xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 2d972b6a)
1  /*
2  *	x86 SMP booting functions
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *	Copyright 2001 Andi Kleen, SuSE Labs.
7  *
8  *	Much of the core SMP work is based on previous work by Thomas Radke, to
9  *	whom a great many thanks are extended.
10  *
11  *	Thanks to Intel for making available several different Pentium,
12  *	Pentium Pro and Pentium-II/Xeon MP machines.
13  *	Original development of Linux SMP code supported by Caldera.
14  *
15  *	This code is released under the GNU General Public License version 2 or
16  *	later.
17  *
18  *	Fixes
19  *		Felix Koop	:	NR_CPUS used properly
20  *		Jose Renau	:	Handle single CPU case.
21  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
22  *		Greg Wright	:	Fix for kernel stacks panic.
23  *		Erich Boleyn	:	MP v1.4 and additional changes.
24  *	Matthias Sattler	:	Changes for 2.1 kernel map.
25  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
26  *	Michael Chastain	:	Change trampoline.S to gnu as.
27  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
28  *		Ingo Molnar	:	Added APIC timers, based on code
29  *					from Jose Renau
30  *		Ingo Molnar	:	various cleanups and rewrites
31  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
32  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
33  *	Andi Kleen		:	Changed for SMP boot into long mode.
34  *		Martin J. Bligh	: 	Added support for multi-quad systems
35  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
36  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
37  *      Andi Kleen              :       Converted to new state machine.
38  *	Ashok Raj		: 	CPU hotplug support
39  *	Glauber Costa		:	i386 and x86_64 integration
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/export.h>
47 #include <linux/sched.h>
48 #include <linux/sched/topology.h>
49 #include <linux/sched/hotplug.h>
50 #include <linux/sched/task_stack.h>
51 #include <linux/percpu.h>
52 #include <linux/bootmem.h>
53 #include <linux/err.h>
54 #include <linux/nmi.h>
55 #include <linux/tboot.h>
56 #include <linux/stackprotector.h>
57 #include <linux/gfp.h>
58 #include <linux/cpuidle.h>
59 
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 
83 /* Number of siblings per CPU package */
84 int smp_num_siblings = 1;
85 EXPORT_SYMBOL(smp_num_siblings);
86 
87 /* Last level cache ID of each logical CPU */
88 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
89 
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 
98 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
99 
100 /* Per CPU bogomips and other parameters */
101 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
102 EXPORT_PER_CPU_SYMBOL(cpu_info);
103 
104 /* Logical package management. We might want to allocate that dynamically */
105 unsigned int __max_logical_packages __read_mostly;
106 EXPORT_SYMBOL(__max_logical_packages);
107 static unsigned int logical_packages __read_mostly;
108 
109 /* Maximum number of SMT threads on any online core */
110 int __read_mostly __max_smt_threads = 1;
111 
112 /* Flag to indicate if a complete sched domain rebuild is required */
113 bool x86_topology_update;
114 
115 int arch_update_cpu_topology(void)
116 {
117 	int retval = x86_topology_update;
118 
119 	x86_topology_update = false;
120 	return retval;
121 }
122 
123 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&rtc_lock, flags);
128 	CMOS_WRITE(0xa, 0xf);
129 	spin_unlock_irqrestore(&rtc_lock, flags);
130 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131 							start_eip >> 4;
132 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133 							start_eip & 0xf;
134 }
135 
136 static inline void smpboot_restore_warm_reset_vector(void)
137 {
138 	unsigned long flags;
139 
140 	/*
141 	 * Paranoid:  Set warm reset code and vector here back
142 	 * to default values.
143 	 */
144 	spin_lock_irqsave(&rtc_lock, flags);
145 	CMOS_WRITE(0, 0xf);
146 	spin_unlock_irqrestore(&rtc_lock, flags);
147 
148 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149 }
150 
151 /*
152  * Report back to the Boot Processor during boot time or to the caller processor
153  * during CPU online.
154  */
155 static void smp_callin(void)
156 {
157 	int cpuid, phys_id;
158 
159 	/*
160 	 * If waken up by an INIT in an 82489DX configuration
161 	 * cpu_callout_mask guarantees we don't get here before
162 	 * an INIT_deassert IPI reaches our local APIC, so it is
163 	 * now safe to touch our local APIC.
164 	 */
165 	cpuid = smp_processor_id();
166 
167 	/*
168 	 * (This works even if the APIC is not enabled.)
169 	 */
170 	phys_id = read_apic_id();
171 
172 	/*
173 	 * the boot CPU has finished the init stage and is spinning
174 	 * on callin_map until we finish. We are free to set up this
175 	 * CPU, first the APIC. (this is probably redundant on most
176 	 * boards)
177 	 */
178 	apic_ap_setup();
179 
180 	/*
181 	 * Save our processor parameters. Note: this information
182 	 * is needed for clock calibration.
183 	 */
184 	smp_store_cpu_info(cpuid);
185 
186 	/*
187 	 * The topology information must be up to date before
188 	 * calibrate_delay() and notify_cpu_starting().
189 	 */
190 	set_cpu_sibling_map(raw_smp_processor_id());
191 
192 	/*
193 	 * Get our bogomips.
194 	 * Update loops_per_jiffy in cpu_data. Previous call to
195 	 * smp_store_cpu_info() stored a value that is close but not as
196 	 * accurate as the value just calculated.
197 	 */
198 	calibrate_delay();
199 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
200 	pr_debug("Stack at about %p\n", &cpuid);
201 
202 	wmb();
203 
204 	notify_cpu_starting(cpuid);
205 
206 	/*
207 	 * Allow the master to continue.
208 	 */
209 	cpumask_set_cpu(cpuid, cpu_callin_mask);
210 }
211 
212 static int cpu0_logical_apicid;
213 static int enable_start_cpu0;
214 /*
215  * Activate a secondary processor.
