->phys_proc_id) 511 return true; 512 return false; 513 } 514 515 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 516 { 517 if ((c->phys_proc_id == o->phys_proc_id) && 518 (c->cpu_die_id == o->cpu_die_id)) 519 return true; 520 return false; 521 } 522 523 524 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) 525 static inline int x86_sched_itmt_flags(void) 526 { 527 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; 528 } 529 530 #ifdef CONFIG_SCHED_MC 531 static int x86_core_flags(void) 532 { 533 return cpu_core_flags() | x86_sched_itmt_flags(); 534 } 535 #endif 536 #ifdef CONFIG_SCHED_SMT 537 static int x86_smt_flags(void) 538 { 539 return cpu_smt_flags() | x86_sched_itmt_flags(); 540 } 541 #endif 542 #endif 543 544 static struct sched_domain_topology_level x86_numa_in_package_topology[] = { 545 #ifdef CONFIG_SCHED_SMT 546 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 547 #endif 548 #ifdef CONFIG_SCHED_MC 549 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 550 #endif 551 { NULL, }, 552 }; 553 554 static struct sched_domain_topology_level x86_topology[] = { 555 #ifdef CONFIG_SCHED_SMT 556 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 557 #endif 558 #ifdef CONFIG_SCHED_MC 559 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 560 #endif 561 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 562 { NULL, }, 563 }; 564 565 /* 566 * Set if a package/die has multiple NUMA nodes inside. 567 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel 568 * Sub-NUMA Clustering have this. 569 */ 570 static bool x86_has_numa_in_package; 571 572 void set_cpu_sibling_map(int cpu) 573 { 574 bool has_smt = smp_num_siblings > 1; 575 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; 576 struct cpuinfo_x86 *c = &cpu_data(cpu); 577 struct cpuinfo_x86 *o; 578 int i, threads; 579 580 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 581 582 if (!has_mp) { 583 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 584 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 585 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 586 cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); 587 c->booted_cores = 1; 588 return; 589 } 590 591 for_each_cpu(i, cpu_sibling_setup_mask) { 592 o = &cpu_data(i); 593 594 if ((i == cpu) || (has_smt && match_smt(c, o))) 595 link_mask(topology_sibling_cpumask, cpu, i); 596 597 if ((i == cpu) || (has_mp && match_llc(c, o))) 598 link_mask(cpu_llc_shared_mask, cpu, i); 599 600 } 601 602 /* 603 * This needs a separate iteration over the cpus because we rely on all 604 * topology_sibling_cpumask links to be set-up. 605 */ 606 for_each_cpu(i, cpu_sibling_setup_mask) { 607 o = &cpu_data(i); 608 609 if ((i == cpu) || (has_mp && match_pkg(c, o))) { 610 link_mask(topology_core_cpumask, cpu, i); 611 612 /* 613 * Does this new cpu bringup a new core? 614 */ 615 if (cpumask_weight( 616 topology_sibling_cpumask(cpu)) == 1) { 617 /* 618 * for each core in package, increment 619 * the booted_cores for this new cpu 620 */ 621 if (cpumask_first( 622 topology_sibling_cpumask(i)) == i) 623 c->booted_cores++; 624 /* 625 * increment the core count for all 626 * the other cpus in this package 627 */ 628 if (i != cpu) 629 cpu_data(i).booted_cores++; 630 } else if (i != cpu && !c->booted_cores) 631 c->booted_cores = cpu_data(i).booted_cores; 632 } 633 if (match_pkg(c, o) && !topology_same_node(c, o)) 634 x86_has_numa_in_package = true; 635 636 if ((i == cpu) || (has_mp && match_die(c, o))) 637 link_mask(topology_die_cpumask, cpu, i); 638 } 639 640 threads = cpumask_weight(topology_sibling_cpumask(cpu)); 641 if (threads > __max_smt_threads) 642 __max_smt_threads = threads; 643 } 644 645 /* maps the cpu to the sched domain representing multi-core */ 646 const struct cpumask *cpu_coregroup_mask(int cpu) 647 { 648 return cpu_llc_shared_mask(cpu); 649 } 650 651 static void impress_friends(void) 652 { 653 int cpu; 654 unsigned long bogosum = 0; 655 /* 656 * Allow the user to impress friends. 657 */ 658 pr_debug("Before bogomips\n"); 659 for_each_possible_cpu(cpu) 660 if (cpumask_test_cpu(cpu, cpu_callout_mask)) 661 bogosum += cpu_data(cpu).loops_per_jiffy; 662 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 663 num_online_cpus(), 664 bogosum/(500000/HZ), 665 (bogosum/(5000/HZ))%100); 666 667 pr_debug("Before bogocount - setting activated=1\n"); 668 } 669 670 void __inquire_remote_apic(int apicid) 671 { 672 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 673 const char * const names[] = { "ID", "VERSION", "SPIV" }; 674 int timeout; 675 u32 status; 676 677 pr_info("Inquiring remote APIC 0x%x...\n", apicid); 678 679 for (i = 0; i < ARRAY_SIZE(regs); i++) { 680 pr_info("... APIC 0x%x %s: ", apicid, names[i]); 681 682 /* 683 * Wait for idle. 684 */ 685 status = safe_apic_wait_icr_idle(); 686 if (status) 687 pr_cont("a previous APIC delivery may have failed\n"); 688 689 apic_icr_write(APIC_DM_REMRD | regs[i], apicid); 690 691 timeout = 0; 692 do { 693 udelay(100); 694 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 695 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 696 697 switch (status) { 698 case APIC_ICR_RR_VALID: 699 status = apic_read(APIC_RRR); 700 pr_cont("%08x\n", status); 701 break; 702 default: 703 pr_cont("failed\n"); 704 } 705 } 706 } 707 708 /* 709 * The Multiprocessor Specification 1.4 (1997) example code suggests 710 * that there should be a 10ms delay between the BSP asserting INIT 711 * and de-asserting INIT, when starting a remote processor. 712 * But that slows boot and resume on modern processors, which include 713 * many cores and don't require that delay. 