216  */
217 static void notrace start_secondary(void *unused)
218 {
219 	/*
220 	 * Don't put *anything* except direct CPU state initialization
221 	 * before cpu_init(), SMP booting is too fragile that we want to
222 	 * limit the things done here to the most necessary things.
223 	 */
224 	if (boot_cpu_has(X86_FEATURE_PCID))
225 		__write_cr4(__read_cr4() | X86_CR4_PCIDE);
226 
227 #ifdef CONFIG_X86_32
228 	/* switch away from the initial page table */
229 	load_cr3(swapper_pg_dir);
230 	__flush_tlb_all();
231 #endif
232 	load_current_idt();
233 	cpu_init();
234 	x86_cpuinit.early_percpu_clock_init();
235 	preempt_disable();
236 	smp_callin();
237 
238 	enable_start_cpu0 = 0;
239 
240 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
241 	barrier();
242 	/*
243 	 * Check TSC synchronization with the boot CPU:
244 	 */
245 	check_tsc_sync_target();
246 
247 	/*
248 	 * Lock vector_lock, set CPU online and bring the vector
249 	 * allocator online. Online must be set with vector_lock held
250 	 * to prevent a concurrent irq setup/teardown from seeing a
251 	 * half valid vector space.
252 	 */
253 	lock_vector_lock();
254 	set_cpu_online(smp_processor_id(), true);
255 	lapic_online();
256 	unlock_vector_lock();
257 	cpu_set_state_online(smp_processor_id());
258 	x86_platform.nmi_init();
259 
260 	/* enable local interrupts */
261 	local_irq_enable();
262 
263 	/* to prevent fake stack check failure in clock setup */
264 	boot_init_stack_canary();
265 
266 	x86_cpuinit.setup_percpu_clockev();
267 
268 	wmb();
269 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
270 }
271 
272 /**
273  * topology_phys_to_logical_pkg - Map a physical package id to a logical
274  *
275  * Returns logical package id or -1 if not found
276  */
277 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
278 {
279 	int cpu;
280 
281 	for_each_possible_cpu(cpu) {
282 		struct cpuinfo_x86 *c = &cpu_data(cpu);
283 
284 		if (c->initialized && c->phys_proc_id == phys_pkg)
285 			return c->logical_proc_id;
286 	}
287 	return -1;
288 }
289 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
290 
291 /**
292  * topology_update_package_map - Update the physical to logical package map
293  * @pkg:	The physical package id as retrieved via CPUID
294  * @cpu:	The cpu for which this is updated
295  */
296 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
297 {
298 	int new;
299 
300 	/* Already available somewhere? */
301 	new = topology_phys_to_logical_pkg(pkg);
302 	if (new >= 0)
303 		goto found;
304 
305 	new = logical_packages++;
306 	if (new != pkg) {
307 		pr_info("CPU %u Converting physical %u to logical package %u\n",
308 			cpu, pkg, new);
309 	}
310 found:
311 	cpu_data(cpu).logical_proc_id = new;
312 	return 0;
313 }
314 
315 void __init smp_store_boot_cpu_info(void)
316 {
317 	int id = 0; /* CPU 0 */
318 	struct cpuinfo_x86 *c = &cpu_data(id);
319 
320 	*c = boot_cpu_data;
321 	c->cpu_index = id;
322 	topology_update_package_map(c->phys_proc_id, id);
323 	c->initialized = true;
324 }
325 
326 /*
327  * The bootstrap kernel entry code has set these up. Save them for
328  * a given CPU
329  */
330 void smp_store_cpu_info(int id)
331 {
332 	struct cpuinfo_x86 *c = &cpu_data(id);
333 
334 	/* Copy boot_cpu_data only on the first bringup */
335 	if (!c->initialized)
336 		*c = boot_cpu_data;
337 	c->cpu_index = id;
338 	/*
339 	 * During boot time, CPU0 has this setup already. Save the info when
340 	 * bringing up AP or offlined CPU0.
341 	 */
342 	identify_secondary_cpu(c);
343 	c->initialized = true;
344 }
345 
346 static bool
347 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
348 {
349 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
350 
351 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
352 }
353 
354 static bool
355 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
356 {
357 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
358 
359 	return !WARN_ONCE(!topology_same_node(c, o),
360 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
361 		"[node: %d != %d]. Ignoring dependency.\n",
362 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
363 }
364 
365 #define link_mask(mfunc, c1, c2)					\
366 do {									\
367 	cpumask_set_cpu((c1), mfunc(c2));				\
368 	cpumask_set_cpu((c2), mfunc(c1));				\
369 } while (0)
370 
371 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
372 {
373 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
374 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
375 
376 		if (c->phys_proc_id == o->phys_proc_id &&
377 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
378 			if (c->cpu_core_id == o->cpu_core_id)
379 				return topology_sane(c, o, "smt");
380 
381 			if ((c->cu_id != 0xff) &&
382 			    (o->cu_id != 0xff) &&
383 			    (c->cu_id == o->cu_id))
384 				return topology_sane(c, o, "smt");
385 		}
386 
387 	} else if (c->phys_proc_id == o->phys_proc_id &&
388 		   c->cpu_core_id == o->cpu_core_id) {
389 		return topology_sane(c, o, "smt");
390 	}
391 
392 	return false;
393 }
394 
395 /*
396  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
397  *
398  * These are Intel CPUs that enumerate an LLC that is shared by
399  * multiple NUMA nodes. The LLC on these systems is shared for
400  * off-package data access but private to the NUMA node (half
401  * of the package) for on-package access.
402  *
403  * CPUID (the source of the information about the LLC) can only
404  * enumerate the cache as being shared *or* unshared, but not
405  * this particular configuration. The CPU in this case enumerates
406  * the cache to be shared across the entire package (spanning both
407  * NUMA nodes).