714 * 715 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 716 * Modern processor families are quirked to remove the delay entirely. 717 */ 718 #define UDELAY_10MS_DEFAULT 10000 719 720 static unsigned int init_udelay = UINT_MAX; 721 722 static int __init cpu_init_udelay(char *str) 723 { 724 get_option(&str, &init_udelay); 725 726 return 0; 727 } 728 early_param("cpu_init_udelay", cpu_init_udelay); 729 730 static void __init smp_quirk_init_udelay(void) 731 { 732 /* if cmdline changed it from default, leave it alone */ 733 if (init_udelay != UINT_MAX) 734 return; 735 736 /* if modern processor, use no delay */ 737 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 738 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || 739 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 740 init_udelay = 0; 741 return; 742 } 743 /* else, use legacy delay */ 744 init_udelay = UDELAY_10MS_DEFAULT; 745 } 746 747 /* 748 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 749 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 750 * won't ... remember to clear down the APIC, etc later. 751 */ 752 int 753 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) 754 { 755 u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; 756 unsigned long send_status, accept_status = 0; 757 int maxlvt; 758 759 /* Target chip */ 760 /* Boot on the stack */ 761 /* Kick the second */ 762 apic_icr_write(APIC_DM_NMI | dm, apicid); 763 764 pr_debug("Waiting for send to finish...\n"); 765 send_status = safe_apic_wait_icr_idle(); 766 767 /* 768 * Give the other CPU some time to accept the IPI. 769 */ 770 udelay(200); 771 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 772 maxlvt = lapic_get_maxlvt(); 773 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 774 apic_write(APIC_ESR, 0); 775 accept_status = (apic_read(APIC_ESR) & 0xEF); 776 } 777 pr_debug("NMI sent\n"); 778 779 if (send_status) 780 pr_err("APIC never delivered???\n"); 781 if (accept_status) 782 pr_err("APIC delivery error (%lx)\n", accept_status); 783 784 return (send_status | accept_status); 785 } 786 787 static int 788 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) 789 { 790 unsigned long send_status = 0, accept_status = 0; 791 int maxlvt, num_starts, j; 792 793 maxlvt = lapic_get_maxlvt(); 794 795 /* 796 * Be paranoid about clearing APIC errors. 797 */ 798 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 799 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 800 apic_write(APIC_ESR, 0); 801 apic_read(APIC_ESR); 802 } 803 804 pr_debug("Asserting INIT\n"); 805 806 /* 807 * Turn INIT on target chip 808 */ 809 /* 810 * Send IPI 811 */ 812 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, 813 phys_apicid); 814 815 pr_debug("Waiting for send to finish...\n"); 816 send_status = safe_apic_wait_icr_idle(); 817 818 udelay(init_udelay); 819 820 pr_debug("Deasserting INIT\n"); 821 822 /* Target chip */ 823 /* Send IPI */ 824 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 825 826 pr_debug("Waiting for send to finish...\n"); 827 send_status = safe_apic_wait_icr_idle(); 828 829 mb(); 830 831 /* 832 * Should we send STARTUP IPIs ? 833 * 834 * Determine this based on the APIC version. 835 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 836 */ 837 if (APIC_INTEGRATED(boot_cpu_apic_version)) 838 num_starts = 2; 839 else 840 num_starts = 0; 841 842 /* 843 * Run STARTUP IPI loop. 844 */ 845 pr_debug("#startup loops: %d\n", num_starts); 846 847 for (j = 1; j <= num_starts; j++) { 848 pr_debug("Sending STARTUP #%d\n", j); 849 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 850 apic_write(APIC_ESR, 0); 851 apic_read(APIC_ESR); 852 pr_debug("After apic_write\n"); 853 854 /* 855 * STARTUP IPI 856 */ 857 858 /* Target chip */ 859 /* Boot on the stack */ 860 /* Kick the second */ 861 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 862 phys_apicid); 863 864 /* 865 * Give the other CPU some time to accept the IPI. 866 */ 867 if (init_udelay == 0) 868 udelay(10); 869 else 870 udelay(300); 871 872 pr_debug("Startup point 1\n"); 873 874 pr_debug("Waiting for send to finish...\n"); 875 send_status = safe_apic_wait_icr_idle(); 876 877 /* 878 * Give the other CPU some time to accept the IPI. 879 */ 880 if (init_udelay == 0) 881 udelay(10); 882 else 883 udelay(200); 884 885 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 886 apic_write(APIC_ESR, 0); 887 accept_status = (apic_read(APIC_ESR) & 0xEF); 888 if (send_status || accept_status) 889 break; 890 } 891 pr_debug("After Startup\n"); 892 893 if (send_status) 894 pr_err("APIC never delivered???\n"); 895 if (accept_status) 896 pr_err("APIC delivery error (%lx)\n", accept_status); 897 898 return (send_status | accept_status); 899 } 900 901 /* reduce the number of lines printed when booting a large cpu count system */ 902 static void announce_cpu(int cpu, int apicid) 903 { 904 static int current_node = NUMA_NO_NODE; 905 int node = early_cpu_to_node(cpu); 906 static int width, node_width; 907 908 if (!width) 909 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 910 911 if (!node_width) 912 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 913 914 if (cpu == 1) 915 printk(KERN_INFO "x86: Booting SMP configuration:\n"); 916 917 if (system_state < SYSTEM_RUNNING) { 918 if (node != current_node) { 919 if (current_node > (-1)) 920 pr_cont("\n"); 921 current_node = node; 922 923 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 924 node_width - num_digits(node), " ", node); 925 } 926 927 /* Add padding for the BSP */ 928 if (cpu == 1) 929 pr_cont("%*s", width + 1, " "); 930 931 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 932 933 } else 934 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 935 node, cpu, apicid); 936 } 937 938 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) 939 { 940 int cpu; 941 942 cpu = smp_processor_id(); 943 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) 944 return NMI_HANDLED; 945 946 return NMI_DONE; 947 } 948 949 /* 950 * Wake up AP by INIT, INIT, STARTUP sequence. 951 * 952 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS 953 * boot-strap code which is not a desired behavior for waking up BSP. To 954 * void the boot-strap code, wake up CPU0 by NMI instead. 955 * 956 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined 957 * (i.e. physically hot removed and then hot added), NMI won't wake it up. 958 * We'll change this code in the future to wake up hard offlined CPU0 if 959 * real platform and request are available. 960 */ 961 static int 962 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, 963 int *cpu0_nmi_registered) 964 { 965 int id; 966 int boot_error; 967 968 preempt_disable(); 969 970 /* 971 * Wake up AP by INIT, INIT, STARTUP sequence. 972 */ 973 if (cpu) { 974 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); 975 goto out; 976 } 977 978 /* 979 * Wake up BSP by nmi. 980 * 981 * Register a NMI handler to help wake up CPU0. 982 */ 983 boot_error = register_nmi_handler(NMI_LOCAL, 984 wakeup_cpu0_nmi, 0, "wake_cpu0"); 985 986 if (!boot_error) { 987 enable_start_cpu0 = 1; 988 *cpu0_nmi_registered = 1; 989 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid; 990 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); 991 } 992 993 out: 994 preempt_enable(); 995 996 return boot_error; 997 } 998 999 int common_cpu_up(unsigned int cpu, struct task_struct *idle) 1000 { 1001 int ret; 1002 1003 /* Just in case we booted with a single CPU. */ 1004 alternatives_enable_smp(); 1005 1006 per_cpu(current_task, cpu) = idle; 1007 cpu_init_stack_canary(cpu, idle); 1008 1009 /* Initialize the interrupt stack(s) */ 1010 ret = irq_init_percpu_irqstack(cpu); 1011 if (ret) 1012 return ret; 1013 1014 #ifdef CONFIG_X86_32 1015 /* Stack for startup_32 can be just as for start_secondary onwards */ 1016 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle); 1017 #else 1018 initial_gs = per_cpu_offset(cpu); 1019 #endif 1020 return 0; 1021 } 1022 1023 /* 1024 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 1025 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 1026 * Returns zero if CPU booted OK, else error code from 1027 * ->wakeup_secondary_cpu. 1028 */ 1029 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle, 1030 int *cpu0_nmi_registered) 1031 { 1032 /* start_ip had better be page-aligned! */ 1033 unsigned long start_ip = real_mode_header->trampoline_start; 1034 1035 unsigned long boot_error = 0; 1036 unsigned long timeout; 1037 1038 idle->thread.sp = (unsigned long)task_pt_regs(idle); 1039 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); 1040 initial_code = (unsigned long)start_secondary; 1041 initial_stack = idle->thread.sp; 1042 1043 /* Enable the espfix hack for this CPU */ 1044 init_espfix_ap(cpu); 1045 1046 /* So we see what's up */ 1047 announce_cpu(cpu, apicid); 1048 1049 /* 1050 * This grunge runs the startup process for 1051 * the targeted processor. 1052 */ 1053 1054 if (x86_platform.legacy.warm_reset) { 1055 1056 pr_debug("Setting warm reset code and vector.\n"); 1057 1058 smpboot_setup_warm_reset_vector(start_ip); 1059 /* 1060 * Be paranoid about clearing APIC errors. 1061 */ 1062 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 1063 apic_write(APIC_ESR, 0); 1064 apic_read(APIC_ESR); 1065 } 1066 } 1067 1068 /* 1069 * AP might wait on cpu_callout_mask in cpu_init() with 1070 * cpu_initialized_mask set if previous attempt to online 1071 * it timed-out. Clear cpu_initialized_mask so that after 1072 * INIT/SIPI it could start with a clean state. 1073 */ 1074 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1075 smp_mb(); 1076 1077 /* 1078 * Wake up a CPU in difference cases: 1079 * - Use the method in the APIC driver if it's defined 1080 * Otherwise, 1081 * - Use an INIT boot APIC message for APs or NMI for BSP. 1082 */ 1083 if (apic->wakeup_secondary_cpu) 1084 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); 1085 else 1086 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, 1087 cpu0_nmi_registered); 1088 1089 if (!boot_error) { 1090 /* 1091 * Wait 10s total for first sign of life from AP 1092 */ 1093 boot_error = -1; 1094 timeout = jiffies + 10*HZ; 1095 while (time_before(jiffies, timeout)) { 1096 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { 1097 /* 1098 * Tell AP to proceed with initialization 1099 */ 1100 cpumask_set_cpu(cpu, cpu_callout_mask); 1101 boot_error = 0; 1102 break; 1103 } 1104 schedule(); 1105 } 1106 } 1107 1108 if (!boot_error) { 1109 /* 1110 * Wait till AP completes initial initialization 1111 */ 1112 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { 1113 /* 1114 * Allow other tasks to run while we wait for the 1115 * AP to come online. This also gives a chance 1116 * for the MTRR work(triggered by the AP coming online) 1117 * to be completed in the stop machine context. 