408  */
409 
410 static const struct x86_cpu_id snc_cpu[] = {
411 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
412 	{}
413 };
414 
415 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
416 {
417 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
418 
419 	/* Do not match if we do not have a valid APICID for cpu: */
420 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
421 		return false;
422 
423 	/* Do not match if LLC id does not match: */
424 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
425 		return false;
426 
427 	/*
428 	 * Allow the SNC topology without warning. Return of false
429 	 * means 'c' does not share the LLC of 'o'. This will be
430 	 * reflected to userspace.
431 	 */
432 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
433 		return false;
434 
435 	return topology_sane(c, o, "llc");
436 }
437 
438 /*
439  * Unlike the other levels, we do not enforce keeping a
440  * multicore group inside a NUMA node.  If this happens, we will
441  * discard the MC level of the topology later.
442  */
443 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
444 {
445 	if (c->phys_proc_id == o->phys_proc_id)
446 		return true;
447 	return false;
448 }
449 
450 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
451 static inline int x86_sched_itmt_flags(void)
452 {
453 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
454 }
455 
456 #ifdef CONFIG_SCHED_MC
457 static int x86_core_flags(void)
458 {
459 	return cpu_core_flags() | x86_sched_itmt_flags();
460 }
461 #endif
462 #ifdef CONFIG_SCHED_SMT
463 static int x86_smt_flags(void)
464 {
465 	return cpu_smt_flags() | x86_sched_itmt_flags();
466 }
467 #endif
468 #endif
469 
470 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
471 #ifdef CONFIG_SCHED_SMT
472 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
473 #endif
474 #ifdef CONFIG_SCHED_MC
475 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
476 #endif
477 	{ NULL, },
478 };
479 
480 static struct sched_domain_topology_level x86_topology[] = {
481 #ifdef CONFIG_SCHED_SMT
482 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
483 #endif
484 #ifdef CONFIG_SCHED_MC
485 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
486 #endif
487 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
488 	{ NULL, },
489 };
490 
491 /*
492  * Set if a package/die has multiple NUMA nodes inside.
493  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
494  * Sub-NUMA Clustering have this.
495  */
496 static bool x86_has_numa_in_package;
497 
498 void set_cpu_sibling_map(int cpu)
499 {
500 	bool has_smt = smp_num_siblings > 1;
501 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
502 	struct cpuinfo_x86 *c = &cpu_data(cpu);
503 	struct cpuinfo_x86 *o;
504 	int i, threads;
505 
506 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
507 
508 	if (!has_mp) {
509 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
510 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
511 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
512 		c->booted_cores = 1;
513 		return;
514 	}
515 
516 	for_each_cpu(i, cpu_sibling_setup_mask) {
517 		o = &cpu_data(i);
518 
519 		if ((i == cpu) || (has_smt && match_smt(c, o)))
520 			link_mask(topology_sibling_cpumask, cpu, i);
521 
522 		if ((i == cpu) || (has_mp && match_llc(c, o)))
523 			link_mask(cpu_llc_shared_mask, cpu, i);
524 
525 	}
526 
527 	/*
528 	 * This needs a separate iteration over the cpus because we rely on all
529 	 * topology_sibling_cpumask links to be set-up.
530 	 */
531 	for_each_cpu(i, cpu_sibling_setup_mask) {
532 		o = &cpu_data(i);
533 
534 		if ((i == cpu) || (has_mp && match_die(c, o))) {
535 			link_mask(topology_core_cpumask, cpu, i);
536 
537 			/*
538 			 *  Does this new cpu bringup a new core?
539 			 */
540 			if (cpumask_weight(
541 			    topology_sibling_cpumask(cpu)) == 1) {
542 				/*
543 				 * for each core in package, increment
544 				 * the booted_cores for this new cpu
545 				 */
546 				if (cpumask_first(
547 				    topology_sibling_cpumask(i)) == i)
548 					c->booted_cores++;
549 				/*
550 				 * increment the core count for all
551 				 * the other cpus in this package
552 				 */
553 				if (i != cpu)
554 					cpu_data(i).booted_cores++;
555 			} else if (i != cpu && !c->booted_cores)
556 				c->booted_cores = cpu_data(i).booted_cores;
557 		}
558 		if (match_die(c, o) && !topology_same_node(c, o))
559 			x86_has_numa_in_package = true;
560 	}
561 
562 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
563 	if (threads > __max_smt_threads)
564 		__max_smt_threads = threads;
565 }
566 
567 /* maps the cpu to the sched domain representing multi-core */
568 const struct cpumask *cpu_coregroup_mask(int cpu)
569 {
570 	return cpu_llc_shared_mask(cpu);
571 }
572 
573 static void impress_friends(void)
574 {
575 	int cpu;
576 	unsigned long bogosum = 0;
577 	/*
578 	 * Allow the user to impress friends.
579 	 */
580 	pr_debug("Before bogomips\n");
581 	for_each_possible_cpu(cpu)
582 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
583 			bogosum += cpu_data(cpu).loops_per_jiffy;
584 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
585 		num_online_cpus(),
586 		bogosum/(500000/HZ),
587 		(bogosum/(5000/HZ))%100);
588 
589 	pr_debug("Before bogocount - setting activated=1\n");
590 }
591 
592 void __inquire_remote_apic(int apicid)
593 {
594 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
595 	const char * const names[] = { "ID", "VERSION", "SPIV" };
596 	int timeout;
597 	u32 status;
598 
599 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
600 
601 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
602 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
603 
604 		/*
605 		 * Wait for idle.
606 		 */
607 		status = safe_apic_wait_icr_idle();
608 		if (status)
609 			pr_cont("a previous APIC delivery may have failed\n");
610 
611 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
612 
613 		timeout = 0;
614 		do {
615 			udelay(100);
616 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
617 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
618 
619 		switch (status) {
620 		case APIC_ICR_RR_VALID:
621 			status = apic_read(APIC_RRR);
622 			pr_cont("%08x\n", status);
623 			break;
624 		default:
625 			pr_cont("failed\n");
626 		}
627 	}
628 }
629 
630 /*
631  * The Multiprocessor Specification 1.4 (1997) example code suggests
632  * that there should be a 10ms delay between the BSP asserting INIT
633  * and de-asserting INIT, when starting a remote processor.