1118 */ 1119 schedule(); 1120 } 1121 } 1122 1123 if (x86_platform.legacy.warm_reset) { 1124 /* 1125 * Cleanup possible dangling ends... 1126 */ 1127 smpboot_restore_warm_reset_vector(); 1128 } 1129 1130 return boot_error; 1131 } 1132 1133 int native_cpu_up(unsigned int cpu, struct task_struct *tidle) 1134 { 1135 int apicid = apic->cpu_present_to_apicid(cpu); 1136 int cpu0_nmi_registered = 0; 1137 unsigned long flags; 1138 int err, ret = 0; 1139 1140 lockdep_assert_irqs_enabled(); 1141 1142 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 1143 1144 if (apicid == BAD_APICID || 1145 !physid_isset(apicid, phys_cpu_present_map) || 1146 !apic->apic_id_valid(apicid)) { 1147 pr_err("%s: bad cpu %d\n", __func__, cpu); 1148 return -EINVAL; 1149 } 1150 1151 /* 1152 * Already booted CPU? 1153 */ 1154 if (cpumask_test_cpu(cpu, cpu_callin_mask)) { 1155 pr_debug("do_boot_cpu %d Already started\n", cpu); 1156 return -ENOSYS; 1157 } 1158 1159 /* 1160 * Save current MTRR state in case it was changed since early boot 1161 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 1162 */ 1163 mtrr_save_state(); 1164 1165 /* x86 CPUs take themselves offline, so delayed offline is OK. */ 1166 err = cpu_check_up_prepare(cpu); 1167 if (err && err != -EBUSY) 1168 return err; 1169 1170 /* the FPU context is blank, nobody can own it */ 1171 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; 1172 1173 err = common_cpu_up(cpu, tidle); 1174 if (err) 1175 return err; 1176 1177 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered); 1178 if (err) { 1179 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 1180 ret = -EIO; 1181 goto unreg_nmi; 1182 } 1183 1184 /* 1185 * Check TSC synchronization with the AP (keep irqs disabled 1186 * while doing so): 1187 */ 1188 local_irq_save(flags); 1189 check_tsc_sync_source(cpu); 1190 local_irq_restore(flags); 1191 1192 while (!cpu_online(cpu)) { 1193 cpu_relax(); 1194 touch_nmi_watchdog(); 1195 } 1196 1197 unreg_nmi: 1198 /* 1199 * Clean up the nmi handler. Do this after the callin and callout sync 1200 * to avoid impact of possible long unregister time. 1201 */ 1202 if (cpu0_nmi_registered) 1203 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); 1204 1205 return ret; 1206 } 1207 1208 /** 1209 * arch_disable_smp_support() - disables SMP support for x86 at runtime 1210 */ 1211 void arch_disable_smp_support(void) 1212 { 1213 disable_ioapic_support(); 1214 } 1215 1216 /* 1217 * Fall back to non SMP mode after errors. 1218 * 1219 * RED-PEN audit/test this more. I bet there is more state messed up here. 1220 */ 1221 static __init void disable_smp(void) 1222 { 1223 pr_info("SMP disabled\n"); 1224 1225 disable_ioapic_support(); 1226 1227 init_cpu_present(cpumask_of(0)); 1228 init_cpu_possible(cpumask_of(0)); 1229 1230 if (smp_found_config) 1231 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1232 else 1233 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1234 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1235 cpumask_set_cpu(0, topology_core_cpumask(0)); 1236 cpumask_set_cpu(0, topology_die_cpumask(0)); 1237 } 1238 1239 /* 1240 * Various sanity checks. 1241 */ 1242 static void __init smp_sanity_check(void) 1243 { 1244 preempt_disable(); 1245 1246 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) 1247 if (def_to_bigsmp && nr_cpu_ids > 8) { 1248 unsigned int cpu; 1249 unsigned nr; 1250 1251 pr_warn("More than 8 CPUs detected - skipping them\n" 1252 "Use CONFIG_X86_BIGSMP\n"); 1253 1254 nr = 0; 1255 for_each_present_cpu(cpu) { 1256 if (nr >= 8) 1257 set_cpu_present(cpu, false); 1258 nr++; 1259 } 1260 1261 nr = 0; 1262 for_each_possible_cpu(cpu) { 1263 if (nr >= 8) 1264 set_cpu_possible(cpu, false); 1265 nr++; 1266 } 1267 1268 nr_cpu_ids = 8; 1269 } 1270 #endif 1271 1272 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 1273 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", 1274 hard_smp_processor_id()); 1275 1276 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1277 } 1278 1279 /* 1280 * Should not be necessary because the MP table should list the boot 1281 * CPU too, but we do it for the sake of robustness anyway. 1282 */ 1283 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { 1284 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", 1285 boot_cpu_physical_apicid); 1286 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1287 } 1288 preempt_enable(); 1289 } 1290 1291 static void __init smp_cpu_index_default(void) 1292 { 1293 int i; 1294 struct cpuinfo_x86 *c; 1295 1296 for_each_possible_cpu(i) { 1297 c = &cpu_data(i); 1298 /* mark all to hotplug */ 1299 c->cpu_index = nr_cpu_ids; 1300 } 1301 } 1302 1303 static void __init smp_get_logical_apicid(void) 1304 { 1305 if (x2apic_mode) 1306 cpu0_logical_apicid = apic_read(APIC_LDR); 1307 else 1308 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 1309 } 1310 1311 /* 1312 * Prepare for SMP bootup. 1313 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter 1314 * for common interface support. 1315 */ 1316 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1317 { 1318 unsigned int i; 1319 1320 smp_cpu_index_default(); 1321 1322 /* 1323 * Setup boot CPU information 1324 */ 1325 smp_store_boot_cpu_info(); /* Final full version of the data */ 1326 cpumask_copy(cpu_callin_mask, cpumask_of(0)); 1327 mb(); 1328 1329 for_each_possible_cpu(i) { 1330 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1331 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1332 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); 1333 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1334 } 1335 1336 /* 1337 * Set 'default' x86 topology, this matches default_topology() in that 1338 * it has NUMA nodes as a topology level. See also 1339 * native_smp_cpus_done(). 1340 * 1341 * Must be done before set_cpus_sibling_map() is ran. 1342 */ 1343 set_sched_topology(x86_topology); 1344 1345 set_cpu_sibling_map(0); 1346 init_freq_invariance(false, false); 1347 smp_sanity_check(); 1348 1349 switch (apic_intr_mode) { 1350 case APIC_PIC: 1351 case APIC_VIRTUAL_WIRE_NO_CONFIG: 1352 disable_smp(); 1353 return; 1354 case APIC_SYMMETRIC_IO_NO_ROUTING: 1355 disable_smp(); 1356 /* Setup local timer */ 1357 x86_init.timers.setup_percpu_clockev(); 1358 return; 1359 case APIC_VIRTUAL_WIRE: 1360 case APIC_SYMMETRIC_IO: 1361 break; 1362 } 1363 1364 /* Setup local timer */ 1365 x86_init.timers.setup_percpu_clockev(); 1366 1367 smp_get_logical_apicid(); 1368 1369 pr_info("CPU0: "); 1370 print_cpu_info(&cpu_data(0)); 1371 1372 uv_system_init(); 1373 1374 set_mtrr_aps_delayed_init(); 1375 1376 smp_quirk_init_udelay(); 1377 1378 speculative_store_bypass_ht_init(); 1379 } 1380 1381 void arch_thaw_secondary_cpus_begin(void) 1382 { 1383 set_mtrr_aps_delayed_init(); 1384 } 1385 1386 void arch_thaw_secondary_cpus_end(void) 1387 { 1388 mtrr_aps_init(); 1389 } 1390 1391 /* 1392 * Early setup to make printk work. 1393 */ 1394 void __init native_smp_prepare_boot_cpu(void) 1395 { 1396 int me = smp_processor_id(); 1397 switch_to_new_gdt(me); 1398 /* already set me in cpu_online_mask in boot_cpu_init() */ 1399 cpumask_set_cpu(me, cpu_callout_mask); 1400 cpu_set_state_online(me); 1401 native_pv_lock_init(); 1402 } 1403 1404 void __init calculate_max_logical_packages(void) 1405 { 1406 int ncpus; 1407 1408 /* 1409 * Today neither Intel nor AMD support heterogenous systems so 1410 * extrapolate the boot cpu's data to all packages. 1411 */ 1412 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads(); 1413 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); 1414 pr_info("Max logical packages: %u\n", __max_logical_packages); 1415 } 1416 1417 void __init native_smp_cpus_done(unsigned int max_cpus) 1418 { 1419 pr_debug("Boot done\n"); 1420 1421 calculate_max_logical_packages(); 1422 1423 if (x86_has_numa_in_package) 1424 set_sched_topology(x86_numa_in_package_topology); 1425 1426 nmi_selftest(); 1427 impress_friends(); 1428 mtrr_aps_init(); 1429 } 1430 1431 static int __initdata setup_possible_cpus = -1; 1432 static int __init _setup_possible_cpus(char *str) 1433 { 1434 get_option(&str, &setup_possible_cpus); 1435 return 0; 1436 } 1437 early_param("possible_cpus", _setup_possible_cpus); 1438 1439 1440 /* 1441 * cpu_possible_mask should be static, it cannot change as cpu's 1442 * are onlined, or offlined. The reason is per-cpu data-structures 1443 * are allocated by some modules at init time, and don't expect to 1444 * do this dynamically on cpu arrival/departure. 1445 * cpu_present_mask on the other hand can change dynamically. 1446 * In case when cpu_hotplug is not compiled, then we resort to current 1447 * behaviour, which is cpu_possible == cpu_present. 1448 * - Ashok Raj 1449 * 1450 * Three ways to find out the number of additional hotplug CPUs: 1451 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1452 * - The user can overwrite it with possible_cpus=NUM 1453 * - Otherwise don't reserve additional CPUs. 1454 * We do this because additional CPUs waste a lot of memory. 1455 * -AK 1456 */ 1457 __init void prefill_possible_map(void) 1458 { 1459 int i, possible; 1460 1461 /* No boot processor was found in mptable or ACPI MADT */ 1462 if (!num_processors) { 1463 if (boot_cpu_has(X86_FEATURE_APIC)) { 1464 int apicid = boot_cpu_physical_apicid; 1465 int cpu = hard_smp_processor_id(); 1466 1467 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu); 1468 1469 /* Make sure boot cpu is enumerated */ 1470 if (apic->cpu_present_to_apicid(0) == BAD_APICID && 1471 apic->apic_id_valid(apicid)) 1472 generic_processor_info(apicid, boot_cpu_apic_version); 1473 } 1474 1475 if (!num_processors) 1476 num_processors = 1; 1477 } 1478 1479 i = setup_max_cpus ?: 1; 1480 if (setup_possible_cpus == -1) { 1481 possible = num_processors; 1482 #ifdef CONFIG_HOTPLUG_CPU 1483 if (setup_max_cpus) 1484 possible += disabled_cpus; 1485 #else 1486 if (possible > i) 1487 possible = i; 1488 #endif 1489 } else 1490 possible = setup_possible_cpus; 1491 1492 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1493 1494 /* nr_cpu_ids could be reduced via nr_cpus= */ 1495 if (possible > nr_cpu_ids) { 1496 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n", 1497 possible, nr_cpu_ids); 1498 possible = nr_cpu_ids; 1499 } 1500 1501 #ifdef CONFIG_HOTPLUG_CPU 1502 if (!setup_max_cpus) 1503 #endif 1504 if (possible > i) { 1505 pr_warn("%d Processors exceeds max_cpus limit of %u\n", 1506 possible, setup_max_cpus); 1507 possible = i; 1508 } 1509 1510 nr_cpu_ids = possible; 1511 1512 pr_info("Allowing %d CPUs, %d hotplug CPUs\n", 1513 possible, max_t(int, possible - num_processors, 0)); 1514 1515 reset_cpu_possible_mask(); 1516 1517 for (i = 0; i < possible; i++) 1518 set_cpu_possible(i, true); 1519 } 1520 1521 #ifdef CONFIG_HOTPLUG_CPU 1522 1523 /* Recompute SMT state for all CPUs on offline */ 1524 static void recompute_smt_state(void) 1525 { 1526 int max_threads, cpu; 1527 1528 max_threads = 0; 1529 for_each_online_cpu (cpu) { 1530 int threads = cpumask_weight(topology_sibling_cpumask(cpu)); 1531 1532 if (threads > max_threads) 1533 max_threads = threads; 1534 } 1535 __max_smt_threads = max_threads; 1536 } 1537 1538 static void remove_siblinginfo(int cpu) 1539 { 1540 int sibling; 1541 struct cpuinfo_x86 *c = &cpu_data(cpu); 1542 1543 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1544 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1545 /*/ 1546 * last thread sibling in this cpu core going down 1547 */ 1548 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1549 cpu_data(sibling).booted_cores--; 1550 } 1551 1552 for_each_cpu(sibling, topology_die_cpumask(cpu)) 1553 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); 1554 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 