634  * But that slows boot and resume on modern processors, which include
635  * many cores and don't require that delay.
636  *
637  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
638  * Modern processor families are quirked to remove the delay entirely.
639  */
640 #define UDELAY_10MS_DEFAULT 10000
641 
642 static unsigned int init_udelay = UINT_MAX;
643 
644 static int __init cpu_init_udelay(char *str)
645 {
646 	get_option(&str, &init_udelay);
647 
648 	return 0;
649 }
650 early_param("cpu_init_udelay", cpu_init_udelay);
651 
652 static void __init smp_quirk_init_udelay(void)
653 {
654 	/* if cmdline changed it from default, leave it alone */
655 	if (init_udelay != UINT_MAX)
656 		return;
657 
658 	/* if modern processor, use no delay */
659 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
660 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
661 		init_udelay = 0;
662 		return;
663 	}
664 	/* else, use legacy delay */
665 	init_udelay = UDELAY_10MS_DEFAULT;
666 }
667 
668 /*
669  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
670  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
671  * won't ... remember to clear down the APIC, etc later.
672  */
673 int
674 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
675 {
676 	unsigned long send_status, accept_status = 0;
677 	int maxlvt;
678 
679 	/* Target chip */
680 	/* Boot on the stack */
681 	/* Kick the second */
682 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
683 
684 	pr_debug("Waiting for send to finish...\n");
685 	send_status = safe_apic_wait_icr_idle();
686 
687 	/*
688 	 * Give the other CPU some time to accept the IPI.
689 	 */
690 	udelay(200);
691 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
692 		maxlvt = lapic_get_maxlvt();
693 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
694 			apic_write(APIC_ESR, 0);
695 		accept_status = (apic_read(APIC_ESR) & 0xEF);
696 	}
697 	pr_debug("NMI sent\n");
698 
699 	if (send_status)
700 		pr_err("APIC never delivered???\n");
701 	if (accept_status)
702 		pr_err("APIC delivery error (%lx)\n", accept_status);
703 
704 	return (send_status | accept_status);
705 }
706 
707 static int
708 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
709 {
710 	unsigned long send_status = 0, accept_status = 0;
711 	int maxlvt, num_starts, j;
712 
713 	maxlvt = lapic_get_maxlvt();
714 
715 	/*
716 	 * Be paranoid about clearing APIC errors.
717 	 */
718 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
719 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
720 			apic_write(APIC_ESR, 0);
721 		apic_read(APIC_ESR);
722 	}
723 
724 	pr_debug("Asserting INIT\n");
725 
726 	/*
727 	 * Turn INIT on target chip
728 	 */
729 	/*
730 	 * Send IPI
731 	 */
732 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
733 		       phys_apicid);
734 
735 	pr_debug("Waiting for send to finish...\n");
736 	send_status = safe_apic_wait_icr_idle();
737 
738 	udelay(init_udelay);
739 
740 	pr_debug("Deasserting INIT\n");
741 
742 	/* Target chip */
743 	/* Send IPI */
744 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
745 
746 	pr_debug("Waiting for send to finish...\n");
747 	send_status = safe_apic_wait_icr_idle();
748 
749 	mb();
750 
751 	/*
752 	 * Should we send STARTUP IPIs ?
753 	 *
754 	 * Determine this based on the APIC version.
755 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
756 	 */
757 	if (APIC_INTEGRATED(boot_cpu_apic_version))
758 		num_starts = 2;
759 	else
760 		num_starts = 0;
761 
762 	/*
763 	 * Run STARTUP IPI loop.
764 	 */
765 	pr_debug("#startup loops: %d\n", num_starts);
766 
767 	for (j = 1; j <= num_starts; j++) {
768 		pr_debug("Sending STARTUP #%d\n", j);
769 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
770 			apic_write(APIC_ESR, 0);
771 		apic_read(APIC_ESR);
772 		pr_debug("After apic_write\n");
773 
774 		/*
775 		 * STARTUP IPI
776 		 */
777 
778 		/* Target chip */
779 		/* Boot on the stack */
780 		/* Kick the second */
781 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
782 			       phys_apicid);
783 
784 		/*
785 		 * Give the other CPU some time to accept the IPI.
786 		 */
787 		if (init_udelay == 0)
788 			udelay(10);
789 		else
790 			udelay(300);
791 
792 		pr_debug("Startup point 1\n");
793 
794 		pr_debug("Waiting for send to finish...\n");
795 		send_status = safe_apic_wait_icr_idle();
796 
797 		/*
798 		 * Give the other CPU some time to accept the IPI.
799 		 */
800 		if (init_udelay == 0)
801 			udelay(10);
802 		else
803 			udelay(200);
804 
805 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
806 			apic_write(APIC_ESR, 0);
807 		accept_status = (apic_read(APIC_ESR) & 0xEF);
808 		if (send_status || accept_status)
809 			break;
810 	}
811 	pr_debug("After Startup\n");
812 
813 	if (send_status)
814 		pr_err("APIC never delivered???\n");
815 	if (accept_status)
816 		pr_err("APIC delivery error (%lx)\n", accept_status);
817 
818 	return (send_status | accept_status);
819 }
820 
821 /* reduce the number of lines printed when booting a large cpu count system */
822 static void announce_cpu(int cpu, int apicid)
823 {
824 	static int current_node = -1;
825 	int node = early_cpu_to_node(cpu);
826 	static int width, node_width;
827 
828 	if (!width)
829 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
830 
831 	if (!node_width)
832 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
833 
834 	if (cpu == 1)
835 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
836 
837 	if (system_state < SYSTEM_RUNNING) {
838 		if (node != current_node) {
839 			if (current_node > (-1))
840 				pr_cont("\n");
841 			current_node = node;
842 
843 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
844 			       node_width - num_digits(node), " ", node);
845 		}
846 
847 		/* Add padding for the BSP */
848 		if (cpu == 1)
849 			pr_cont("%*s", width + 1, " ");
850 
851 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
852 
853 	} else
854 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
855 			node, cpu, apicid);
856 }
857 
858 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
859 {
860 	int cpu;
861 
862 	cpu = smp_processor_id();
863 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
864 		return NMI_HANDLED;
865 
866 	return NMI_DONE;
867 }
868 
869 /*
870  * Wake up AP by INIT, INIT, STARTUP sequence.
871  *
872  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
873  * boot-strap code which is not a desired behavior for waking up BSP. To
874  * void the boot-strap code, wake up CPU0 by NMI instead.
875  *
876  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
877  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
878  * We'll change this code in the future to wake up hard offlined CPU0 if
879  * real platform and request are available.
880  */
881 static int
882 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
883 	       int *cpu0_nmi_registered)
884 {
885 	int id;
886 	int boot_error;
887 
888 	preempt_disable();
889 
890 	/*
891 	 * Wake up AP by INIT, INIT, STARTUP sequence.
892 	 */
893 	if (cpu) {
894 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
895 		goto out;
896 	}
897 
898 	/*
899 	 * Wake up BSP by nmi.
900 	 *
901 	 * Register a NMI handler to help wake up CPU0.
902 	 */
903 	boot_error = register_nmi_handler(NMI_LOCAL,
904 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
905 
906 	if (!boot_error) {
907 		enable_start_cpu0 = 1;
908 		*cpu0_nmi_registered = 1;
909 		if (apic->dest_logical == APIC_DEST_LOGICAL)
910 			id = cpu0_logical_apicid;
911 		else
912 			id = apicid;
913 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
914 	}
915 
916 out:
917 	preempt_enable();
918 
919 	return boot_error;
920 }
921 
922 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
923 {
924 	/* Just in case we booted with a single CPU. */
925 	alternatives_enable_smp();
926 
927 	per_cpu(current_task, cpu) = idle;
928 
929 #ifdef CONFIG_X86_32
930 	/* Stack for startup_32 can be just as for start_secondary onwards */
931 	irq_ctx_init(cpu);
932 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
933 #else
934 	initial_gs = per_cpu_offset(cpu);
935 #endif
936 }
937 
938 /*
939  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
940  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
941  * Returns zero if CPU booted OK, else error code from
942  * ->wakeup_secondary_cpu.
943  */
944 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
945 		       int *cpu0_nmi_registered)
946 {
947 	volatile u32 *trampoline_status =
948 		(volatile u32 *) __va(real_mode_header->trampoline_status);
949 	/* start_ip had better be page-aligned! */
950 	unsigned long start_ip = real_mode_header->trampoline_start;
951 
952 	unsigned long boot_error = 0;
953 	unsigned long timeout;
954 
955 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
956 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
957 	initial_code = (unsigned long)start_secondary;
958 	initial_stack  = idle->thread.sp;
959 
960 	/* Enable the espfix hack for this CPU */
961 	init_espfix_ap(cpu);
962 
963 	/* So we see what's up */
964 	announce_cpu(cpu, apicid);
965 
966 	/*
967 	 * This grunge runs the startup process for
968 	 * the targeted processor.
969 	 */
970 
971 	if (x86_platform.legacy.warm_reset) {
972 
973 		pr_debug("Setting warm reset code and vector.\n");
974 
975 		smpboot_setup_warm_reset_vector(start_ip);
976 		/*
977 		 * Be paranoid about clearing APIC errors.
978 		*/
979 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
980 			apic_write(APIC_ESR, 0);
981 			apic_read(APIC_ESR);
982 		}
983 	}
984 
985 	/*
986 	 * AP might wait on cpu_callout_mask in cpu_init() with
987 	 * cpu_initialized_mask set if previous attempt to online
988 	 * it timed-out. Clear cpu_initialized_mask so that after
989 	 * INIT/SIPI it could start with a clean state.
990 	 */
991 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
992 	smp_mb();
993 
994 	/*
995 	 * Wake up a CPU in difference cases:
996 	 * - Use the method in the APIC driver if it's defined
997 	 * Otherwise,
998 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
999 	 */
1000 	if (apic->wakeup_secondary_cpu)
1001 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1002 	else
1003 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1004 						     cpu0_nmi_registered);
1005 
1006 	if (!boot_error) {
1007 		/*
1008 		 * Wait 10s total for first sign of life from AP
1009 		 */
1010 		boot_error = -1;
1011 		timeout = jiffies + 10*HZ;
1012 		while (time_before(jiffies, timeout)) {
1013 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1014 				/*
1015 				 * Tell AP to proceed with initialization
1016 				 */
1017 				cpumask_set_cpu(cpu, cpu_callout_mask);
1018 				boot_error = 0;
1019 				break;
1020 			}
1021 			schedule();
1022 		}
1023 	}
1024 
1025 	if (!boot_error) {
1026 		/*
1027 		 * Wait till AP completes initial initialization
1028 		 */
1029 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1030 			/*
1031 			 * Allow other tasks to run while we wait for the
1032 			 * AP to come online. This also gives a chance
1033 			 * for the MTRR work(triggered by the AP coming online)
1034 			 * to be completed in the stop machine context.
1035 			 */
1036 			schedule();
1037 		}
1038 	}
1039 
1040 	/* mark "stuck" area as not stuck */
1041 	*trampoline_status = 0;
1042 
1043 	if (x86_platform.legacy.warm_reset) {
1044 		/*
1045 		 * Cleanup possible dangling ends...
1046 		 */
1047 		smpboot_restore_warm_reset_vector();
1048 	}
1049 
1050 	return boot_error;
1051 }
1052 
1053 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1054 {
1055 	int apicid = apic->cpu_present_to_apicid(cpu);
1056 	int cpu0_nmi_registered = 0;
1057 	unsigned long flags;
1058 	int err, ret = 0;
1059 
1060 	lockdep_assert_irqs_enabled();
1061 
1062 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1063 
1064 	if (apicid == BAD_APICID ||
1065 	    !physid_isset(apicid, phys_cpu_present_map) ||
1066 	    !apic->apic_id_valid(apicid)) {
1067 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1068 		return -EINVAL;
1069 	}
1070 
1071 	/*
1072 	 * Already booted CPU?