1555 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1556 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1557 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1558 cpumask_clear(cpu_llc_shared_mask(cpu)); 1559 cpumask_clear(topology_sibling_cpumask(cpu)); 1560 cpumask_clear(topology_core_cpumask(cpu)); 1561 cpumask_clear(topology_die_cpumask(cpu)); 1562 c->cpu_core_id = 0; 1563 c->booted_cores = 0; 1564 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1565 recompute_smt_state(); 1566 } 1567 1568 static void remove_cpu_from_maps(int cpu) 1569 { 1570 set_cpu_online(cpu, false); 1571 cpumask_clear_cpu(cpu, cpu_callout_mask); 1572 cpumask_clear_cpu(cpu, cpu_callin_mask); 1573 /* was set by cpu_init() */ 1574 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1575 numa_remove_cpu(cpu); 1576 } 1577 1578 void cpu_disable_common(void) 1579 { 1580 int cpu = smp_processor_id(); 1581 1582 remove_siblinginfo(cpu); 1583 1584 /* It's now safe to remove this processor from the online map */ 1585 lock_vector_lock(); 1586 remove_cpu_from_maps(cpu); 1587 unlock_vector_lock(); 1588 fixup_irqs(); 1589 lapic_offline(); 1590 } 1591 1592 int native_cpu_disable(void) 1593 { 1594 int ret; 1595 1596 ret = lapic_can_unplug_cpu(); 1597 if (ret) 1598 return ret; 1599 1600 cpu_disable_common(); 1601 1602 /* 1603 * Disable the local APIC. Otherwise IPI broadcasts will reach 1604 * it. It still responds normally to INIT, NMI, SMI, and SIPI 1605 * messages. 1606 * 1607 * Disabling the APIC must happen after cpu_disable_common() 1608 * which invokes fixup_irqs(). 1609 * 1610 * Disabling the APIC preserves already set bits in IRR, but 1611 * an interrupt arriving after disabling the local APIC does not 1612 * set the corresponding IRR bit. 1613 * 1614 * fixup_irqs() scans IRR for set bits so it can raise a not 1615 * yet handled interrupt on the new destination CPU via an IPI 1616 * but obviously it can't do so for IRR bits which are not set. 1617 * IOW, interrupts arriving after disabling the local APIC will 1618 * be lost. 1619 */ 1620 apic_soft_disable(); 1621 1622 return 0; 1623 } 1624 1625 int common_cpu_die(unsigned int cpu) 1626 { 1627 int ret = 0; 1628 1629 /* We don't do anything here: idle task is faking death itself. */ 1630 1631 /* They ack this in play_dead() by setting CPU_DEAD */ 1632 if (cpu_wait_death(cpu, 5)) { 1633 if (system_state == SYSTEM_RUNNING) 1634 pr_info("CPU %u is now offline\n", cpu); 1635 } else { 1636 pr_err("CPU %u didn't die...\n", cpu); 1637 ret = -1; 1638 } 1639 1640 return ret; 1641 } 1642 1643 void native_cpu_die(unsigned int cpu) 1644 { 1645 common_cpu_die(cpu); 1646 } 1647 1648 void play_dead_common(void) 1649 { 1650 idle_task_exit(); 1651 1652 /* Ack it */ 1653 (void)cpu_report_death(); 1654 1655 /* 1656 * With physical CPU hotplug, we should halt the cpu 1657 */ 1658 local_irq_disable(); 1659 } 1660 1661 static bool wakeup_cpu0(void) 1662 { 1663 if (smp_processor_id() == 0 && enable_start_cpu0) 1664 return true; 1665 1666 return false; 1667 } 1668 1669 /* 1670 * We need to flush the caches before going to sleep, lest we have 1671 * dirty data in our caches when we come back up. 1672 */ 1673 static inline void mwait_play_dead(void) 1674 { 1675 unsigned int eax, ebx, ecx, edx; 1676 unsigned int highest_cstate = 0; 1677 unsigned int highest_subcstate = 0; 1678 void *mwait_ptr; 1679 int i; 1680 1681 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || 1682 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 1683 return; 1684 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1685 return; 1686 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1687 return; 1688 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1689 return; 1690 1691 eax = CPUID_MWAIT_LEAF; 1692 ecx = 0; 1693 native_cpuid(&eax, &ebx, &ecx, &edx); 1694 1695 /* 1696 * eax will be 0 if EDX enumeration is not valid. 1697 * Initialized below to cstate, sub_cstate value when EDX is valid. 1698 */ 1699 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1700 eax = 0; 1701 } else { 1702 edx >>= MWAIT_SUBSTATE_SIZE; 1703 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1704 if (edx & MWAIT_SUBSTATE_MASK) { 1705 highest_cstate = i; 1706 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1707 } 1708 } 1709 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1710 (highest_subcstate - 1); 1711 } 1712 1713 /* 1714 * This should be a memory location in a cache line which is 1715 * unlikely to be touched by other processors. The actual 1716 * content is immaterial as it is not actually modified in any way. 1717 */ 1718 mwait_ptr = ¤t_thread_info()->flags; 1719 1720 wbinvd(); 1721 1722 while (1) { 1723 /* 1724 * The CLFLUSH is a workaround for erratum AAI65 for 1725 * the Xeon 7400 series. It's not clear it is actually 1726 * needed, but it should be harmless in either case. 1727 * The WBINVD is insufficient due to the spurious-wakeup 1728 * case where we return around the loop. 1729 */ 1730 mb(); 1731 clflush(mwait_ptr); 1732 mb(); 1733 __monitor(mwait_ptr, 0, 0); 1734 mb(); 1735 __mwait(eax, 0); 1736 /* 1737 * If NMI wants to wake up CPU0, start CPU0. 1738 */ 1739 if (wakeup_cpu0()) 1740 start_cpu0(); 1741 } 1742 } 1743 1744 void hlt_play_dead(void) 1745 { 1746 if (__this_cpu_read(cpu_info.x86) >= 4) 1747 wbinvd(); 1748 1749 while (1) { 1750 native_halt(); 1751 /* 1752 * If NMI wants to wake up CPU0, start CPU0. 