1073 	 */
1074 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1075 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1076 		return -ENOSYS;
1077 	}
1078 
1079 	/*
1080 	 * Save current MTRR state in case it was changed since early boot
1081 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1082 	 */
1083 	mtrr_save_state();
1084 
1085 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1086 	err = cpu_check_up_prepare(cpu);
1087 	if (err && err != -EBUSY)
1088 		return err;
1089 
1090 	/* the FPU context is blank, nobody can own it */
1091 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1092 
1093 	common_cpu_up(cpu, tidle);
1094 
1095 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1096 	if (err) {
1097 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1098 		ret = -EIO;
1099 		goto unreg_nmi;
1100 	}
1101 
1102 	/*
1103 	 * Check TSC synchronization with the AP (keep irqs disabled
1104 	 * while doing so):
1105 	 */
1106 	local_irq_save(flags);
1107 	check_tsc_sync_source(cpu);
1108 	local_irq_restore(flags);
1109 
1110 	while (!cpu_online(cpu)) {
1111 		cpu_relax();
1112 		touch_nmi_watchdog();
1113 	}
1114 
1115 unreg_nmi:
1116 	/*
1117 	 * Clean up the nmi handler. Do this after the callin and callout sync
1118 	 * to avoid impact of possible long unregister time.
1119 	 */
1120 	if (cpu0_nmi_registered)
1121 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1122 
1123 	return ret;
1124 }
1125 
1126 /**
1127  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1128  */
1129 void arch_disable_smp_support(void)
1130 {
1131 	disable_ioapic_support();
1132 }
1133 
1134 /*
1135  * Fall back to non SMP mode after errors.
1136  *
1137  * RED-PEN audit/test this more. I bet there is more state messed up here.
1138  */
1139 static __init void disable_smp(void)
1140 {
1141 	pr_info("SMP disabled\n");
1142 
1143 	disable_ioapic_support();
1144 
1145 	init_cpu_present(cpumask_of(0));
1146 	init_cpu_possible(cpumask_of(0));
1147 
1148 	if (smp_found_config)
1149 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1150 	else
1151 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1152 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1153 	cpumask_set_cpu(0, topology_core_cpumask(0));
1154 }
1155 
1156 /*
1157  * Various sanity checks.
1158  */
1159 static void __init smp_sanity_check(void)
1160 {
1161 	preempt_disable();
1162 
1163 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1164 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1165 		unsigned int cpu;
1166 		unsigned nr;
1167 
1168 		pr_warn("More than 8 CPUs detected - skipping them\n"
1169 			"Use CONFIG_X86_BIGSMP\n");
1170 
1171 		nr = 0;
1172 		for_each_present_cpu(cpu) {
1173 			if (nr >= 8)
1174 				set_cpu_present(cpu, false);
1175 			nr++;
1176 		}
1177 
1178 		nr = 0;
1179 		for_each_possible_cpu(cpu) {
1180 			if (nr >= 8)
1181 				set_cpu_possible(cpu, false);
1182 			nr++;
1183 		}
1184 
1185 		nr_cpu_ids = 8;
1186 	}
1187 #endif
1188 
1189 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1190 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1191 			hard_smp_processor_id());
1192 
1193 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1194 	}
1195 
1196 	/*
1197 	 * Should not be necessary because the MP table should list the boot
1198 	 * CPU too, but we do it for the sake of robustness anyway.
1199 	 */
1200 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1201 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1202 			  boot_cpu_physical_apicid);
1203 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1204 	}
1205 	preempt_enable();
1206 }
1207 
1208 static void __init smp_cpu_index_default(void)
1209 {
1210 	int i;
1211 	struct cpuinfo_x86 *c;
1212 
1213 	for_each_possible_cpu(i) {
1214 		c = &cpu_data(i);
1215 		/* mark all to hotplug */
1216 		c->cpu_index = nr_cpu_ids;
1217 	}
1218 }
1219 
1220 static void __init smp_get_logical_apicid(void)
1221 {
1222 	if (x2apic_mode)
1223 		cpu0_logical_apicid = apic_read(APIC_LDR);
1224 	else
1225 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1226 }
1227 
1228 /*
1229  * Prepare for SMP bootup.
1230  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1231  *            for common interface support.
1232  */
1233 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1234 {
1235 	unsigned int i;
1236 
1237 	smp_cpu_index_default();
1238 
1239 	/*
1240 	 * Setup boot CPU information
1241 	 */
1242 	smp_store_boot_cpu_info(); /* Final full version of the data */
1243 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1244 	mb();
1245 
1246 	for_each_possible_cpu(i) {
1247 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1248 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1249 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1250 	}
1251 
1252 	/*
1253 	 * Set 'default' x86 topology, this matches default_topology() in that
1254 	 * it has NUMA nodes as a topology level. See also
1255 	 * native_smp_cpus_done().
1256 	 *
1257 	 * Must be done before set_cpus_sibling_map() is ran.
1258 	 */
1259 	set_sched_topology(x86_topology);
1260 
1261 	set_cpu_sibling_map(0);
1262 
1263 	smp_sanity_check();
1264 
1265 	switch (apic_intr_mode) {
1266 	case APIC_PIC:
1267 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1268 		disable_smp();
1269 		return;
1270 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1271 		disable_smp();
1272 		/* Setup local timer */
1273 		x86_init.timers.setup_percpu_clockev();
1274 		return;
1275 	case APIC_VIRTUAL_WIRE:
1276 	case APIC_SYMMETRIC_IO:
1277 		break;
1278 	}
1279 
1280 	/* Setup local timer */
1281 	x86_init.timers.setup_percpu_clockev();
1282 
1283 	smp_get_logical_apicid();
1284 
1285 	pr_info("CPU0: ");
1286 	print_cpu_info(&cpu_data(0));
1287 
1288 	native_pv_lock_init();
1289 
1290 	uv_system_init();
1291 
1292 	set_mtrr_aps_delayed_init();
1293 
1294 	smp_quirk_init_udelay();
1295 }
1296 
1297 void arch_enable_nonboot_cpus_begin(void)
1298 {
1299 	set_mtrr_aps_delayed_init();
1300 }
1301 
1302 void arch_enable_nonboot_cpus_end(void)
1303 {
1304 	mtrr_aps_init();
1305 }
1306 
1307 /*
1308  * Early setup to make printk work.