1753 */ 1754 if (wakeup_cpu0()) 1755 start_cpu0(); 1756 } 1757 } 1758 1759 void native_play_dead(void) 1760 { 1761 play_dead_common(); 1762 tboot_shutdown(TB_SHUTDOWN_WFS); 1763 1764 mwait_play_dead(); /* Only returns on failure */ 1765 if (cpuidle_play_dead()) 1766 hlt_play_dead(); 1767 } 1768 1769 #else /* ... !CONFIG_HOTPLUG_CPU */ 1770 int native_cpu_disable(void) 1771 { 1772 return -ENOSYS; 1773 } 1774 1775 void native_cpu_die(unsigned int cpu) 1776 { 1777 /* We said "no" in __cpu_disable */ 1778 BUG(); 1779 } 1780 1781 void native_play_dead(void) 1782 { 1783 BUG(); 1784 } 1785 1786 #endif 1787 1788 #ifdef CONFIG_X86_64 1789 /* 1790 * APERF/MPERF frequency ratio computation. 1791 * 1792 * The scheduler wants to do frequency invariant accounting and needs a <1 1793 * ratio to account for the 'current' frequency, corresponding to 1794 * freq_curr / freq_max. 1795 * 1796 * Since the frequency freq_curr on x86 is controlled by micro-controller and 1797 * our P-state setting is little more than a request/hint, we need to observe 1798 * the effective frequency 'BusyMHz', i.e. the average frequency over a time 1799 * interval after discarding idle time. This is given by: 1800 * 1801 * BusyMHz = delta_APERF / delta_MPERF * freq_base 1802 * 1803 * where freq_base is the max non-turbo P-state. 1804 * 1805 * The freq_max term has to be set to a somewhat arbitrary value, because we 1806 * can't know which turbo states will be available at a given point in time: 1807 * it all depends on the thermal headroom of the entire package. We set it to 1808 * the turbo level with 4 cores active. 1809 * 1810 * Benchmarks show that's a good compromise between the 1C turbo ratio 1811 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base, 1812 * which would ignore the entire turbo range (a conspicuous part, making 1813 * freq_curr/freq_max always maxed out). 1814 * 1815 * An exception to the heuristic above is the Atom uarch, where we choose the 1816 * highest turbo level for freq_max since Atom's are generally oriented towards 1817 * power efficiency. 1818 * 1819 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio 1820 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1. 1821 */ 1822 1823 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key); 1824 1825 static DEFINE_PER_CPU(u64, arch_prev_aperf); 1826 static DEFINE_PER_CPU(u64, arch_prev_mperf); 1827 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE; 1828 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE; 1829 1830 void arch_set_max_freq_ratio(bool turbo_disabled) 1831 { 1832 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE : 1833 arch_turbo_freq_ratio; 1834 } 1835 1836 static bool turbo_disabled(void) 1837 { 1838 u64 misc_en; 1839 int err; 1840 1841 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en); 1842 if (err) 1843 return false; 1844 1845 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 1846 } 1847 1848 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) 1849 { 1850 int err; 1851 1852 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq); 1853 if (err) 1854 return false; 1855 1856 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq); 1857 if (err) 1858 return false; 1859 1860 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */ 1861 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */ 1862 1863 return true; 1864 } 1865 1866 #include <asm/cpu_device_id.h> 1867 #include <asm/intel-family.h> 1868 1869 #define X86_MATCH(model) \ 1870 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \ 1871 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL) 1872 1873 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = { 1874 X86_MATCH(XEON_PHI_KNL), 1875 X86_MATCH(XEON_PHI_KNM), 1876 {} 1877 }; 1878 1879 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = { 1880 X86_MATCH(SKYLAKE_X), 1881 {} 1882 }; 1883 1884 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = { 1885 X86_MATCH(ATOM_GOLDMONT), 1886 X86_MATCH(ATOM_GOLDMONT_D), 1887 X86_MATCH(ATOM_GOLDMONT_PLUS), 1888 {} 1889 }; 1890 1891 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, 1892 int num_delta_fratio) 1893 { 1894 int fratio, delta_fratio, found; 1895 int err, i; 1896 u64 msr; 1897 1898 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); 1899 if (err) 1900 return false; 1901 1902 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ 1903 1904 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); 1905 if (err) 1906 return false; 1907 1908 fratio = (msr >> 8) & 0xFF; 1909 i = 16; 1910 found = 0; 1911 do { 1912 if (found >= num_delta_fratio) { 1913 *turbo_freq = fratio; 1914 return true; 1915 } 1916 1917 delta_fratio = (msr >> (i + 5)) & 0x7; 1918 1919 if (delta_fratio) { 1920 found += 1; 1921 fratio -= delta_fratio; 1922 } 1923 1924 i += 8; 1925 } while (i < 64); 1926 1927 return true; 1928 } 1929 1930 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size) 1931 { 1932 u64 ratios, counts; 1933 u32 group_size; 1934 int err, i; 1935 1936 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); 1937 if (err) 1938 return false; 1939 1940 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ 1941 1942 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios); 1943 if (err) 1944 return false; 1945 1946 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts); 1947 if (err) 1948 return false; 1949 1950 for (i = 0; i < 64; i += 8) { 1951 group_size = (counts >> i) & 0xFF; 1952 if (group_size >= size) { 1953 *turbo_freq = (ratios >> i) & 0xFF; 1954 return true; 1955 } 1956 } 1957 1958 return false; 1959 } 1960 1961 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) 1962 { 1963 u64 msr; 1964 int err; 1965 1966 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); 1967 if (err) 1968 return false; 1969 1970 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); 1971 if (err) 1972 return false; 1973 1974 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ 1975 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */ 1976 1977 /* The CPU may have less than 4 cores */ 1978 if (!