1309  */
1310 void __init native_smp_prepare_boot_cpu(void)
1311 {
1312 	int me = smp_processor_id();
1313 	switch_to_new_gdt(me);
1314 	/* already set me in cpu_online_mask in boot_cpu_init() */
1315 	cpumask_set_cpu(me, cpu_callout_mask);
1316 	cpu_set_state_online(me);
1317 }
1318 
1319 void __init calculate_max_logical_packages(void)
1320 {
1321 	int ncpus;
1322 
1323 	/*
1324 	 * Today neither Intel nor AMD support heterogenous systems so
1325 	 * extrapolate the boot cpu's data to all packages.
1326 	 */
1327 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1328 	__max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
1329 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1330 }
1331 
1332 void __init native_smp_cpus_done(unsigned int max_cpus)
1333 {
1334 	pr_debug("Boot done\n");
1335 
1336 	calculate_max_logical_packages();
1337 
1338 	if (x86_has_numa_in_package)
1339 		set_sched_topology(x86_numa_in_package_topology);
1340 
1341 	nmi_selftest();
1342 	impress_friends();
1343 	mtrr_aps_init();
1344 }
1345 
1346 static int __initdata setup_possible_cpus = -1;
1347 static int __init _setup_possible_cpus(char *str)
1348 {
1349 	get_option(&str, &setup_possible_cpus);
1350 	return 0;
1351 }
1352 early_param("possible_cpus", _setup_possible_cpus);
1353 
1354 
1355 /*
1356  * cpu_possible_mask should be static, it cannot change as cpu's
1357  * are onlined, or offlined. The reason is per-cpu data-structures
1358  * are allocated by some modules at init time, and dont expect to
1359  * do this dynamically on cpu arrival/departure.
1360  * cpu_present_mask on the other hand can change dynamically.
1361  * In case when cpu_hotplug is not compiled, then we resort to current
1362  * behaviour, which is cpu_possible == cpu_present.
1363  * - Ashok Raj
1364  *
1365  * Three ways to find out the number of additional hotplug CPUs:
1366  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1367  * - The user can overwrite it with possible_cpus=NUM
1368  * - Otherwise don't reserve additional CPUs.
1369  * We do this because additional CPUs waste a lot of memory.
1370  * -AK
1371  */
1372 __init void prefill_possible_map(void)
1373 {
1374 	int i, possible;
1375 
1376 	/* No boot processor was found in mptable or ACPI MADT */
1377 	if (!num_processors) {
1378 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1379 			int apicid = boot_cpu_physical_apicid;
1380 			int cpu = hard_smp_processor_id();
1381 
1382 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1383 
1384 			/* Make sure boot cpu is enumerated */
1385 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1386 			    apic->apic_id_valid(apicid))
1387 				generic_processor_info(apicid, boot_cpu_apic_version);
1388 		}
1389 
1390 		if (!num_processors)
1391 			num_processors = 1;
1392 	}
1393 
1394 	i = setup_max_cpus ?: 1;
1395 	if (setup_possible_cpus == -1) {
1396 		possible = num_processors;
1397 #ifdef CONFIG_HOTPLUG_CPU
1398 		if (setup_max_cpus)
1399 			possible += disabled_cpus;
1400 #else
1401 		if (possible > i)
1402 			possible = i;
1403 #endif
1404 	} else
1405 		possible = setup_possible_cpus;
1406 
1407 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1408 
1409 	/* nr_cpu_ids could be reduced via nr_cpus= */
1410 	if (possible > nr_cpu_ids) {
1411 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1412 			possible, nr_cpu_ids);
1413 		possible = nr_cpu_ids;
1414 	}
1415 
1416 #ifdef CONFIG_HOTPLUG_CPU
1417 	if (!setup_max_cpus)
1418 #endif
1419 	if (possible > i) {
1420 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1421 			possible, setup_max_cpus);
1422 		possible = i;
1423 	}
1424 
1425 	nr_cpu_ids = possible;
1426 
1427 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1428 		possible, max_t(int, possible - num_processors, 0));
1429 
1430 	reset_cpu_possible_mask();
1431 
1432 	for (i = 0; i < possible; i++)
1433 		set_cpu_possible(i, true);
1434 }
1435 
1436 #ifdef CONFIG_HOTPLUG_CPU
1437 
1438 /* Recompute SMT state for all CPUs on offline */
1439 static void recompute_smt_state(void)
1440 {
1441 	int max_threads, cpu;
1442 
1443 	max_threads = 0;
1444 	for_each_online_cpu (cpu) {
1445 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1446 
1447 		if (threads > max_threads)
1448 			max_threads = threads;
1449 	}
1450 	__max_smt_threads = max_threads;
1451 }
1452 
1453 static void remove_siblinginfo(int cpu)
1454 {
1455 	int sibling;
1456 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1457 
1458 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1459 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1460 		/*/
1461 		 * last thread sibling in this cpu core going down
1462 		 */
1463 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1464 			cpu_data(sibling).booted_cores--;
1465 	}
1466 
1467 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1468 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1469 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1470 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1471 	cpumask_clear(cpu_llc_shared_mask(cpu));
1472 	cpumask_clear(topology_sibling_cpumask(cpu));