*turbo_freq) 1979 *turbo_freq = msr & 0xFF; /* 1C turbo */ 1980 1981 return true; 1982 } 1983 1984 static bool intel_set_max_freq_ratio(void) 1985 { 1986 u64 base_freq, turbo_freq; 1987 u64 turbo_ratio; 1988 1989 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq)) 1990 goto out; 1991 1992 if (x86_match_cpu(has_glm_turbo_ratio_limits) && 1993 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) 1994 goto out; 1995 1996 if (x86_match_cpu(has_knl_turbo_ratio_limits) && 1997 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) 1998 goto out; 1999 2000 if (x86_match_cpu(has_skx_turbo_ratio_limits) && 2001 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4)) 2002 goto out; 2003 2004 if (core_set_max_freq_ratio(&base_freq, &turbo_freq)) 2005 goto out; 2006 2007 return false; 2008 2009 out: 2010 /* 2011 * Some hypervisors advertise X86_FEATURE_APERFMPERF 2012 * but then fill all MSR's with zeroes. 2013 * Some CPUs have turbo boost but don't declare any turbo ratio 2014 * in MSR_TURBO_RATIO_LIMIT. 2015 */ 2016 if (!base_freq || !turbo_freq) { 2017 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n"); 2018 return false; 2019 } 2020 2021 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq); 2022 if (!turbo_ratio) { 2023 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n"); 2024 return false; 2025 } 2026 2027 arch_turbo_freq_ratio = turbo_ratio; 2028 arch_set_max_freq_ratio(turbo_disabled()); 2029 2030 return true; 2031 } 2032 2033 #ifdef CONFIG_ACPI_CPPC_LIB 2034 static bool amd_set_max_freq_ratio(void) 2035 { 2036 struct cppc_perf_caps perf_caps; 2037 u64 highest_perf, nominal_perf; 2038 u64 perf_ratio; 2039 int rc; 2040 2041 rc = cppc_get_perf_caps(0, &perf_caps); 2042 if (rc) { 2043 pr_debug("Could not retrieve perf counters (%d)\n", rc); 2044 return false; 2045 } 2046 2047 highest_perf = perf_caps.highest_perf; 2048 nominal_perf = perf_caps.nominal_perf; 2049 2050 if (!highest_perf || !nominal_perf) { 2051 pr_debug("Could not retrieve highest or nominal performance\n"); 2052 return false; 2053 } 2054 2055 perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf); 2056 /* midpoint between max_boost and max_P */ 2057 perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1; 2058 if (!perf_ratio) { 2059 pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n"); 2060 return false; 2061 } 2062 2063 arch_turbo_freq_ratio = perf_ratio; 2064 arch_set_max_freq_ratio(false); 2065 2066 return true; 2067 } 2068 #else 2069 static bool amd_set_max_freq_ratio(void) 2070 { 2071 return false; 2072 } 2073 #endif 2074 2075 static void init_counter_refs(void) 2076 { 2077 u64 aperf, mperf; 2078 2079 rdmsrl(MSR_IA32_APERF, aperf); 2080 rdmsrl(MSR_IA32_MPERF, mperf); 2081 2082 this_cpu_write(arch_prev_aperf, aperf); 2083 this_cpu_write(arch_prev_mperf, mperf); 2084 } 2085 2086 static void init_freq_invariance(bool secondary, bool cppc_ready) 2087 { 2088 bool ret = false; 2089 2090 if (!boot_cpu_has(X86_FEATURE_APERFMPERF)) 2091 return; 2092 2093 if (secondary) { 2094 if (static_branch_likely(&arch_scale_freq_key)) { 2095 init_counter_refs(); 2096 } 2097 return; 2098 } 2099 2100 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 2101 ret = intel_set_max_freq_ratio(); 2102 else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { 2103 if (!cppc_ready) { 2104 return; 2105 } 2106 ret = amd_set_max_freq_ratio(); 2107 } 2108 2109 if (ret) { 2110 init_counter_refs(); 2111 static_branch_enable(&arch_scale_freq_key); 2112 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio); 2113 } else { 2114 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n"); 2115 } 2116 } 2117 2118 #ifdef CONFIG_ACPI_CPPC_LIB 2119 static DEFINE_MUTEX(freq_invariance_lock); 2120 2121 void init_freq_invariance_cppc(void) 2122 { 2123 static bool secondary; 2124 2125 mutex_lock(&freq_invariance_lock); 2126 2127 init_freq_invariance(secondary, true); 2128 secondary = true; 2129 2130 mutex_unlock(&freq_invariance_lock); 2131 } 2132 #endif 2133 2134 static void disable_freq_invariance_workfn(struct work_struct *work) 2135 { 2136 static_branch_disable(&arch_scale_freq_key); 2137 } 2138 2139 static DECLARE_WORK(disable_freq_invariance_work, 2140 disable_freq_invariance_workfn); 2141 2142 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 2143 2144 void arch_scale_freq_tick(void) 2145 { 2146 u64 freq_scale = SCHED_CAPACITY_SCALE; 2147 u64 aperf, mperf; 2148 u64 acnt, mcnt; 2149 2150 if (!arch_scale_freq_invariant()) 2151 return; 2152 2153 rdmsrl(MSR_IA32_APERF, aperf); 2154 rdmsrl(MSR_IA32_MPERF, mperf); 2155 2156 acnt = aperf - this_cpu_read(arch_prev_aperf); 2157 mcnt = mperf - this_cpu_read(arch_prev_mperf); 2158 2159 this_cpu_write(arch_prev_aperf, aperf); 2160 this_cpu_write(arch_prev_mperf, mperf); 2161 2162 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt)) 2163 goto error; 2164 2165 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt) 2166 goto error; 2167 2168 freq_scale = div64_u64(acnt, mcnt); 2169 if (!freq_scale) 2170 goto error; 2171 2172 if (freq_scale > SCHED_CAPACITY_SCALE) 2173 freq_scale = SCHED_CAPACITY_SCALE; 2174 2175 this_cpu_write(arch_freq_scale, freq_scale); 2176 return; 2177 2178 error: 2179 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n"); 2180 schedule_work(&disable_freq_invariance_work); 2181 } 2182 #else 2183 static inline void init_freq_invariance(bool secondary, bool cppc_ready) 2184 { 2185 } 2186 #endif /* CONFIG_X86_64 */ 2187