1473 	cpumask_clear(topology_core_cpumask(cpu));
1474 	c->cpu_core_id = 0;
1475 	c->booted_cores = 0;
1476 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1477 	recompute_smt_state();
1478 }
1479 
1480 static void remove_cpu_from_maps(int cpu)
1481 {
1482 	set_cpu_online(cpu, false);
1483 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1484 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1485 	/* was set by cpu_init() */
1486 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1487 	numa_remove_cpu(cpu);
1488 }
1489 
1490 void cpu_disable_common(void)
1491 {
1492 	int cpu = smp_processor_id();
1493 
1494 	remove_siblinginfo(cpu);
1495 
1496 	/* It's now safe to remove this processor from the online map */
1497 	lock_vector_lock();
1498 	remove_cpu_from_maps(cpu);
1499 	unlock_vector_lock();
1500 	fixup_irqs();
1501 	lapic_offline();
1502 }
1503 
1504 int native_cpu_disable(void)
1505 {
1506 	int ret;
1507 
1508 	ret = lapic_can_unplug_cpu();
1509 	if (ret)
1510 		return ret;
1511 
1512 	clear_local_APIC();
1513 	cpu_disable_common();
1514 
1515 	return 0;
1516 }
1517 
1518 int common_cpu_die(unsigned int cpu)
1519 {
1520 	int ret = 0;
1521 
1522 	/* We don't do anything here: idle task is faking death itself. */
1523 
1524 	/* They ack this in play_dead() by setting CPU_DEAD */
1525 	if (cpu_wait_death(cpu, 5)) {
1526 		if (system_state == SYSTEM_RUNNING)
1527 			pr_info("CPU %u is now offline\n", cpu);
1528 	} else {
1529 		pr_err("CPU %u didn't die...\n", cpu);
1530 		ret = -1;
1531 	}
1532 
1533 	return ret;
1534 }
1535 
1536 void native_cpu_die(unsigned int cpu)
1537 {
1538 	common_cpu_die(cpu);
1539 }
1540 
1541 void play_dead_common(void)
1542 {
1543 	idle_task_exit();
1544 
1545 	/* Ack it */
1546 	(void)cpu_report_death();
1547 
1548 	/*
1549 	 * With physical CPU hotplug, we should halt the cpu
1550 	 */
1551 	local_irq_disable();
1552 }
1553 
1554 static bool wakeup_cpu0(void)
1555 {
1556 	if (smp_processor_id() == 0 && enable_start_cpu0)
1557 		return true;
1558 
1559 	return false;
1560 }
1561 
1562 /*
1563  * We need to flush the caches before going to sleep, lest we have
1564  * dirty data in our caches when we come back up.
1565  */
1566 static inline void mwait_play_dead(void)
1567 {
1568 	unsigned int eax, ebx, ecx, edx;
1569 	unsigned int highest_cstate = 0;
1570 	unsigned int highest_subcstate = 0;
1571 	void *mwait_ptr;
1572 	int i;
1573 
1574 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1575 		return;
1576 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1577 		return;
1578 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1579 		return;
1580 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1581 		return;
1582 
1583 	eax = CPUID_MWAIT_LEAF;
1584 	ecx = 0;
1585 	native_cpuid(&eax, &ebx, &ecx, &edx);
1586 
1587 	/*
1588 	 * eax will be 0 if EDX enumeration is not valid.
1589 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1590 	 */
1591 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1592 		eax = 0;
1593 	} else {
1594 		edx >>= MWAIT_SUBSTATE_SIZE;
1595 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1596 			if (edx & MWAIT_SUBSTATE_MASK) {
1597 				highest_cstate = i;
1598 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1599 			}
1600 		}
1601 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1602 			(highest_subcstate - 1);
1603 	}
1604 
1605 	/*
1606 	 * This should be a memory location in a cache line which is
1607 	 * unlikely to be touched by other processors.  The actual
1608 	 * content is immaterial as it is not actually modified in any way.
1609 	 */
1610 	mwait_ptr = &current_thread_info()->flags;
1611 
1612 	wbinvd();
1613 
1614 	while (1) {
1615 		/*
1616 		 * The CLFLUSH is a workaround for erratum AAI65 for
1617 		 * the Xeon 7400 series.  It's not clear it is actually
1618 		 * needed, but it should be harmless in either case.
1619 		 * The WBINVD is insufficient due to the spurious-wakeup
1620 		 * case where we return around the loop.
1621 		 */
1622 		mb();
1623 		clflush(mwait_ptr);
1624 		mb();
1625 		__monitor(mwait_ptr, 0, 0);
1626 		mb();
1627 		__mwait(eax, 0);
1628 		/*
1629 		 * If NMI wants to wake up CPU0, start CPU0.
1630 		 */
1631 		if (wakeup_cpu0())
1632 			start_cpu0();
1633 	}
1634 }
1635 
1636 void hlt_play_dead(void)
1637 {
1638 	if (__this_cpu_read(cpu_info.x86) >= 4)
1639 		wbinvd();
1640 
1641 	while (1) {
1642 		native_halt();
1643 		/*
1644 		 * If NMI wants to wake up CPU0, start CPU0.
1645 		 */
1646 		if (wakeup_cpu0())
1647 			start_cpu0();
1648 	}
1649 }
1650 
1651 void native_play_dead(void)
1652 {
1653 	play_dead_common();
1654 	tboot_shutdown(TB_SHUTDOWN_WFS);
1655 
1656 	mwait_play_dead();	/* Only returns on failure */
1657 	if (cpuidle_play_dead())
1658 		hlt_play_dead();
1659 }
1660 
1661 #else /* ... !CONFIG_HOTPLUG_CPU */
1662 int native_cpu_disable(void)
1663 {
1664 	return -ENOSYS;
1665 }
1666 
1667 void native_cpu_die(unsigned int cpu)
1668 {
1669 	/* We said "no" in __cpu_disable */
1670 	BUG();
1671 }
1672 
1673 void native_play_dead(void)
1674 {
1675 	BUG();
1676 }
1677 
1678 #endif
1679